马尔可夫链模型讲解
马尔可夫链模型简介

马尔可夫链模型简介设考察对象为一系统,若该系统在某一时刻可能出现的事件集合为,}{N N E E E E E E ⋅⋅⋅⋅⋅⋅,2,1,2,1,两两互斥,则陈i E 为状态。
N i ⋅⋅⋅=,2,1。
称该系统从一种状态i E 变化到另一状态j E 的过程称为状态转移,并把整个系统不断实现状态转移的过程称为马尔可夫过程。
定义1 具有下列两个性质的马尔可夫过程称为马尔可夫链: (1)无后效性,即系统的第n 次实验结果出现的状态,只与第1-n 次有关,而与它以前所处的状态无关;(2)具有稳定性,该过程逐渐趋于稳定状态,而与初始状态无关。
定义2 向量),,,(21n u u u u ⋅⋅⋅= 成为概率向量,如果u 满足:⎪⎩⎪⎨⎧=⋅⋅⋅=≥∑=nj jj u nj u 11,,2,10 定义3 如果方阵P 的每行都为概率向量,则称此方阵为概率矩阵。
如果矩阵A 和B 皆为概率矩阵,则AB ,k A ,k B 也都是概率矩阵(k 为正整数)。
定义4 系统由状态i E 经过一次转移到状态j E 的概率记为ij P ,称矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=3212222111211N N N N N P P P P P P P P P P 为一次(或一步)转移矩阵。
转移矩阵必为概率矩阵,且具有以下两个性质: 1、P P P k k )1()(-=; 2、k k P P =)(其中)(k P 为k 次转移矩阵。
定义5 对概率矩阵P ,若幂次方)(m P 的所有元素皆为正数,则矩阵P 称为正规概率矩阵。
(此处2≥m )定理1 正规概率矩阵P 的幂次方序列P ,2P ,3P ,…趋近于某一方阵T ,T 的每一行均为同一概率向量t ,且满足t tP = 。
马尔可夫链模型如下:设系统在0=k 时所处的初始状态 ),,()0()0(2)0(1)0(N S S S S ⋅⋅⋅=为已知,经过k 次转移后的状态向量 ),,()()(2)(1)(k N k k k S S S S ⋅⋅⋅=),2,1(⋅⋅⋅=k ,则⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=NN N N N N k P P P P P P P P P S S 212222111211)0()( 此式即为马尔可夫链预测模型。
马尔可夫链的基础知识

马尔可夫链的基础知识马尔可夫链是一种数学模型,用于描述一系列随机事件的演变过程。
它的基本思想是,当前事件的发生只与前一个事件的状态有关,与更早的事件无关。
马尔可夫链在许多领域都有广泛的应用,如自然语言处理、金融市场分析、生物信息学等。
一、马尔可夫链的定义马尔可夫链由状态空间、状态转移概率和初始状态分布组成。
状态空间是指所有可能的状态的集合,用S表示。
状态转移概率是指从一个状态转移到另一个状态的概率,用P表示。
初始状态分布是指在初始时刻各个状态出现的概率分布,用π表示。
二、马尔可夫链的性质1. 马尔可夫性质:当前状态的发生只与前一个状态有关,与更早的状态无关。
即P(Xn+1|Xn,Xn-1,...,X1) = P(Xn+1|Xn)。
2. 遍历性质:从任意一个状态出发,经过有限步骤可以到达任意一个状态。
3. 唯一性质:对于给定的状态空间和状态转移概率,存在唯一的初始状态分布使得马尔可夫链收敛到平稳分布。
4. 平稳性质:当马尔可夫链收敛到平稳分布时,后续状态的分布不再改变。
三、马尔可夫链的应用1. 自然语言处理:马尔可夫链可以用于生成文本,如自动写诗、自动对话等。
通过学习语料库中的马尔可夫链模型,可以生成具有一定连贯性的文本。
2. 金融市场分析:马尔可夫链可以用于预测金融市场的走势。
通过分析历史数据,建立马尔可夫链模型,可以预测未来的市场状态。
3. 生物信息学:马尔可夫链可以用于基因序列分析。
