材料力学第2章
第2章 材料力学

截面法的步骤:
P
注意:外力的正负号取决于坐 标,与坐标轴同向为正, 反之 为负。 II
P
I
P
I
N
x
SX=0:+N-P=0
N=P
SX=0:-N'+P=0
N'=P
x
N'
II
P
2、轴力与轴力图
拉压杆的内力称为轴力,用 N 表示
轴力的正负号规定: 轴力的方向与所在截面的外法线方向一致时,取正;反之取负。
2.3 应力和变形分析
一、应力的概念
为了描写内力的分布规律,我们将单位面积的内力称为应力。 在某个截面上, 与该截面垂直的应力称为正应力。 记为: 与该截面平行的应力称为剪应力。 记为: 应力的单位:Pa
1 Pa 1 N / m2
1 MPa 1 N / mm2 106 Pa
工程上经常采用兆帕(MPa)作单位
二、材料力学的任务
由上述三项构件安全工作的基本要求可 以看出:如何合理的选用材料(既安全又经 济)、如何恰当的确定构件的截面形状和尺 寸,便成为构件设计中十分重要的问题。 材料力学的主要任务是:研究构件在外 力作用下的变形、受力和破坏规律,为合理 设计构件提供有关强度、刚度和稳定性分析 的基本理论和方法。
例: 在图示简支梁AB的C点处作用一集中力偶
M,作该梁的剪力图和弯矩图。
A
x
a
C
M B b
解: 1、求支反力
FA M M ; FB l l
FA
l
FB
2、建立剪力方程和弯矩方程
M FQ ( x) FA 0 x a l AC : M ( x) F x Mx 0 x a A l
《材料力学第二章》课件

弹性变形是可恢复的,而塑性变形是不可恢复的。
弹性变形能与塑性变形能
弹性变形能
01
物体在弹性变形过程中所吸收的能量,与应力和应变关系呈正
比。
塑性变形能
02
物体在塑性变形过程中所吸收的能量,与应力和应变关系呈非
线性。
弹性变形能与塑性变形能的比较
03
弹性变形能是可逆的,而塑性变形能是不可逆的。
材料力学的重要性
总结词
材料力学是工程设计和科学研究的重要基础,对于保证工程安全、优化产品设 计、降低成本等方面具有重要意义。
详细描述
在工程设计和科学研究中,材料力学提供了对材料行为的深入理解,有助于保 证工程结构的稳定性和安全性,优化产品的设计,降低生产成本,提高经济效 益。
材料力学的基本假设和单位
04
CATALOGUE
变形分析
变形的基本概念
变形
物体在外力作用下,形状 和尺寸发生变化的现象。
弹性变形
当外力去除后,物体能够 恢复原状的变形。
塑性变形
当外力去除后,物体不能 恢复原状的变形。
弹性变形与塑性变形
弹性变形特点
可逆、无残余应变、与外力大小成正比。
塑性变形特点
不可逆、有残余应变、外力达到屈服极限后发生。
建筑结构的优化设计
利用材料力学理论,对建筑结构进行优化设计,降低建筑物的重量 和成本,提高建筑物的性能和寿命。
机械工程中的应用
机械零件的强度和刚度分析
利用材料力学知识,对机械零件的强度和刚度进行分析和计算,确保零件在使用过程中不 会发生断裂或变形。
机械设备的动力学分析
通过材料力学的方法,对机械设备的动力学特性进行分析和计算,确保机械设备在使用过 程中具有良好的稳定性和可靠性。
材料力学 第2章 力系简化

而合力的作用点即平行力系的中心:
n
xC
lim
n
Fi xi
i 1 n
l
q( x) xdx
0 l
lim
n
i 1
Fi
0 q(x)dx
分布力对点A之矩
分布力包围的面积
结论:分布力的合力的大小等于分布力载荷图的面积,合
力的作用线通过载荷图的形心。
2.2 物体的重心、质心和形心
例2-5 如图所示,已知q、l, 求分布力对A点之矩。
2.2 物体的重心、质心和形心
xC
ΣFi xi ΣFi
,yC
ΣFi yi ΣFi
,zC
ΣFi zi ΣFi
3、平行力系中心的性质
平行力系的中心位置只与各平行力的大小和作用点的 位置有关,与平行力的方向无关。
2.2 物体的重心、质心和形心
二、物体的重心、质心和形心
1、重心
n个小体积ΔVi
坐标xi、yi、zi
(2)实验测定方法 悬挂法
称重法
l
A
C
B
xC G
FNB
二力平衡 两次悬挂
2.2 物体的重心、质心和形心
三、分布力
工程上存在大量分布力的情况,通常需要确定这些分布力
的合力的大小及其合力作用线的位置。对于图示的线分布力,
可以视为由无穷个集中力所构成的平行力系,
其合力的大小:FR
l
q ( x)dx
0
FP1 450kN,FP2 200kN
F1 300kN ,F2 70kN
求:
(1)力系向点 O 简化的结果;
(2)力系简化的最终结果。
2.1 力系简化
解:(1)确定简化中心为O点
材料力学第二章剪切

64kN
m P
L
b
d
材料力学
2 剪切面与挤压面的判定
AQ bl
h Abs 2 l
h
L
AQ
b
材料力学
3 切应力和挤压应力的强度条件
FQ [ ]
Lb
[
L1
]
FQ
b
64 16 80
10 3 (
m
)
50mm
2 Pbs Lh
[ bs ]
[
L2
]
2 Pbs
h[ bs ]
2 64 10 240
F
F
F
b
τ FS AS
n πd2
4F nπd 2
[τ]
4
(b) 图7−6
材料力学
➢对于对接方式,每个铆钉有两个剪切面.
