北邮信号与系统复习: 典型例题 微分方程3种解法——含冲激函数匹配法

合集下载

信号与系统复习题

信号与系统复习题

信号与系统试题库一、填空题绪论:1。

离散系统的激励与响应都是____离散信号 __。

2.请写出“LTI ”的英文全称___线性非时变系统 ____。

3.单位冲激函数是__阶跃函数_____的导数。

4.题3图所示波形可用单位阶跃函数表示为()(1)(2)3(3)t t t t εεεε+-+---。

5.如果一线性时不变系统的输入为f (t),零状态响应为y f (t )=2f (t —t 0),则该系统的单位冲激响应h(t)为____02()t t δ-_________。

6. 线性性质包含两个内容:__齐次性和叠加性___。

7。

积分⎰∞∞-ω--δ-δdt )]t t ()t ([e 0t j =___01j t e ω--_______.8.已知一线性时不变系统,当激励信号为f(t)时,其完全响应为(3sint-2cost )ε(t);当激励信号为2f (t)时,其完全响应为(5sint+cost)ε(t ),则当激励信号为3f(t)时,其完全响应为___7sint+4cost _____。

9. 根据线性时不变系统的微分特性,若:f(t )−−→−系统y f (t) 则有:f ′(t )−−→−系统_____ y ′f (t )_______。

10。

信号f(n)=ε(n)·(δ(n )+δ(n-2))可_____δ(n)+δ(n —2)_______信号。

11、图1所示信号的时域表达式()f t =()(1)(1)tu t t u t --- .12、图2所示信号的时域表达式()f t =()(5)[(2)(5)]u t t u t u t +----。

13、已知()()()2f t t t t εε=--⎡⎤⎣⎦,则()f t '=()(2)2(2)u t u t t δ----。

14、[]2cos32td ττδτ-∞⎛⎫+ ⎪⎝⎭⎰=8()u t 。

北京邮电大学信号与系统期末复习试题

北京邮电大学信号与系统期末复习试题

第一章 第二章 第三章 第七章 第四章1. ()21F s s=()00σσ>=的拉氏反变换为________()tu t __________________ 。

2. 若因果信号的拉普拉斯变换为3()=(+4)(+2)sF s s s ,则该信号的傅里叶变换(j )F ω=____3j (j )=(j +4)(j +2)F ωωωω_____________。

3.信号()()4f t u t =-的拉普拉斯变换为___4e ss-___________ 。

4. 某因果系统的系统函数为()2125H s s s k=+-+,使该系统稳定的实数k 的取值范围是____ k >5__________。

5. 一个连续因果LTI 系统可由微分方程()3()2()()3()y t y t y t x't x t '''++=+来描述,该系统的系统函数()H s =____2332+++s s s ____________________,请在图1中画出此系统的零、极点图。

6.计算画图题(6分)图3中ab 段电路是某系统的一部分,其中电感L 和电容C 的起始状态分别为()0L i -,()0C v -,请画出该段电路0t >的s 域等效模型,并列写端口电压()v t 和电流()L i t 的s 域约束关系。

C v t L +-()v t图3解答:1sC ()10C v -()V s()()()()1100LL C V s sL I s Li v sC s --⎛⎫=+-+ ⎪⎝⎭7.计算画图题(8分)已知某系统的方框图如图4所示,(1)若已知()1224sH s s s =++,()23H s =,求系统函数()H s ;(2) 画出描述此系统的两个1阶子系统级联形式的信号流图。

(第九章)图4解答:(1)12()()()E s E s E s =-,22()()()E s R s H s =⋅,[]12()()()()R s H s E s E s =⋅-112()() ()()1()()H s R s H s E s H s H s ==+22224354124sss s s s s s s ++==+++++ (2)方法一:()111414111s s H s s s s s=⋅=⋅++++ 系统结构的一种实现见下图方法二:()1111414111s sH s s s s s ⎛⎫ ⎪=⋅=-⋅ ⎪++ ⎪++⎝⎭ 系统结构的一种实现见下图第五章(含第三章基础理论)1. 已知一实值信号()x t ,当采样频率100 rad s ω=时,()x t 能用它的样本值唯一确定。