通过建立马尔可夫链模型,可以预测基因序列中的隐含信息,如启动子、剪接位点等。
四、马尔可夫链的改进1. 高阶马尔可夫链:考虑当前状态与前几个状态的关系,可以建立高阶马尔可夫链模型。
高阶马尔可夫链可以更准确地描述事件的演变过程。
2. 隐马尔可夫链:考虑到状态不可观测的情况,可以建立隐马尔可夫链模型。
隐马尔可夫链可以用于序列标注、语音识别等领域。
五、总结马尔可夫链是一种描述随机事件演变过程的数学模型,具有马尔可夫性质、遍历性质、唯一性质和平稳性质。
马尔可夫链的基本原理和使用方法(七)

马尔可夫链是一个随机过程模型,它具有“无记忆”的特性,即未来状态只依赖于当前状态,而与历史状态无关。
马尔可夫链在很多领域都有着重要的应用,比如自然语言处理、金融风险分析、生物信息学等。
本文将介绍马尔可夫链的基本原理和使用方法。
1. 马尔可夫链的基本原理马尔可夫链是由俄罗斯数学家安德烈·马尔可夫在20世纪初提出的。
它是一种描述随机状态转移的数学模型,通过定义状态空间和状态转移概率,可以描述状态之间的转移规律。
假设有一个具有有限个状态的随机过程,每个状态之间存在一定的转移概率。
如果这个随机过程满足马尔可夫性质,即未来状态只依赖于当前状态,那么我们就可以用马尔可夫链来描述这个过程。
马尔可夫链可以用状态转移矩阵来表示,矩阵的每个元素表示从一个状态转移到另一个状态的概率。
2. 马尔可夫链的使用方法马尔可夫链在实际应用中有着广泛的用途。
其中,最常见的应用就是在自然语言处理领域中,比如文本生成和语言模型。
以文本生成为例,我们可以利用马尔可夫链来建立一个文本模型,通过对已有文本的统计分析,得到不同状态之间的转移概率,然后利用这个模型来生成新的文本。
在金融风险分析领域,马尔可夫链也有着重要的应用。
比如在股票价格预测中,我们可以利用马尔可夫链来建立股票价格的模型,然后通过模型预测未来的股价走势。
在这个过程中,我们可以利用历史数据来估计状态转移概率,从而得到一个比较准确的预测结果。
另外,在生物信息学领域,马尔可夫链也被广泛应用于DNA序列分析和蛋白质结构预测等方面。
通过建立状态空间和状态转移概率,可以对生物数据进行建模和分析,从而帮助科学家们更好地理解生物信息。
总的来说,马尔可夫链是一个非常强大的数学工具,它能够帮助我们对复杂系统进行建模和分析,从而得到一些有意义的结论。
当然,马尔可夫链也有一些局限性,比如它只能描述一阶马尔可夫过程,无法描述高阶转移关系。
但是在实际应用中,我们可以通过一些技巧和方法来解决这些问题,从而更好地利用马尔可夫链来解决实际问题。
利用马尔可夫链模型优化供应链库存管理

利用马尔可夫链模型优化供应链库存管理在当前日益竞争激烈的市场环境下,供应链的高效运作对于企业的发展至关重要。
而库存管理作为供应链的重要环节,直接影响着企业的成本和运作效率。
为了优化供应链的库存管理,越来越多的企业开始采用马尔可夫链模型进行预测和优化,以提高库存的管理水平。
本文将介绍马尔可夫链模型的基本原理,并探讨其在供应链库存管理中的应用。
1. 马尔可夫链模型的基本原理马尔可夫链模型是一种重要的概率统计模型,常用于描述具有随机特性的事件或系统的行为。
它基于马尔可夫性质,即未来状态的概率只与当前状态有关,与过去的状态无关。
马尔可夫链模型可以用状态空间、状态转移概率和初始概率分布来描述。
其中,状态空间是指系统可能处于的所有状态的集合;状态转移概率是指在当前状态下,系统转移到其他状态的概率;初始概率分布是指系统在初始状态下各个状态的概率分布。
2. 马尔可夫链模型在供应链库存管理中的应用2.1 需求预测供应链的库存管理首先需要准确地预测需求。
传统的需求预测方法通常基于历史数据,忽略了时间和状态的关联性。
而马尔可夫链模型可以根据当前的库存状态和过去的状态转移概率,预测未来的需求。
通过分析过去几次的库存变动情况,可以建立起一个马尔可夫链模型,根据当前状态和状态转移概率,预测下一个时间段的需求趋势。
这样可以更准确地预测需求,避免库存过剩或供应不足的情况发生。