每个铆钉每个剪切面上的剪力为
FS
F 2n
F
F
剪切强度条件为
(a)
F
F
F
b
FS AS
2n
d2
4F
n d 2
(b)
4
材料力学
2. 铆钉与钢板孔壁之间的挤压实用计算
➢ 对于搭接构件,挤压强度条件为
材料力学
键: 连接轴和轴上的传动件(如齿轮、皮带轮等),使轴
和传动件不发生相对转动,以传递扭矩。
材料力学
键连接的传动系统
材料力学
分析轮、轴、平键结构中键的剪切面与挤压面
(1)、 取轴和键为研究对象进行受力分析 F
M F d 0
M
2
(2)、单独取键为研究对象受力分析
键的左侧上半部分受到轮给键的约束反力的作用,合力大小F;
T
材料力学第二章

拉压杆横截面上的应力Stresses over the cross section 1.试验观察 Experimental observation
变形后横线仍为直线,仍垂直于杆件轴线,只是间距增大. Transversal line after deformation : straight; perpendicular to the axis.
E= tanα -elastic modulus 弹性模量
1.等直杆或小锥度杆Straight bar(or stepped bar) with uniform section, or with small taper ; 2.外力过轴线 The applied force P acts through the centroid of the cross section; 3.当外力均匀地加在截面上,此式对整个杆件都 适用,否则仅适用于离开外力作用处稍远的截面 The normal stress distribution in an axially loaded member is uniform, except in the near vicinity of the applied load (known as Saint-Venant's Principle) .
§4~5 Mechanical Properties of Materials
材料的力学性能 拉伸试验与应力-应变图Tensile Tests and Stress-Strain Diagram 低碳钢拉伸应力-应变曲线Tensile Stress-Strain Curve for Mild Steel 卸载与再加载路径Unloading and Reloading Path 名义屈服极限Conditional Yield Limit 脆性材料拉伸应力-应变曲线Stress-Strain Curves for Brittle Materials 复合与高分子材料的力学性能Strength Properties of Composite Materials
《材料力学》第二章

F
F
F
F
横截面上 正应力分
横截面间 的纤维变
斜截面间 的纤维变
斜截面上 应力均匀
布均匀
形相同
形相同
m
分布
F
m
p
Page24
第二章 轴向拉压应力与材料的力学性能 s t
n
F p
n p
FN FN p s 0 cos A A / cos
s p cos s 0 cos 2 s t p sin 0 sin 2
二、材料拉伸力学性能 低碳钢Q235
s
D E A
o
线弹性 屈服
硬化
缩颈
e
四个阶段:Linear, yielding, hardening, necking
Page32
第二章 轴向拉压应力与材料的力学性能
低碳钢Q235拉伸试验 线性阶段
s
B A
规律:
s Ee (OA段)
变形:变形很小,弹性 特征点:s p 200MPa (比例极限)
应力——应变曲线(低碳钢)
思考:颈缩阶段后,图中应力为什么会下降?