北京邮电大学信号与系统课程硕士研究生入学考试试题与答案

北京邮电大学信号与系统课程硕士研究生入学考试试题与答案

(2)系统是因果的,则收敛域应为 ,所以有:

(3)系统不稳定也非因果,则收敛域 ,且极点全部在S右半平面。因为极点 在S左半平面,因此需要对其进行变换,即记 ,则 ,所以有: ,即: ,从而得:

13.(15分)解:因为: ; ,取拉普拉斯变换,得
; ,即 。
(a)系统的S域模型如图A-13所示。
系统的幅频响应为: ,如图A-12(b)所示。
(a) (b)
图A-12
显然是一个低通滤波器。
四、计算题(共62分)
1.(8分)解:由列表法可得:
2.(8分)解:设 ,得系统单位冲激响应 满足的微分方程为:
对上述微分方程取单边拉普拉斯变换,得
整理,得系统函数为: ,取单边拉普拉斯逆变换,得系统单位冲激响应为:
北京邮电大学2004年硕士研究生入学考试试题
考试科目:信号与系统
北京邮电大学2004年硕士研究生入学考试试题
考试科目:信号与系统
一、单项选择题(每小题3分共21分)
1.与 相等的表达式为()
A. B. C. D.
2.求信号 的傅立叶变换()
A. B.
C. D.
3.信号 的拉普拉斯变换为()
A. B. C. D.
(1)系统是稳定的;(2)系统是因果的;(3)系统既不稳定也不是因果系统的。
13.(15分)图A-7所示RLC电路实现的连续时间LTI系统,系统的输入为电压源 ,电路中的电流 作为系统的输出。
(a)画出这个系统的s域模型图;
(b)求系统的系统函数
(c)如果 , 和 ,确定系统是衰减振荡,临界振荡还是不振荡。
(c)因为 ,取单边Z逆变换,可得系统的单位样值响应为:
15.(15分)解:

信号与系统期末考试复习资料

信号与系统期末考试复习资料

第一章绪论1、选择题1.1、f(5—2t)是如下运算的结果 CA、f(-2t)右移5B、f(-2t)左移5C、f(-2t)右移D、f(-2t)左移1.2、f(t0-a t)是如下运算的结果 C .A、f(—a t)右移t0;B、f(—a t)左移t0;C、f(—a t)右移;D、f(—a t)左移1。

3、已知系统的激励e(t)与响应r(t)的关系为:则该系统为 B 。

A、线性时不变系统;B、线性时变系统;C、非线性时不变系统;D、非线性时变系统1.4、已知系统的激励e(t)与响应r(t)的关系为: 则该系统为 C 。

A、线性时不变系统B、线性时变系统C、非线性时不变系统D、非线性时变系统1。

5、已知系统的激励e(t)与响应r(t)的关系为:则该系统为B 。

A、线性时不变系统B、线性时变系统C、非线性时不变系统D、非线性时变系统1。

6、已知系统的激励e(t)与响应r(t)的关系为:则该系统为 BA、线性时不变系统B、线性时变系统C、非线性时不变系统D、非线性时变系统1.7。

信号的周期为 C 。

A、B、C、D、1。

8、信号的周期为: B 。

A、B、C、D、1.9、等于 B 。

A。

0 B.-1 C.2 D。

-21。

10、若是己录制声音的磁带,则下列表述错误的是:BA. 表示将此磁带倒转播放产生的信号B。

表示将此磁带放音速度降低一半播放C. 表示将此磁带延迟时间播放D. 表示将磁带的音量放大一倍播放1.11。

AA.B。

C. D。

1。

12.信号的周期为 B . A B C D1.13.如果a〉0,b>0,则f(b—a t)是如下运算的结果 C 。

A f(-a t)右移bB f(-a t)左移bC f(—a t)右移b/aD f(-a t)左移b/a1.14.线性时不变系统的响应,下列说法错误的是 C 。

A 零状态响应是线性时不变的B 零输入响应是线性时不变的C全响应是线性时不变的 D 强迫响应是线性时不变的2、填空题与判断题2。

信号与系统题库(完整版)