2.2 订单量和补货策略根据需求预测结果,供应链需要合理确定订单量和补货策略。
传统的方法通常基于人工经验和固定的规则,但往往忽视了需求的变化和库存状态的影响。
而马尔可夫链模型可以根据当前状态和状态转移概率,预测下一个时间段的订单量,并根据库存水平和需求情况,自动调整补货策略。
通过实时监测库存状态和需求情况,供应链可以根据马尔可夫链模型的预测结果,灵活地制定订单量和补货策略,提高库存管理效率。
2.3 库存优化马尔可夫链模型不仅可以用于需求预测和订单量的确定,还可以用于库存水平的优化。
马尔可夫链模型及其应用领域

马尔可夫链模型及其应用领域马尔可夫链模型是一种描述随机过程的数学工具,它以马尔可夫性质为基础,描述了一个系统在不同状态之间转移的概率。
马尔可夫链模型在各个领域都有广泛的应用,包括自然科学、金融、计算机科学等。
本文将介绍马尔可夫链模型的基本原理,并探讨其在不同应用领域中的具体应用。
马尔可夫链模型的基本原理是基于马尔可夫性质。
马尔可夫性质指的是一个系统在给定当前状态下,其下一个状态只依赖于当前状态,而与过去的状态无关。
这种性质使得马尔可夫链模型成为处理许多问题的理想模型。
首先,我们来了解一下马尔可夫链模型的基本概念。
一个马尔可夫链由一组状态和状态转移矩阵组成。
状态表示系统可能处于的情况,状态转移矩阵描述了状态之间的转移概率。
状态转移矩阵是一个方阵,其元素表示从一个状态到另一个状态的转移概率。
在实际应用中,马尔可夫链模型可以用于解决许多问题。
其中一个常见的应用是预测未来状态。
根据当前的状态和状态转移矩阵,我们可以计算下一步系统处于不同状态的概率。
通过不断迭代计算,我们可以预测未来系统状态的分布。
另一个常见的应用是基于马尔可夫链模型的推荐系统。
推荐系统通过分析用户的历史行为,预测用户未来的喜好,并向其推荐相关的内容。
马尔可夫链模型可以用于建模用户的行为转移过程,推断用户下一步的行为。
在金融领域,马尔可夫链模型被广泛应用于股票市场的预测和风险评估。
通过分析历史股票价格的变化,我们可以建立一个马尔可夫链模型,来预测股票未来的涨跌趋势。
此外,马尔可夫链模型还被用于计算资产组合的风险价值,帮助投资者制定合理的投资策略。
在自然科学领域,马尔可夫链模型可以用于模拟复杂系统的行为。
例如,生态学家可以使用马尔可夫链模型来模拟生物群落的动态变化,预测不同物种的数量和分布。
此外,马尔可夫链模型还可以用于研究气象系统、生物化学反应等的动态特性。
另一个马尔可夫链模型的应用领域是自然语言处理。
马尔可夫链模型可以用于根据已有的语料库生成新的文本。
马尔可夫链基础及应用

马尔可夫链基础及应用马尔可夫链是一种数学模型,用于描述具有马尔可夫性质的随机过程。
马尔可夫性质指的是在给定当前状态的情况下,未来状态的概率分布只依赖于当前状态,而与过去状态无关。
马尔可夫链可以用于建模和分析许多实际问题,如天气预测、金融市场分析、自然语言处理等。
一、马尔可夫链的基本概念马尔可夫链由状态空间、初始状态分布和状态转移概率矩阵组成。
1. 状态空间:马尔可夫链的状态空间是指系统可能处于的所有状态的集合。
状态可以是离散的,也可以是连续的。
2. 初始状态分布:初始状态分布是指系统在初始时刻各个状态的概率分布。
通常用向量表示,向量的每个元素表示对应状态的概率。
3. 状态转移概率矩阵:状态转移概率矩阵描述了系统从一个状态转移到另一个状态的概率。
矩阵的每个元素表示从一个状态转移到另一个状态的概率。
二、马尔可夫链的性质马尔可夫链具有以下性质:1. 马尔可夫性:在给定当前状态的情况下,未来状态的概率分布只依赖于当前状态,而与过去状态无关。
2. 遍历性:从任意一个状态出发,经过有限步骤后可以到达任意一个状态。
3. 不可约性:任意两个状态之间存在一条路径,使得在有限步骤内可以从一个状态转移到另一个状态。
4. 非周期性:不存在一个状态,使得从该状态出发,经过若干步骤后又回到该状态的路径。
