边缘检测
边缘检测算法流程

边缘检测算法流程边缘检测是计算机视觉和图像处理中的一项关键技术。
它通过识别图像中像素强度变化的区域来提取图像的重要特征。
以下是边缘检测算法的主要流程:1.图像预处理预处理是边缘检测的第一步,主要目的是改善图像质量,为后续的边缘检测操作做准备。
预处理步骤可能包括灰度转换、噪声去除、平滑等。
这些步骤可以帮助消除图像中的噪声,并使图像的特征更加突出。
2.滤波处理滤波处理的目的是减少图像中的噪声,同时保留边缘信息。
常用的滤波器包括高斯滤波器、中值滤波器等。
滤波处理有助于提高后续边缘检测的准确性。
3.边缘检测算子边缘检测算子是边缘检测算法的核心。
常见的算子包括Sobel算子、Prewitt 算子、Canny算子等。
这些算子通过特定的数学运算来识别和提取图像中的边缘。
算子将根据图像局部像素的强度变化来确定边缘。
4.后处理后处理是对检测到的边缘进行进一步处理和优化。
这可能包括去除假阳性边缘(即非实际边缘的误检测)、连接断裂的边缘、平滑边缘等。
后处理有助于提高边缘检测结果的准确性和可解释性。
5.阈值处理阈值处理是用来确定哪些边缘是显著的,哪些不是。
通过设置一个阈值,可以将边缘检测结果转化为二值图像,其中显著的边缘被标记为特定值(通常是1),不显著的边缘被标记为0。
这有助于简化分析和降低计算复杂性。
6.边缘特征提取边缘特征提取是提取已检测到的边缘的特征的过程。
这可能包括测量边缘的角度、长度、形状等属性。
这些特征可以用于进一步的图像分析和理解,例如对象识别或场景分类。
7.性能评估性能评估是评估边缘检测算法效果的步骤。
评估指标可能包括边缘检测的准确性、计算效率、鲁棒性等。
评估也可以采用定量方法,如比较人工标定的真实边缘与检测到的边缘的相似性。
此外,还可以通过比较不同算法的检测结果来评估性能。
性能评估有助于改进和优化算法,提高其在实际应用中的表现。
几种常用边缘检测算法的比较

几种常用边缘检测算法的比较边缘检测是在数字图像上寻找图像亮度变化的过程,它对于图像处理和计算机视觉任务非常重要。
常见的边缘检测算法有Sobel算子、Prewitt算子、Roberts算子和Canny边缘检测算法。
本文将对这几种算法进行比较。
1. Sobel算子:Sobel算子是一种常见的边缘检测算法,它通过计算图像像素点与其邻域像素点之间的差异来检测边缘。
Sobel算子具有简单、快速的优点,可以检测水平和垂直方向的边缘,但对于斜向边缘检测效果较差。
2. Prewitt算子:Prewitt算子也是一种常用的边缘检测算法,它类似于Sobel算子,通过计算图像像素点与其邻域像素点之间的差异来检测边缘。
Prewitt算子可以检测水平、垂直和斜向边缘,但对于斜向边缘的检测结果可能不够精确。
3. Roberts算子:Roberts算子是一种简单的边缘检测算法,它通过计算图像像素点与其对角线方向上的邻域像素点之间的差异来检测边缘。
Roberts算子计算简单,但对于噪声敏感,容易产生干扰边缘。
4. Canny边缘检测算法:Canny边缘检测算法是一种经典的边缘检测算法,它包含多个步骤:高斯滤波、计算梯度、非最大抑制和双阈值处理。
Canny算法具有良好的边缘定位能力,并且对于噪声和细节边缘具有较好的抑制效果。
但Canny算法计算复杂度较高,在处理大规模图像时可能较慢。
综上所述,不同的边缘检测算法具有各自的优缺点。
若要选择适合应用的算法,需要综合考虑图像特点、计算复杂度和应用需求等因素。
如果对图像边缘的方向要求不高,可以选择Sobel或Prewitt算子;如果对图像边缘的方向要求较高,可以选择Canny算法。
另外,为了获得更好的边缘检测结果,通常需要进行适当的预处理,如灰度化、滤波和阈值处理等。
最后,对于不同的应用场景,可能需要使用不同的算法或算法组合来满足特定需求。