Page37
第二章 轴向拉压应力与材料的力学性能
名义应力与真实应力
真实应力曲线 名义应力曲线 名义应力
FN s A
变形前截面积
颈缩阶段载荷减小,截面积也减小,真实应力继续增加
Page38
第二章 轴向拉压应力与材料的力学性能
低碳钢试件在拉伸过程中的力学现象
材料力学应力分析的基本方法:
•试验观察
•几何方程
e const 变形关系
•提出假设
•物理方程
s Ee
材料力学 第2章轴向拉伸与压缩

A
FN128.3kN FN220kN
1
(2)计算各杆件的应力。
C
45°
2
B
s AB
FN 1 A1
28.3103
202
M
Pa90MPa
4
F
FN 1
F N 2 45°
y
Bx
s BC
FN 2 A2
21052103MPa89MPa
F
§2.4 材料在拉伸和压缩时的力学性能
22
5 圣维南原理
s FN A
(2-1)
(1)问题的提出
公式(2-1)的适用范围表明:公式不适用于集中力作
用点附近的区域。因为作用点附近横截面上的应力分布是非
均匀的。随着加载方式的不同。这点附近的应力分布方式就
会发生变化。 理论和实践研究表明:
不同的加力方式,只对力作
用点附近区域的应力分布有
显著影响,而在距力作用点
力学性能:指材料从开始受力至断裂的全部过程中,所表 现出的有关变形和破坏的特性和规律。
材料力学性能一般由试验测定,以数据的形式表达。 一、试验条件及试验仪器 1、试验条件:常温(20℃);静载(缓慢地加载);
2、标准试件:常用d=10mm,l=100 mm的试件
d
l
l =10d 或 l = 5d
36
b点是弹性阶段的最高点.
σe—
oa段为直线段,材料满足 胡克定律
sE
sp
E
se sp
s
f ab
Etana s
O
f′h
反映材料抵抗弹
性变形的能力.
40
材料力学-第二章

第二单元第二章 杆件的轴向拉压应力与材料的力学性能§2-1 引言工程实例: 连杆、螺栓、桁架、房屋立柱、桥墩……等等。
力学特征: 构件:直杆外力:合力沿杆轴作用(偏离轴线、怎样处理?)内力:在轴向载荷作用下,杆件横截面上的唯一内力分量为轴力N ,它们在该截面的两部分的大小相等、方向相反。
规定拉力为正,压力为负。
变形:轴向伸缩§2-2 拉压杆的应力一、拉压杆横截面上的应力(可演示,杆件受拉,上面所划的横线和纵线仍保持直线,仅距离改变,表明横截面仍保持为平面)平面假设→应变均匀→应力均匀AN=σ或A P =σ(拉为正,压为负)二、Saint-Venant 原理(1797-1886,原理于1855年提出)问题:杆端作用均布力,横截面应力均布。
杆端作用集中力,横截面应力均布吗? 如图, 随距离增大迅速趋于均匀。
局部力系的等效代换只影响局部。
它已由大量试验和计算证实,但一百多年以来,无数数学力学家试图严格证明它,至今仍未成功。
这是固体力学中一颗难以采撷的明珠。
三、拉压杆斜截面上的应力(低碳钢拉伸,沿45°出现滑移线,为什么?)0cos =-P Ap αα ασ=α=αcos cos AP p ασ=α=σαα2cos cos pασ=α=ταα22sin sin p ()0=ασ=σm ax ()452=ασ=τmax方位角α:逆时针方向为正剪应力τ:使研究对象有顺时针转动趋势为正。
例1和例2,看书p17,18§2-3 材料拉伸时的力学性能(构件的强度、刚度和稳定性,不仅与构件的形状、尺寸和所受外力有关,而且与材料的力学性能有关。
拉伸试验是最基本、最常用的试验。
)一、拉伸试验P18: 试样 拉伸图绘图系统放大变形传感器力传感器--→→→→二、低碳钢拉伸时的力学性能材料分类:脆性材料(玻璃、陶瓷和铸铁)、塑性材料(低碳钢:典型塑性材料)四个阶段:线性阶段(应力应变成正比,符合胡克定律,正比阶段的结束点称为比例极限)、屈服阶段(滑移线)(可听见响声,屈服极限s σ)、强化阶段(b σ强度极限)、局部变形(颈缩)阶段(名义应力↓,实际应力↑) 三(四个)特征点:比例极限、(接近弹性极限)、屈服极限、强度极限(超过强度极限、名义应力下降、实际应力仍上升)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在下列说法中,( A )是正确的。