三、马尔可夫链的应用马尔可夫链在许多领域有广泛的应用,下面以天气预测和自然语言处理为例进行说明。
1. 天气预测:天气是一个具有马尔可夫性质的随机过程。
我们可以通过观察历史天气数据,建立一个天气状态的马尔可夫链模型。
根据当前天气状态,可以预测未来几天的天气情况。
2. 自然语言处理:自然语言是一个具有马尔可夫性质的随机过程。
我们可以通过观察大量的文本数据,建立一个词语的马尔可夫链模型。
根据当前词语,可以预测下一个可能出现的词语。
马尔可夫链还可以应用于金融市场分析、生物信息学、信号处理等领域。
通过建立合适的状态空间和状态转移概率矩阵,可以对复杂的系统进行建模和分析,从而提供决策支持和预测能力。
马尔可夫链▏小白都能看懂的马尔可夫链详解

马尔可夫链▏小白都能看懂的马尔可夫链详解1.什么是马尔可夫链在机器学习算法中,马尔可夫链(Markov chain)是个很重要的概念。
马尔可夫链(Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain),因俄国数学家安德烈·马尔可夫(俄语:Андрей Андреевич Марков)得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。
该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。
这种特定类型的“无记忆性”称作马尔可夫性质。
马尔科夫链作为实际过程的统计模型具有许多应用。
在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。
状态的改变叫做转移,与不同的状态改变相关的概率叫做转移概率。
随机漫步就是马尔可夫链的例子。
随机漫步中每一步的状态是在图形中的点,每一步可以移动到任何一个相邻的点,在这里移动到每一个点的概率都是相同的(无论之前漫步路径是如何的)。
2.一个经典的马尔科夫链实例用一句话来概括马尔科夫链的话,那就是某一时刻状态转移的概率只依赖于它的前一个状态。
举个简单的例子,假如每天的天气是一个状态的话,那个今天是不是晴天只依赖于昨天的天气,而和前天的天气没有任何关系。
这么说可能有些不严谨,但是这样做可以大大简化模型的复杂度,因此马尔科夫链在很多时间序列模型中得到广泛的应用,比如循环神经网络RNN,隐式马尔科夫模型HMM等。
假设状态序列为由马尔科夫链定义可知,时刻Xt+1 的状态只与Xt 有关,用数学公式来描述就是:既然某一时刻状态转移的概率只依赖前一个状态,那么只要求出系统中任意两个状态之间的转移概率,这个马尔科夫链的模型就定了。
看一个具体的例子。
这个马尔科夫链是表示股市模型的,共有三种状态:牛市(Bull market), 熊市(Bear market)和横盘(Stagnant market)。
马尔可夫链模型及其在预测模型中的应用

马尔可夫链模型及其在预测模型中的应用马尔可夫链模型是一个重要的数学模型,在各种预测问题中都有广泛应用。
该模型描述的是一个随机过程,在每一个时间步骤上,其状态可以从当前状态转移到另一个状态,并且转移的概率只与当前状态有关,而与历史状态无关。
这种性质被称为“马尔可夫性”。
本文将介绍马尔可夫链模型的基本原理和应用,以及相关的统计方法和算法。
马尔可夫链模型的构造方法通常是通过定义状态空间和状态之间的转移概率来完成的。
状态空间是指可能的状态集合,而状态之间的转移概率则是指在一个时间步骤上从一个状态转移到另一个状态的概率。
这些转移概率通常被表示为一个矩阵,称为转移矩阵。
转移矩阵的元素表示从一个状态转移到另一个状态的概率。
马尔可夫链模型的重要性在于它对于许多实际问题的数学描述,因为很多现象都符合马尔可夫过程的特点,即时间上的无后效性,即系统的当前状态仅仅依赖于它的上一个状态。
比如,一个天气预测问题,天气系统的状态可以描述为“晴、雨、阴”,在每一个时间步骤上,系统可能会转移到另一个状态,转移概率可以根据历史天气数据进行估计。