边缘检测及拟合-概述说明以及解释

边缘检测及拟合-概述说明以及解释1.引言1.1 概述边缘检测及拟合是图像处理和计算机视觉领域中重要的技术研究方向,旨在从图像中提取出物体或目标的边缘信息,并进一步对边缘进行拟合和分析。
通过边缘检测和拟合,可以实现诸如物体检测、轮廓提取、目标跟踪、三维重构等多种计算机视觉任务。
边缘是指图像中灰度或颜色变化剧烈的区域。
边缘检测的目标是在图像中准确地标记和定位出这些边缘。
边缘检测是计算机视觉中常用的技术,具有广泛的应用领域,例如机器人导航、图像识别、医学影像处理等。
通过边缘检测,我们可以对图像进行分割,从而将图像分成不同的区域,方便后续处理。
边缘拟合是对图像中的边缘进行曲线或直线拟合的过程。
通过对边缘进行拟合,可以得到更加平滑的边缘曲线或直线,从而更好地描述物体的形状和轮廓。
边缘拟合广泛应用于图像重建、形状分析、目标识别等领域,能够提高边缘的准确性和鲁棒性。
边缘检测和拟合是紧密相连的两个过程,相互影响并共同完成对图像边缘的提取和分析。
边缘检测是边缘拟合的基础,而边缘拟合可以通过拟合来修正和优化边缘检测的结果。
在实际应用中,边缘检测和拟合经常需要同时进行,相互补充来提高整体的效果和精度。
本文将对边缘检测和拟合的概念进行介绍,并总结常用的方法和应用领域。
同时还会重点探讨边缘检测与拟合的关系,包括相互影响、综合应用以及未来的研究方向。
通过深入研究边缘检测及拟合的原理和方法,我们可以更好地理解图像的结构和特征,为计算机视觉和图像处理领域的相关应用提供有力支持。
文章结构部分的内容可以如下所示:1.2 文章结构本文分为引言、正文和结论三部分。
- 引言部分介绍了边缘检测及拟合的相关概念和研究意义,并对文章的结构进行了概述。
- 正文部分包括了边缘检测和边缘拟合两个主要部分。
- 边缘检测部分主要介绍了边缘检测的概念、常用方法和应用领域。
- 边缘拟合部分主要介绍了边缘拟合的概念、拟合方法和实际应用。
- 边缘检测与拟合的关系部分探讨了二者之间的相互影响,以及如何综合应用边缘检测和拟合方法,并给出了拓展研究方向的建议。
边缘检测的原理

边缘检测的原理边缘检测是图像处理中的一项重要技术,它可以用于图像分割、物体识别等领域。
本文将从边缘的定义、边缘检测方法、常见算法优缺点等方面详细介绍边缘检测的原理。
一、边缘的定义在图像中,边缘通常被定义为两个不同区域之间的分界线。
这些区域可以是具有不同颜色、纹理或亮度等特征的区域。
在数字图像中,边缘通常表示为像素值突然变化的位置。
二、边缘检测方法目前,常见的边缘检测方法主要包括基于梯度算子、基于模板匹配和基于机器学习等方法。
1. 基于梯度算子基于梯度算子的边缘检测方法是最为常用和经典的方法之一。
该方法通过计算图像灰度值变化率来确定图像中物体与背景之间的分界线。
其中,Sobel算子和Canny算子是最为常用的两种梯度算子。
Sobel算子是一种3x3或5x5大小的卷积核,它可以计算出每个像素点周围8个邻居像素的梯度值,并将这些梯度值进行加权平均。
Sobel 算子通常被用于检测图像中边缘的方向和强度。
Canny算子是一种基于高斯滤波器和非极大值抑制的边缘检测方法。
该算法首先使用高斯滤波器对图像进行平滑处理,然后计算每个像素点的梯度值和方向。
接着,通过非极大值抑制来消除非边缘像素,并使用双阈值法来确定弱边缘和强边缘。
2. 基于模板匹配基于模板匹配的边缘检测方法是一种基于特定形状模板的技术。
该方法通过在图像上移动一个预定义的模板,来寻找与模板匹配的区域。
当模板与图像中某个区域完全匹配时,就可以确定该区域为边缘。
3. 基于机器学习基于机器学习的边缘检测方法是一种新兴技术,它通过训练分类器来自动识别图像中的边缘。
该方法通常需要大量标记数据来训练分类器,并且需要考虑特征选择、分类器设计等问题。
三、常见算法优缺点1. Sobel算子优点:计算简单,速度快,适用于实时处理。