信号与系统题库(完整版)

信号与系统题目部分,(卷面共有200题,0.0分,各大题标有题量和总分) 一、选择题(7小题,共0.0分)[1]题图中,若h '(0)=1,且该系统为稳定的因果系统,则该系统的冲激响应()h t 为。

A 、231()(3)()5tt h t e e t ε-=+- B 、32()()()tt h t e e t ε--=+C 、3232()()55tt e t e t εε--+D 、3232()()55tt e t e t εε--+-[2]已知信号x[n]如下图所示,则x[n]的偶分量[]e x n 是。

[3]波形如图示,通过一截止角频率为50rad sπ,通带内传输值为1,相移为零的理想低通滤波器,则输出的频率分量为() A 、012cos 20cos 40C C t C t ππ++ B 、012sin 20sin 40C C t C t ππ++ C 、01cos 20C C t π+ D 、01sin 20C C t π+[4]已知周期性冲激序列()()T k t t kT δδ+∞=-∞=-∑的傅里叶变换为()δωΩΩ,其中2TπΩ=;又知111()2(),()()2T T f t t f t f t f t δ⎛⎫==++⎪⎝⎭;则()f t 的傅里叶变换为________。

A 、2()δωΩΩ B 、24()δωΩΩ C 、2()δωΩΩ D 、22()δωΩΩ[5]某线性时不变离散时间系统的单位函数响应为()3(1)2()kkh k k k εε-=--+,则该系统是________系统。

A 、因果稳定B 、因果不稳定C 、非因果稳定D 、非因果不稳定 [6]一线性系统的零输入响应为(23kk --+)u(k), 零状态响应为(1)2()k k u k -+,则该系统的阶数A 、肯定是二阶B 、肯定是三阶C 、至少是二阶D 、至少是三阶 [7]已知某系统的冲激响应如图所示则当系统的阶跃响应为。

冲击函数匹配法

冲击函数匹配法

iC + u(t) -
C
d2 dt 2
u(t)
1 R
d dt
u(t)
1 L
u (t )

d dt
iS (t)
(5)
对于复杂系统,设激励信号为e(t),系统响应为r(t),则可 以用一高阶微分方程表示
C0
dn dt n
r(t)
C1
d n 1 dt n 1
r(t)

C n 1
2)对于用微分方程表示的系统
系统的0-状态到0+状态有无跳变决定于微分方程 右端自由项中是否包含(t)及其各阶导数.如果包 含(t)及其各阶导数,则0-到0+状态发生了跳变, 即 r(0) r(0)或r(0) r(0)等等. .可用冲激函数匹配法 求出0+状态. 冲激函数匹配法的原理是根据t=0时刻微分方程 左右两端的(t)及其各阶导数应该平衡相等.
2.1 引言
线性连续时间系统的分析,归结为建立并且求解线 性微分方程。 在系统的微分方程中,包含有表示激励和 响应的间函数以及他们对于时间的各阶导数的线性组合。 因此,在分析过程中,如果不经过任何变换, 则所涉及 的函数的变量都是时间t,这种分析方法称为时域分析法。 如果为了便于求解方程而将时间变量变换成其他变量, 则相应的称为变换域分析法。例如在傅立叶变换中,将 时间变量变换为频率变量去进行分析,就称为频域分析 法。
3
2
6
完全解中的齐次解称为系统的自由响应,特解称 为系统的强迫响应.特征方程根i(i=1,2,…,n)称为系 统的‘固有频率’(或‘自由频率’)
上例中完全解的分解如下:
r (t ) 11 e t 5 e 2t 1 e 4t