马尔可夫链模型可以用于各种预测问题,如下一个状态的预测、状态序列的预测以及时间序列的预测。
对于下一个状态的预测问题,我们可以使用当前状态的转移矩阵来计算目标状态的概率分布。
对于状态序列的预测,我们可以利用当前状态的转移概率估计下一个状态的状态分布,并重复该过程,直到预测的序列达到一定的长度为止。
对于时间序列的预测,我们可以将时间序列转化为状态序列,并将时间作为状态的一个特征进行建模,在此基础上进行预测。
马尔可夫链模型也可以用于分析时间序列数据的特性。
例如,可以使用马尔可夫过程来检测时间序列数据中的周期性、趋势和季节性等特征。
这些特征可以反映时间序列数据的长期和短期变化情况,为精确的预测提供了基础。
对于马尔可夫链模型的参数估计问题,通常使用统计学习方法来完成。
常见的方法包括极大似然估计、贝叶斯估计以及最大后验估计等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
马尔可夫链模型(Markov Chain Model)目录[隐藏]1 马尔可夫链模型概述2 马尔可夫链模型的性质3 离散状态空间中的马尔可夫链模型4 马尔可夫链模型的应用o 4.1 科学中的应用o 4.2 人力资源中的应用5 马尔可夫模型案例分析[1]o 5.1 马尔可夫模型的建立o 5.2 马尔可夫模型的应用6 参考文献[编辑]马尔可夫链模型概述马尔可夫链因安德烈·马尔可夫(Andrey Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。
该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。
时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为。
马尔可夫链是随机变量的一个数列。
这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而Xn的值则是在时间n的状态。
如果Xn + 1对于过去状态的条件概率分布仅是Xn的一个函数,则这里x为过程中的某个状态。
上面这个恒等式可以被看作是马尔可夫性质。
马尔可夫在1906年首先做出了这类过程。
而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。
马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。
马尔可夫链是满足下面两个假设的一种随机过程:1、t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关;2、从t时刻到t+l时刻的状态转移与t的值无关。
一个马尔可夫链模型可表示为=(S,P,Q),其中各元的含义如下:1)S是系统所有可能的状态所组成的非空的状态集,有时也称之为系统的状态空间,它可以是有限的、可列的集合或任意非空集。
本文中假定S是可数集(即有限或可列)。
用小写字母i,j(或S i,S j)等来表示状态。
2)是系统的状态转移概率矩阵,其中P ij表示系统在时刻t处于状态i,在下一时刻t+l处于状态i的概率,N是系统所有可能的状态的个数。
对于任意i∈s,有。
3)是系统的初始概率分布,q i是系统在初始时刻处于状态i的概率,满足。
[编辑]马尔可夫链模型的性质马尔可夫链是由一个条件分布来表示的P(X| X n)n+ 1这被称为是随机过程中的“转移概率”。
这有时也被称作是“一步转移概率”。
二、三,以及更多步的转移概率可以导自一步转移概率和马尔可夫性质:同样:这些式子可以通过乘以转移概率并求k−1次积分来一般化到任意的将来时间n+k。
边际分布P(X n)是在时间为n时的状态的分布。
初始分布为P(X0)。
该过程的变化可以用以下的一个时间步幅来描述:这是Frobenius-Perron equation的一个版本。