缺点:对噪声敏感,容易产生虚假边缘。
2. Canny算子优点:能够检测到细节和弱边缘,能够消除噪声和虚假边缘。
缺点:计算复杂,速度慢,需要调整参数以获得最佳效果。
边缘检测的原理

边缘检测的原理概述边缘检测是计算机视觉领域中一种常用的图像处理技术,用于检测图像中的边缘信息。
边缘是指图像中灰度级发生突变的区域,通常表示物体的轮廓或对象的边界。
边缘检测在很多图像处理应用中起着重要的作用,如图像分割、目标检测、图像增强等。
基本原理边缘检测的基本原理是利用像素点灰度值的变化来检测边缘。
在数字图像中,每个像素点都有一个灰度值,范围通常是0到255。
边缘处的像素点灰度值变化较大,因此可以通过检测像素点灰度值的梯度来找到边缘。
常用算法1. Roberts算子Roberts算子是一种基于差分的边缘检测算法。
它通过计算相邻像素点之间的差值来检测边缘。
具体计算方式如下:1.将图像转换为灰度图像。
2.将每个像素点与其相邻的右下方像素点(即(i,j)和(i+1,j+1))进行差值计算。
3.将每个像素点与其相邻的右上方像素点(即(i,j+1)和(i+1,j))进行差值计算。
4.对上述两组差值进行平方和再开方得到边缘强度。
5.根据设定的阈值对边缘强度进行二值化处理。
2. Sobel算子Sobel算子是一种基于滤波的边缘检测算法。
它通过使用两个卷积核对图像进行滤波操作,从而获取图像中每个像素点的梯度信息。
具体计算方式如下:1.将图像转换为灰度图像。
2.使用水平和垂直方向上的两个卷积核对图像进行滤波操作。
3.将水平和垂直方向上的滤波结果进行平方和再开方得到边缘强度。
4.根据设定的阈值对边缘强度进行二值化处理。
3. Canny边缘检测算法Canny边缘检测算法是一种基于多步骤的边缘检测算法,被广泛应用于计算机视觉领域。
它在边缘检测的精度、对噪声的抑制能力和边缘连接性上都有很好的表现。
Canny算法的主要步骤包括:1.将图像转换为灰度图像。
2.对图像进行高斯滤波以减小噪声的影响。
3.计算图像的梯度和方向。
4.对梯度进行非极大值抑制,只保留局部极大值点。
5.使用双阈值算法进行边缘连接和边缘细化。
6.得到最终的边缘图像。
边缘检测的原理

边缘检测的原理边缘检测是数字图像处理中的常见任务,它能够识别并提取出图像中物体的边缘信息。
在计算机视觉和模式识别领域,边缘特征对于物体识别、分割以及图像理解非常重要。
本文将介绍边缘检测的原理及其常用的方法。
一、边缘的定义边缘是图像中亮度变化剧烈处的集合。
在图像中,边缘通常表示物体之间的分界线或物体自身的边界轮廓。
边缘通常由亮度或颜色的不连续性引起,可以用于图像分析、特征提取和图像增强等应用中。
二、边缘检测的原理边缘检测的目标是找到图像中的所有边缘,并将其提取出来。
边缘检测的原理基于图像亮度的一阶或二阶变化来进行。
常用的边缘检测原理包括:1. 一阶导数方法一阶导数方法利用图像亮度的一阶导数来检测边缘。
最常见的方法是使用Sobel算子、Prewitt算子或Roberts算子计算图像的梯度,然后通过设置合适的阈值将梯度较大的像素点判定为边缘。
2. 二阶导数方法二阶导数方法通过对图像亮度进行二阶导数运算来检测边缘。
其中,Laplacian算子是最常用的二阶导数算子,它可以通过计算图像的二阶梯度来获取边缘信息。
类似于一阶导数方法,二阶导数方法也需要设定适当的阈值来提取边缘。
3. Canny算子Canny算子是一种广泛使用的边缘检测算法,它综合了一阶和二阶导数方法的优点。
Canny算子首先使用高斯滤波平滑图像,然后计算图像的梯度和梯度方向,并根据梯度方向进行非极大值抑制。
最后,通过双阈值算法检测出真正的边缘。
三、边缘检测的应用边缘检测在计算机视觉和图像处理中具有广泛的应用。