冲激函数匹配法确定初始条件

冲激函数匹配法确定初始条件

a 3
即 b 9
c 9
所以得 r0 r0 b 9 即 r0 r0 9
X
即 r0 r0 9
X

数学描述
3

由方程 d rt 3rt 3 t可知
d
t
方程右端含
t
Hale Waihona Puke 项,它一定属于dr t
dt

d rt a t b t cut
dt

rt a t but
代入方程 a t b t cut 3a t 3but 3 t
得出
a 3 b 3a 0 c 3b 0
该过程可借助数学描述
表示0 到0 相对单位跳变函数
X
分析
第 2

方程右端含3 t 方程右端不含 t
d rt中必含3 t
rt中包含3 t
dt
d rt必含 9 t以平衡3rt中的9 t
dt
d rt 中的 9 t
dt
在 r中t t 时 0刻有 9ut
ut表示 0到 0的 相对跳变函数,所以,
r0 r0 9
冲激函数匹配法确定初始条件
第 1

配平的原理:t =0 时刻微分方程左右两端的δ(t)及各阶 导数应该平衡(其他项也应该平衡,我们讨论初始条件, 可以不管其他项)
例:
d rt 3rt 3 t
dt
已知r0 ,求r0
d rt 3rt 3 t
dt
3 t 3 t 3 t
3
9 t 9 t
ut :
9ut

信号与系统课后答案 第2章 习题解

信号与系统课后答案 第2章 习题解

第2章 习 题2-1 求下列齐次微分方程在给定起始状态条件下的零输入响应(1)0)(2)(3)(22=++t y t y dt d t y dt d ;给定:2)0(,3)0(==--y dt dy ; (2)0)(4)(22=+t y t y dt d ;给定:1)0(,1)0(==--y dtd y ;(3)0)(2)(2)(22=++t y t y dt d t y dt d ;给定:2)0(,1)0(==--y dt dy ; (4)0)()(2)(22=++t y t y dt d t y dt d ;给定:2)0(,1)0(==--y dtdy ; (5)0)()(2)(2233=++t y dt d t y dt d t y dt d ;给定:2)0(,1)0(,1)0(22===---y dt d y dt d y 。

(6)0)(4)(22=+t y dt d t y dt d ;给定:2)0(,1)0(==--y dtdy 。

解:(1)微分方程的特征方程为:2320λλ++=,解得特征根:121, 2.λλ=-=- 因此该方程的齐次解为:2()t th y t Ae Be --=+.由(0)3,(0)2dy y dt--==得:3,2 2.A B A B +=--=解得:8, 5.A B ==- 所以此齐次方程的零输入响应为:2()85tty t e e--=-.(2)微分方程的特征方程为:240λ+=,解得特征根:1,22i λ=±.因此该方程的齐次解为:()cos(2)sin(2)h y t A t B t =+.由(0)1,(0)1d y y dx --==得:1A =,21B =,解得:11,2A B ==. 所以此齐次方程的零输入响应为:1()cos(2)sin(2)2y t t t =+.(3)微分方程的特征方程为:2220λλ++=,解得特征根:1,21i λ=-± 因此该方程的齐次解为:()(cos()sin())th y t e A t B t -=+.由(0)1,(0)2dy y dx--==得:1,2,A B A =-= 解得:1,3A B ==.所以齐次方程的零输入响应为:()(cos()3sin())ty t e t t -=+.(4)微分方程的特征方程为:2210λλ++=,解得二重根:1,21λ=-.因此该方程的齐次解为:()()th y t At B e -=+. 由(0)1,(0)2dy y dx--==得:1,2,B A B =-=解得:3, 1.A B == 所以该方程的零输入响应为:()(31)ty t t e -=+.(5)微分方程的特征方程为:3220λλλ++=,解得特征根: 1,21λ=-,30λ=. 因此该方程的齐次解为:()()th y t A Bt C e -=++.由22(0)1,(0)1,(0)2d d y y y dx dt---===得:1,1,22A C B C C B +=-=-=. 解得:5,3,4A B C ==-=-.所以方程的零输入响应为:()5(34)ty t t e -=-+.(6)微分方程的特征方程为:240λλ+=,解得特征根:120,4λλ==-. 因此该方程的齐次解为:4()th y t A Be -=+.由(0)1,(0)2d y y dx --==得:1,42A B B +=-=.解得:31,22A B ==-. 所以此齐次方程的零输入响应为:431()22ty t e -=-.2-2 已知系统的微分方程和激励信号,求系统的零状态响应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