A.内力随外力的改变而改变;B.内力与外力无关; C.内力在任意截面上都均匀分布;D.内力沿杆轴总是不变的。
构件截面上的内力通常可以简化为( C )。
A.一个主矢;B.一个主矩; C.一个主矢和一个主矩;D.一个标量。0
在关于内力与应力的关系中,说法( D )是正确的。
脆性材料的主要特点:
塑性指标较低,抗拉能力远远低于抗压能力,其 强度指标只有σb。
塑性材料冷作硬化后,材料的力学性能发生了变化。试判断以 下结论哪一个是正确的: (A)屈服应力提高,弹性模量降低; (B)屈服应力提高,塑性降低; (C)屈服应力不变,弹性模量不变; (D)屈服应力不变,塑性不变。 正确答案是( B )
ρg=25kN/m3,许用应力[σ]=1MPa。试比较下列三种
情况下所需石料体积(1)等截面石柱;(2)三段等
长度的阶梯石柱;(3)等强度石柱(柱的每个截面的
应力都等于许用应力[σ])
采用等截面石柱
FN F gAl
F
FN F gAl F gl
A
A
A
万能试验机
二、低碳钢在拉伸时的力学性能
P
A
bc a bs e p
de
O
o1 f e g
△ L
L
残余变形—— 试件断裂之后保留下来的塑性变形。
ΔL=L1-L0
延伸率:δ=
L1 L0 100% L0
δ≥5%——塑性材料
δ<5%——脆性材料
截面收缩率
Ψ= A0 A1 100%
图示石柱桥墩,压力F=1000kN,石料重度ρg=25kN/m3,许用应
力[σ]=1MPa。试比较下列三种情况下所需石料体积(1)等截面石
柱;(2)三段等长度的阶梯石柱;(3)等强度石柱(柱的每个截面
的应力都等于许用应力[σ])
理论分析与实验证明,影响 区的轴向范围约为杆件一个横 向尺寸的大小。
应力集中 应力集中(stress concentration)
理论应力集中系数
截面尺寸改变得越急剧, 角越尖,孔越小,应力 集中的程度就越严重。
§3直杆轴向拉伸或压缩斜截面上的应力
m
F
F
m
F
α
Fa
σα
F
pα
τα
σαmax=σ ταmax=σ/2
2F
3
1
2
3
10KN
10KN 1
2
6KN
1
2
3 6KN
3
9KN 3KN
F
1 3F
2 2F
4KN
2KN
A 1B
2C
F
4KN
2F
2KN
5KN
F F
2F
2F
2F
例2-3 图示砖柱,高h=3.5m,横截面面 积A=370×370mm2,砖砌体的容重 γ=18KN/m3。柱顶受有轴向压力F=50KN, 试做此砖柱的轴力图。
例2-5:直径为 d 长为 l 的圆截面直杆,铅垂放置,上端固定, 如图5-7a所示。若材料单位体积质量为,试求因自重引起杆的轴 力和最大正应力。
轴力
轴力图 最大轴力 最大应力
轴力方程
§4 材料在拉伸和压缩时的力学性能
力学性能———指材料受力时在强度和变形方面表现
出来的性能。
塑性变形 变形
关于材料的力学一般性能,有如下结论,请判断哪一个是正确的: (A)脆性材料的抗拉能力低于其抗压能力; (B)脆性材料的抗拉能力高于其抗压能力; (C)塑性材料的抗拉能力高于其抗压能力; (D)脆性材料的抗拉能力等于其抗压能力。 正确答案是( A )
§6 强度条件. 安全因数. 许用应力
1. 拉压杆的强度条件
弹性变形
塑性变形又称永久变形或残余变形
塑性材料:断裂前产生较大塑性变形的材料,如低碳钢 脆性材料:断裂前塑性变形很小的材料,如铸铁、石料
一、材料的拉伸和压缩试验
国家标准规定《金属拉伸试验方法》 (GB228—2002)
L
对圆截面试样: 对矩形截面试样:
L=10d
L=5d
L 11.3 A L 5.65源自A15mA
F
gl
11.61m026
N
/
1000 103 N m2 25 103 N
/
m3
15m
V1 Al 12.46m32 15m
FN
图示石柱桥墩,压力F=1000kN,石料重度
ρg=25kN/m3,许用应力[σ]=1MPa。试比较下列三种情
况下所需石料体积(1)等截面石柱;(2)三段等长度
5m
11.04090m2103 N V2
25 103 N /
A1 1A1206
m3 1.14m2 5m 25 103 N /
NA3/ ml12 21591.7.14m013m3N2/m13 .351mm2