以下是一些常见的应用:1. 物体检测与分割边缘检测可以帮助识别图像中的物体并进行分割。
通过提取物体的边缘,可以实现对图像内容的理解和分析。
2. 图像增强边缘检测可以用于图像增强,通过突出图像中的边缘信息,使图像更加清晰和饱满。
3. 特征提取边缘是图像中最重要的特征之一,可以用于物体识别、图像匹配和目标跟踪等应用中。
通过提取边缘特征,可以实现对图像的自动识别和分析。
图像处理中的边缘检测方法与性能评估

图像处理中的边缘检测方法与性能评估边缘检测是图像处理和计算机视觉领域中的一项重要任务。
它主要用于提取图像中物体和背景之间的边界信息,便于后续的图像分割、目标识别和物体测量等应用。
在图像处理领域,边缘被定义为亮度、颜色或纹理等属性上的不连续性。
为了实现准确且可靠的边缘检测,许多不同的方法和算法被提出并广泛应用。
在本文中,我们将介绍几种常见的边缘检测方法,并对它们的性能进行评估。
1. Roberts 算子Roberts 算子是一种基于差分的边缘检测算法,它通过对图像进行水平和垂直方向的差分运算来检测边缘。
这种算法简单且易于实现,但对噪声比较敏感。
2. Sobel 算子Sobel 算子是一种常用的基于梯度的边缘检测算法。
它通过在图像上进行卷积运算,计算像素点的梯度幅值和方向,从而检测边缘。
Sobel 算子可以有效地消除噪声,并在边缘方向上提供更好的响应。
3. Canny 边缘检测Canny 边缘检测是一种经典的边缘检测算法。
它包括多个步骤,包括高斯滤波、计算梯度幅值和方向、非极大值抑制和双阈值处理。
Canny 边缘检测算法具有较高的准确性和鲁棒性,广泛应用于实际图像处理中。
除了以上提到的方法外,还存在许多其他的边缘检测算法,如拉普拉斯算子、积分图像算法等。
这些算法各有优缺点,选择合适的算法需要根据具体应用情况和要求来确定。
对于边缘检测方法的性能评估,通常使用以下几个指标来衡量:1. 精确度精确度是评估边缘检测算法结果与真实边缘之间的差异的指标。
可以通过计算检测结果与真实边缘的重叠率或者平均绝对误差来评估。
2. 召回率召回率是评估边缘检测算法是否能够正确检测到真实边缘的指标。
可以通过计算检测结果中的边缘与真实边缘的重叠率或者正确检测到的边缘像素数量与真实边缘像素数量的比值来评估。
3. 噪声鲁棒性噪声鲁棒性是评估边缘检测算法对图像噪声的抗干扰能力的指标。
可以通过在含有不同噪声水平的图像上进行测试,并比较检测到的边缘结果与真实边缘的差异来评估。
图像处理中的边缘检测和图像分割

图像处理中的边缘检测和图像分割在计算机视觉领域中,图像处理是一项非常重要的技术。
其中,边缘检测和图像分割是两个关键环节。
本文将从边缘检测和图像分割的基本概念入手,详细介绍它们的原理和应用。
一、边缘检测1、基本概念边缘是指图像中亮度、颜色等性质发生突然变化的地方。
边缘检测就是在图像中寻找这些突然变化的地方,并将它们标记出来。
在实际应用中,边缘检测可以用于目标跟踪、物体检测等方面。
2、常见方法常见的边缘检测算法有Canny、Sobel、Laplacian等。
其中,Canny算法是一种广泛使用的边缘检测算法,其基本原理是通过计算图像中每个像素点的梯度值和方向,来判断该点是否为边缘。
Sobel算法则是利用了图像卷积的思想,先对图像进行卷积操作,再计算得到每个像素点的梯度值。
Laplacian算法则是通过计算图像中每个像素点的二阶导数,来寻找亮度突变的地方。
3、应用场景边缘检测常用于在图像中寻找物体的轮廓线,或者分离图像中的前景和背景等方面。
例如在计算机视觉中的人脸识别中,边缘检测可以用于提取人脸的轮廓线,以便于后续的特征提取和匹配。
二、图像分割1、基本概念图像分割是把图像中的像素点分成不同的区域,以便于更好地理解和处理图像。
分割的结果通常是一个二值图像,其中每个像素点被标记为前景或者背景。
在实际应用中,图像分割可以用于目标检测、图像识别等方面。