故:
(t>0)
7
例题3:零输入、零状态解法
描述某系统的微分方程为y”(t) + 3y’(t) + 2y(t) = 2f’(t) + 6f(t),
已知y(0-)=2,y’(0-)=0,f(t)=u(t)。求该系统的全响应,零输 入响应和零状态响应。 解:(1.1)求零状态响应的起始点跳变 y”(t) + 3y’(t) + 2y(t) = 2δ(t) + 6u(t) 利用系数匹配法分析列式得: y’’(t)=aδ(t) +b Δu(t) y’(t)=aΔu(t)
10
2.5.4
各种响应之间的关系
P58页,理解问题核心,读一下
零输入响应
r (t ) rzi (t ) rzs (t )
n n
零状态响应
Azik e ak t Azsk e ak t B(t )
k 1 k 1
求和 齐次解 自由响应
Ak e ak t B (t )
所以
9
例题3:零输入、零状态解法
(2)零输入响应yzi (t), 激励为0 , yzi(0+)= yzi (0-)= y(0-)=2 yzi’(0+)= yzi’(0-)= y’(0-)=0 求特征根求,得齐次解的零输入响应: 代入,解得系数为:
所以: (3)全解为 零输入 + 零状态
瞬态分量 稳态分量
信号系统样写也没错, 和小时应用题一样。
1
例题1:线性、时移性质
2
例题2:经典法


求完全响应。
3
例题2:经典法
解:①由特征根写出齐次解形式 i)特征方程: 特征根: ii)齐次解形式: ②求特解
i) t>0时自由项=16
[ 2+2u(t) ] * 4
ii)0不是特征根,设特解为:
iii)代入方程左边解得:B=8/5
4
例题2:经典法
③求完全解中的齐次解待定系数
i)写出完全解形式:
ii)冲激函数匹配法求跳变值:根据t=0时刻微分方程左 右两端的 及其各阶导数应该平衡相等
系统用微分方程表示时,系统地0-状态到0+状
态有无跳变决定于微分方程的右端自由项是否
k 1 n
特解 强迫响应
11
2.5节
总结
P58页,理解问题核心。 缺少如下补充,请大家抄写到58页公式2-41旁边 零输入响应:rzi(0-)=rzi(0+);-> 对应于起始储能 rzi’(0-)=rzi’(0+);
零状态响应:rzs(0-) = 0 ;->从定义上与储能无关 rzs’(0-) = 0;
包含
及其高阶导数。有则跳变。 (t )
5
例题2:经典法
带入
在 考虑换路时情况,即t=0时刻e(t)有2 u(t) 变化,得
<
u (t )
的含义? >
表示0-到0+相对跳变函数
代入方程左端,令左右 两端的奇异函数平衡, 得
6

例题2:经典法
iii)计算初始条件
iv)初始条件代入完全解,列写方程组求出待定系数
12
y(t)=0
代入原方程得 : a = 2,b = 0 可得
注意是求零状态响应
8
例题3:零输入、零状态解法
(1.2)求零状态响应yzs(t) 对t>0时,有 yzs”(t) + 3yzs’(t) + 2yzs(t) = 6 先求特征根,后求齐次解形式的零状态响应为
再求特解为常数 3 ,于是有 因为 可得
相关文档
最新文档