m3 1.31m2 5m
1.49m2 5m
N
/
1000 103 N m2 25 103 N
/
m3
5m
5m 5m 5m
A3
F
gA1l1 gA2l2
gl3
AF2 NF2 FN3gAg1ll21
1000 103 N 1.31m12106 N
/
25 m2
103 N / m3 1.14m2 25 103 N / m3 5m
延伸率 δ(3)> δ(2)> δ(1) ;
(D)强度极限 σb(1)=σb(2)> σb(3); 弹性模量 E(2) > E(1) > E(3);
延伸率 δ(2)> δ(1)> δ(3);
正确答案是( B )
关于低碳钢试样拉伸至屈服时,有以下结论,请判断哪一个是正确 的: (A)应力和塑性变形很快增加,因而认为材料失效; (B)应力和塑性变形虽然很快增加,但不意味着材料失效; (C)应力不增加,塑性变形很快增加,因而认为材料失效; (D)应力不增加,塑性变形很快增加,但不意味着材料失效。 正确答案是( C )
max
强度条件 FN max
A
强度计算的三类问题 :
(1)、强度校核
FN max
(2)、截面设计
A
A FN max
(3)、确定许用荷载
FN max A
例2-6 圆截面等直杆沿轴向受力如图示,材料
为铸铁,抗拉许用应力 =60Mt pa,抗压许用
例2-7 图示石柱桥墩,压力F=1000kN,石
料重度ρg=25kN/m3,许用应力[σ]=1MPa。
试比较下列三种情况下所需石料面积(1)等
截面石柱;(2)三段等长度的阶梯石柱;(3)
等强度石柱(柱的每个截面的应力都等于许用
应力[σ])
F
F
F
15m 5m 5m 5m
图示石柱桥墩,压力F=1000kN,石料重度
第二章 拉伸、压缩与剪切
§1 轴向拉伸与压缩的概念和实例 §2 横截面上的内力和应力 §3 直杆轴向拉伸或压缩斜截面上的应力 §4 材料拉伸时的力学性能 §5 材料压缩时的力学性能 §6 失效、安全因素和强度计算 §7 轴向拉伸或压缩时的变形 §8 轴向拉伸或压缩时的应变能 §9 拉伸、压缩时的超静定问题 §10 应力集中的概念 §11 剪切与挤压的实用计算
350
G Ay
F
F
50
y
n
n
FNy
F Ay FNy 0
FNy F Ay 50 2.46y
58.6
例2-4 为一双压手铆机的示意图。作用于活塞杆上的力分别简化 为F1=2.62kN,F2=1.3kN,F3=1.32kN,计算简图如图5-6b所示。 AB段为直径d=10mm的实心杆,BC段是外径D=10mm,内径 d1=5mm的空心杆。求活塞杆各段横截面上的正应力。
正应力公式适用范围
1、等截面杆拉伸 2、等截面杆压缩 3、截面尺寸变化缓慢的变截面杆
σ(x) =FN(x)/A(x)
圣维南原理 应力集中 圣维南原理(Saint-Venant principle)
根据圣维南原理,对弹性体 某一局部区域的外力系,若用 静力等效的力系来代替;则力 的作用点附近区域的应力分布 将有显著改变,而对略远处其 影响可忽略不计。
延伸率 δ(1)> δ(2)> δ(3) ;
(B)强度极限 σb(2) > σb(1)> σb(3); 弹性模量 E(2) > E(1) > E(3);
延伸率 δ(1)> δ(2)> δ(3) ;
(C)强度极限 σb(3)=σb(1)> σb(2); 弹性模量 E(3) > E(1) > E(2);
的阶梯石柱;(3)等强度石柱(柱的每个截面的应力都
等于许用应力[σ])
F
采用三段等长度阶梯石柱
FN1 F gA1l1
FN 2 F gA1l1 gA2l2
FN3 F gA1l1 gA2l2 gA3l3
FN1
A1
F
gl1
11.141m0 62
低碳钢材料在拉伸实验过程中,不发生明显的塑性变形时,承受的最 大应力应当小于的数值,有以下4种答案,请判断哪一个是正确的: (A)比例极限; (B)屈服极限; (C)强度极限; (D)许用应力。 正确答案是( B )
根据图示三种材料拉伸时的应力-应变曲线,得出如下四种结论,请判断哪一个是
正确的:
(A)强度极限 σb(1)=σb(2)> σb(3); 弹性模量 E(1) > E(2) > E(3);