2、常见方法常见的图像分割算法有阈值分割、聚类分割、边缘分割等。
其中,阈值分割是一种较为简单且常用的分割算法,其原理是为图像中每个像素点设置一个阈值,大于阈值的像素点被标记为前景,小于阈值的则为背景。
聚类分割算法则是通过对图像中像素点进行聚类操作,来划分不同的区域。
边缘分割则是利用边缘检测的结果,将图像分成前景和背景两个部分。
3、应用场景图像分割可以应用于诸如目标检测、图像识别、医学图像分析等方面。
例如在医学图像分析中,图像分割可以用于将CT或MRI图像中的组织分割成肝、肿瘤等不同的部分,以便于医生更好地进行预测和治疗决策。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像最基本的特征是边缘,边缘是图像分割所依赖的最重要特征。
经典的边缘检测方法,是对原始图像按像素的某领域构造边缘检测算子。
本文就这些算子进行理论分析、实际验证并对各自性能特点作出比较和评价,以便实际应用中更好地发挥其长处,为新方法的研究提供衡量尺度和改进依据。
1经典的边缘检测方法
经典的边缘检测是以原始图像为基础,对图像的各个像素考察它的某个领域内灰度阶跃变化,利用边缘邻近一阶或二阶方向导数变化规律检测边缘。
常用的边缘检测方法有:差分边缘检测、梯度边缘检测、Roberts边缘检测算子、Sobel边缘检测算子、Prewitt边缘检测算子、Laplace边缘检测算子等。
1.1差分边缘检测方法
利用像素灰度的一阶导数算子在灰度迅速变化处得到高值。
它在某一点的值就代表该点的‘边缘强度’,可以对这些值设置门限明确地从图像中检测到边缘元。
用差分检测边缘必须使差分的方向与边缘方向垂直,这就需要对图像的不同方向都进行差分运算,增加了实际运算的繁琐性。
1.2梯度边缘检测方法
梯度运算是一种不受施加运算方向限制的算子,既能检测出边缘的存在(幅度突变),又与施加运算的方向无关。
1.3Roberts边缘检测算子
Roberts边缘检测算子根据任意一对互相垂直方向上的差分可用来计算梯度的原理,采用对角线方向相邻两像素之差,即
(1)
它们的卷积算子为
有了Δxf,Δyf之后,很容易计算出Roberts的梯度幅值R(i,j),适当取门限TH,作如下判断:R(i,j)>TH ,(i,j)为阶跃状边缘点.{R(i,j)}为边缘图像。
1.4Sobel边缘检测算子
对数字图像{f(i,j)}的每个像素,考察它上、下、左、右邻点灰度的加权差,与之接近的邻点的权大。
据此,定义Sobel算子如下:
(2)
卷积算子为
适当取门限TH,作如下判断:S(i,j)>TH ,(i,j)为阶跃状边缘点.{S(i,j)}为边缘图像。
1.5Prewitt边缘检测算子
对数字图像{f(i,j)}的每个像素,考察它上、下、左、右邻点灰度之差。
据此,定义Prewitt 算子如下:
(3)
卷积算子为
ΔxfΔyf
适当取门限TH,作如下判断:P(i,j)>TH ,(i,j)为阶跃状边缘点.{P(i,j)}为边缘图像。
1.6Laplace边缘检测算子
Laplace算子是二阶微分算子,它是一个标量,不是向量,也进行各向同性的运算。
它对灰度突变敏感。
在数字图像中,可用差分来近似,f(i,j)的Laplace运算为
2f(i,j)=f(i+1,j)+f(i-1,j)+f(i,j+1)+f(i,j-1)-4f(i,j)(4)
由于Laplace是二阶差分运算,因此,在灰度阶跃边缘的两侧均有响应。
其值一边为正,一边为负,而对斜坡形边缘响应为零,即值为零,并且在此零值点的两侧也有一正一负两个峰值。
不论是阶跃边缘还是斜坡边缘,这一正一负两峰值的大小及走向,反映了边缘的强弱及走向。
2边缘检测方法性能比较
差分边缘检测方法是最原始、基本的方法。
根据灰度迅速变化处一阶导数达到最大(阶跃边缘情况)原理,利用导数算子检测边缘。