这时可能存在一个或多个状态分布π满足:其中Y只是为了便于对变量积分的一个名义。
这样的分布π被称作是“平稳分布”(Stationary Distribution)或者“稳态分布”(Steady-state Distribution)。
一个平稳分布是一个对应于特征根为1的条件分布函数的特征方程。
平稳分布是否存在,以及如果存在是否唯一,这是由过程的特定性质决定的。
“不可约”是指每一个状态都可来自任意的其它状态。
当存在至少一个状态经过一个固定的时间段后连续返回,则这个过程被称为是“周期的”。
[编辑]离散状态空间中的马尔可夫链模型如果状态空间是有限的,则转移概率分布可以表示为一个具有(i,j)元素的矩阵,称之为“转移矩阵”:P= P(X n+ 1= i| X n= j)ij对于一个离散状态空间,k步转移概率的积分即为求和,可以对转移矩阵求k次幂来求得。
就是说,如果是一步转移矩阵,就是k步转移后的转移矩阵。
平稳分布是一个满足以下方程的向量:在此情况下,稳态分布π * 是一个对应于特征根为1的、该转移矩阵的特征向量。
如果转移矩阵不可约,并且是非周期的,则收敛到一个每一列都是不同的平稳分布π* ,并且,独立于初始分布π。
这是由Perron-Frobenius theorem所指出的。
正的转移矩阵(即矩阵的每一个元素都是正的)是不可约和非周期的。
矩阵被称为是一个随机矩阵,当且仅当这是某个马尔可夫链中转移概率的矩阵。
注意:在上面的定式化中,元素(i,j)是由j转移到i的概率。
有时候一个由元素(i,j)给出的等价的定式化等于由i转移到j的概率。
在此情况下,转移矩阵仅是这里所给出的转移矩阵的转置。
另外,一个系统的平稳分布是由该转移矩阵的左特征向量给出的,而不是右特征向量。
转移概率独立于过去的特殊况为熟知的Bernoulli scheme。
仅有两个可能状态的Bernoulli scheme被熟知为贝努利过程马尔可夫链模型的应用科学中的应用马尔可夫链通常用来建模排队理论和统计学中的建模,还可作为信号模型用于熵编码技术,如算法编码。
马尔可夫链也有众多的生物学应用,特别是人口过程,可以帮助模拟生物人口过程的建模。
隐蔽马尔可夫模型还被用于生物信息学,用以编码区域或基因预测。
马尔可夫链最近的应用是在地理统计学(geostatistics)中。
其中,马尔可夫链用在基于观察数据的二到三维离散变量的随机模拟。
这一应用类似于“克里金”地理统计学(Kriging geostatistics),被称为是“马尔可夫链地理统计学”。
这一马尔可夫链地理统计学方法仍在发展过程中。
[编辑]人力资源中的应用马尔可夫链模型主要是分析一个人在某一阶段内由一个职位调到另一个职位的可能性,即调动的概率。
该模型的一个基本假设就是,过去的内部人事变动的模式和概率与未来的趋势大体相一致。
实际上,这种方法是要分析企业内部人力资源的流动趋势和概率,如升迁、转职、调配或离职等方面的情况,以便为内部的人力资源的调配提供依据。
它的基本思想是:通过发现过去组织人事变动的规律,以推测组织在未来人员的供给情况。
马尔可夫链模型通常是分几个时期收集数据,然后再得出平均值,用这些数据代表每一种职位中人员变动的频率,就可以推测出人员变动情况。
具体做法是:将计划初期每一种工作的人数量与每一种工作的人员变动概率相乘,然后纵向相加,即得到组织内部未来劳动力的净供给量。
其基本表达式为:Ni(t):t时间内I类人员数量;Pji:人员从j类向I类转移的转移率;Vi(t):在时间(t-1,t)I类所补充的人员数。
企业人员的变动有调出、调入、平调、晋升与降级五种。
表3 假设一家零售公司在1999至2000年间各类人员的变动情况。
年初商店经理有12人,在当年期间平均90%的商店经理仍在商店内,10%的商店经理离职,期初36位经理助理有 11%晋升到经理,83%留在原来的职务,6%离职;如果人员的变动频率是相对稳定的,那么在2000年留在经理职位上有11人(12×90%),另外,经理助理中有4人(36×83%)晋升到经理职位,最后经理的总数是15人(11+4)。