这种算子具有方向性,要求差分方向与边缘方向垂直,运算繁琐,目前很少采用。
梯度边缘检测方法利用梯度幅值在边缘处达到极值检测边缘。
该法不受施加运算方向限制,同时能获得边缘方向信息,定位精度高,但对噪声较为敏感。
Roberts算子采用对角线方向相邻两像素之差近似梯度幅值检测边缘。
检测水平和垂直边缘的效果好于斜向边缘,定位精度高,对噪声敏感。
Sobel算子根据像素点上下、左右邻点灰度加权差,在边缘处达到极值这一现象检测边缘。
对噪声具有平滑作用,提供较为精确的边缘方向信息,边缘定位精度不够高。
当对精度要求不是很高时,是一种较为常用的边缘检测方法。
Prewitt算子利用像素点上下、左右邻点灰度差,在边缘处达到极值检测边缘。
对噪声具有平滑作用,定位精度不够高。
Laplace算子是二阶微分算子,利用边缘点处二阶导函数出现零交叉原理检测边缘。
不具方向性,对灰度突变敏感,定位精度高,同时对噪声敏感,且不能获得边缘方向等信息。
3实验结果及分析
以图1中的几种典型图形为例,分别用Sobel、Prewitt、Roberts和Laplace算子进行处理后结果如图2所示。
图1原始图像
可以看出Roberts算子和Laplace算子定位精度较高;Roberts算子检测垂直和水平方向的阶跃边缘、线的效果比检测斜向阶跃边缘、线的效果好,保留住了矩形的角点,而Sobel 和Prewitt算子则不及,尤其是Prewitt算子基本丢失了角点信息;Sobel和Prewitt算子检测斜向阶跃边缘、线的效果较好,保留住了三角形的角点;Prewitt算子因其所得幅值相对Sobel 算子所得值要小,当选择较大的阈值时(TH=40),丢失了部分边缘信息,如图2(b)下部直角梯形的斜边丢失。
图2用Sobel、Prewitt、Roberts和Laplace算子处理的结果
对真实图形(加噪声)的处理:
图3(a)是一幅100×100,256级灰度图像,(b) 为加噪声后图像。
分别用Sobel、Prewitt、Roberts和Laplace算子对(b)进行处理后的结果如图4所示。
(a) 原始图像(b)加噪声图像
图3原始图像和加噪声图像
图4分别用Sobel、Prewitt、Roberts和Laplace算子处理的结果
从以上结果可以看出:Roberts算子和Laplace 算子定位精度较高,但对噪声较为敏感;Sobel 算子和Prewitt算子对噪声具有较好的平滑作用.
通过以上对经典边缘检测算子的分析和实际结果的验证,得出以下结论:
1)Roberts算子简单直观,Laplace算子利用二阶导数零交叉特性检测边缘。
两种算子定位精度高,但受噪声影响大;Laplace算子只能获得边缘位置信息,不能得到边缘的方向等信息。
2)Sobel算子和Prewitt算子具有平滑作用,能滤除一些噪声,去掉部分伪边缘,但同时也平滑了真正的边缘;定位精度不高。
Sobel算子可提供最精确的边缘方向估计[1]。
3)Sobel算子、Prewitt算子检测斜向阶跃边缘效果较好,Roberts算子检测水平和垂直边缘效果较好。
以上验证结果及分析是基于阶跃变化假设进行的。
但真实的灰度变化不一定都是阶跃的,有可能发生在很宽的灰度范围上,且存在灰度的起落。
解决此类问题,还可以采取其它办法。
4结束语
有效图形边缘检测方法的研究具有特别重要的意义。
本文的分析将有助于实际图形处理工作,并为新方法的诞生提供理论依据。
(责任编辑:傅鸿吉)■
作者简介:周道炳1966年生讲师硕士研究生101416北京
作者单位:周道炳(装备指挥技术学院士官系)
朱卫纲(装备指挥技术学院测量控制系)
参考文献:
[1]王润生. 图像理解.长沙:国防科技大学出版社,1994
[2]徐建华. 图像处理与分析. 北京:科学出版社,1992
[3]郭桂容. 模糊模式识别. 长沙:国防科技大学出版社,1993。