可以根据这一矩阵得到其他人员的供给情况,也可以计算出其后各个时期的预测结果。
假设的零售公司的马尔可夫分析,见下表:1999~200 0商店经理经理助理区域经理部门经理销售员离职商店经理(n=12)90%1110%1经理助理(n=36)11%483%306%2[编辑]马尔可夫模型案例分析[1]案例:在信用卡账户行为变化预测中的应用信用卡业务是商业银行的零售业务,信用卡的消费金额是银行的应收账款.在此,我们可以借鉴零售行业应收账款状态变化的预测方法对信用卡账户的行为变化进行描述和预测。
对信用卡账户的马尔可夫过程进行研究,主要解决新增贷款发生周期性变化的情况下利用马尔可夫过程预测不同时刻的信用卡账户各状态下的金额、已偿付态和坏帐态的金额、全部应收款的现值及它们的方差计算等内容,以为商业银行信用卡账户的行为风险管理提供方法依据。
[编辑]马尔可夫模型的建立马尔可夫状态转移模型是在满足“马氏性”和“平稳性”的基础上建立的.假定银行的信用卡账户中每期处于不同期限的逾期贷款数量只与上期逾期贷款的数量与结构有关,而与前期的状态无关,这就满足了“马氏性”。
同时,在外部经济环境稳定、人口特征比较稳定、银行的信用卡管理技术和方法没有发生重大变化的情况下,可以认为逾期贷款由一种状态转移到另一种状态的概率在各期是保持不变的,即每年的转移概率矩阵基本保持稳定,满足了马氏链的“平稳性”要求.这样,银行就可以通过往年的数据资料模拟出比较精确的转移概率矩阵,对信用卡账户的行为状态做出预测和评估,下面给出具体分析。
假设某一银行在时间i有一定的信用卡应收账款,当前或者随后的时间内这些余额都可以划分为n个时间段(即状态。
对于这批在时间i的应收账款而言,有:B=逾期为0期的应收账款余额(也就是当前期);B= 逾期为1期的应收账款余额;1…B= 逾期为j期的应收账款余额;j…B= 逾期为n-1期的应收账款余额;n− 1B= 逾期为n期的应收账款余额。
n实践中,时间段的数目将视情况而定,最后一个时间段主要依赖于银行应收账款的“冲销”原则,美国的信用卡贷款一般拖欠180天以上即成为呆账予以“冲销”.虽然拖欠账款最终也可能得到偿还,但是将超过规定还款期限的应收账款归入坏帐种类中是很自然的会计程序。
一般而言,我们可以让Bjk表示从i时刻处于j状态转移到i+1时刻处于k状态的账户的金额.用这种方法,我们可以对处于i时刻的所有应收账款做出在i+1时刻的一步转移账户.需要注意的是,还应该有一个“时间”状态应该加入到先前所描述的分类中,这一状态就是已付款状态,用表示.在i时刻任何一种分类状态从0到n的账户在i+1时刻都可以转移到状态.这样,i时刻的应收账款账户可以用一个n+2维矩阵来表示,矩阵中的每一项Bjk表示i时刻j状态转移为i+1时刻k状态的金额,如下所示:对信用卡账户而言,需要注意的是,当状态B jk中的j<i时,应理解为i时刻处于状态j的账户,在随后的i+1时刻(一般为30天后)偿还了部分的利息,使得应收账款(贷款)又转变为k状态。
从n+2维应收账款矩阵B可以导出n+2维转移概率矩阵P.转移概率矩阵P中的每一项目表示在特定时间内某一账户由一种状态转移到另一状态的可能性.这样的话,一个隐含假设是,转移概率矩阵的考察周期和应收账款分类的考察周期是相同的.一般情况下,转移概率P jk表示的是i时刻j状态的账款转移到i+1时刻k状态账款的可能性.根据应收账款矩阵B及B jk,转移概率P jk可被定义为:(1)在应用转移概率矩阵时需要注意两点。
一是状态的账款不可能转移到其它的状态,它只能停留在已付款状态,状态账户的转移概率依次为:,,,…,,…,。
二是呆账类账户的状态,虽然有时候坏呆账类账款仍能收回现金,但在我们的模型里边假设呆账类账款只能停留在呆账类的状态,即:,p n0= 0,p n1= 0,…,p nn= 1.00。