导数经典练习题及答案.docx

导数经典练习题及答案.docx
导数经典练习题及答案.docx

1 .设函数 f(x) 在 x 0 处可导,则 lim

f ( x 0

x) f ( x 0 ) 等于

x 0

x

A . f ' ( x 0 )

B . f ' ( x 0 )

C . f '(x 0 )

D . f '(

x 0 )

2 .若 lim f ( x 0 2 x) f ( x 0 )

1 ,则 f ' (x 0 ) 等于 A .

2

B .

3

C .3

D .2

x 0

3 x 3

2

3 .若函数 f(x) 的导数为 f ′(x)=-sinx ,则函数图像在点(

4 ,f (4 ))处的切线的倾

斜角为

A .90°

B .0°

C .锐角

D .钝角

4 .对任意 x ,有 f ' ( x)

4x 3 ,f(1)=-1 ,则此函数为

A . f ( x)

x 4

B . f ( x) x 4

2

C . f ( x)

x 4

1

D . f ( x) x 4

2

5 .设 f(x) 在 x 0 处可导,下列式子中与 f ' ( x 0 ) 相等的是

(1 ) lim f ( x 0 )

f (x 0 2 x) ;

( 2) lim f ( x 0

x)

f ( x 0 x) ;

x

2 x

x 0

x

(3 ) lim f ( x 0 2 x)

f ( x 0 x)

( 4) lim f ( x 0

x)

f ( x 0 2 x) .

x

x

x

x

A .(1)(2)

B .(1)(3)

C .(2)(3)

D .(1)(2)(3)(4)

6 .若函数 f(x) 在点 x 0 处的导数存在, 则它所对应的曲线在点 (x 0 , f ( x 0 )) 处的切线

方程是 ___.

7 .已知曲线 y

x

1 ,则 y' |

_____________.

x

x 1

8 .设 f ' (x 0 )

3 ,则 lim f (x 0 h)

f ( x 0 3h) _____________.

h

h

9 .在抛物线 y

x 2 上依次取两点,它们的横坐标分别为

x 1 1, x 2 3 ,若抛物

线上过点 P 的切线与过这两点的割线平行,则P 点的坐标为 _____________.

10 .曲线f (x)x3在点A处的切线的斜率为3,求该曲线在 A 点处的切线方程 .

11 .在抛物线y x 2上求一点P,使过点P的切线和直线3x-y+1=0的夹角为.

4

x(x 0)

12 .判断函数 f ( x)在x=0处是否可导.

x(x 0)

13 .求经过点( 2 , 0)且与曲线y 1

相切的直线方程. x

同步练习 X03013

1 .函数 y= f(x)在 x= x0处可导是它在 x= x0处连续的

A .充分不必要条件B.必要不充分条件

C.充要条件 D .既不充分也不必要条件

2 .在曲线 y=2 x2-1 的图象上取一点( 1,1)及邻近一点( 1+ x,1+y),则

y

等于

x

A .4 x+2 x2B.4+2 x

C.4 x+ x 2D.4+x

3.若曲线 y= f( x)在点( x0,f (x0))处的切线方程为2x+ y-1=0 ,则

A .f′(x0)>0B.f ′(x0)<0

C.f′(x0)=0D. f ′(x0)不存在

4.已知命题 p:函数 y= f (x)的导函数是常数函数;命题 q :函数 y= f( x)是一次函数,则命题 p 是命题 q 的

A .充分不必要条件B.必要不充分条件

C.充要条件 D .既不充分也不必要条件

5.设函数 f (x )在 x0处可导,则 lim( x0h)f ( x

h)

等于

h 0h

A .f′(x0)B. 0

C.2f′(x0)D.- 2f′(x0)6 .设 f(x ) = x(1+| x|),则 f ′(0)等于

A .0B.1

C.-1 D .不存在

7.若曲线上每一点处的切线都平行于 x 轴,则此曲线的函数必是.8.曲线 y= x3在点 P(2,8 )处的切线方程是.

9.曲线 f( x )= x2 +3 x 在点 A (2,10 )处的切线斜率 k =.

10 .两曲线 y= x2 +1与 y=3 -x2在交点处的两切线的夹角为.

11 .设 f ( x )在点 x处可导, a 、 b为常数,则

lim f (x a x)

x f (x b x) =.

x 0

x2x 1x0

12 .已知函数 f (x)=

b x ,试确定 a、b 的值,使 f( x)

ax0在 x=0 处可导.

13 .设 f(x)=(x1)( x2)( x n)

,求 f′(1).

( x1)( x2)(x n)

14 .利用导数的定义求函数y=| x|( x≠0 )的导数.

同步练习X03021

1 .物体运动方程为s= 1

t4- 3 ,则 t=5 时的瞬时速率为4

A .5 m/s B. 25 m/s C.125 m/s D .625 m/s

n

2.曲线 y= x n(n ∈N )在点 P(2, 2 2 ) 处切线斜率为20 ,那么 n 为A.7 B.6C.5 D .4

3.函数 f( x )=x x x 的导数是

A .

1

(x>0 ) B.-

7

(x>0 ) C.1(x>0 ) D .1 8 x88 x88 x788 x

(x>0 )

4.f( x)与 g (x)是定义在 R 上的两个可导函数,若 f(x),g( x)满足 f′(x)=g ′(x),则 f (x)与 g (x)满足

A .f( x) = g ( x)B. f (x)- g (x )为常数函数

C.f( x) = g( x) =0 D .f( x) + g( x)为常数函数5.两车在十字路口相遇后,又沿不同方向继续前进,已知 A 车向北行驶,速率为 30 km/h ,B 车向东行驶,速率为 40 km/h ,那么 A 、B 两车间直线距离的增

加速率为

A .50 km/h B.60 km/h C.80 km/h D . 65 km/h

6 .细杆 AB 长为 20 cm ,AM 段的质量与 A 到 M 的距离平方成正比,当 AM =2 cm 时, AM 段质量为 8 g ,那么,当 AM = x 时, M 处的细杆线密度ρ( x)为

A .2x B.4 x C. 3x D .5x

7 .曲线y= x4的斜率等于 4 的切线的方程是.

8 .设l1为曲线y1=sin x 在点( 0 ,0 )处的切线,l2为曲线y2=cos x 在点(,

2 0)处的切线,则l 1与 l 2的夹角为.

9 .过曲线y=cos x上的点(, 1 )且与过这点的切线垂直的直线方程为

6 2

10 .在曲线y=sin x(0< x< π)上取一点M ,使过M点的切线与直线y=

3

x 平2

行,则M点的坐标为.

11 .质点P 在半径为r 的圆周上逆时针做匀角速率运动,角速率为 1 rad/s,设

A 为起点,那么t 时刻点P 在x 轴上射影点M 的速率为.

12 .求证:双曲线 xy= a2上任一点处的切线与两坐标轴构成的三角形面积等于常数.

13 .路灯距地平面为8 m ,一个身高为 1.6 m 的人以 84 m/min的速率在地面

上行走,从路灯在地平面上射影点C,沿某直线离开路灯,求人影长度的变化速率 v.

14 .已知直线 x+2 y-4=0 与抛物线 y2=4 x 相交于 A 、 B 两点, O 是坐标原点,试在抛物线的弧上求一点 P,使△PAB 面积最大.

同步练习 X03031

1 .若 f (x ) =sin α-cos x ,则 f ′(α)等于

A .sin α

B . cos α

C .sin α+cos α

D . 2sin α

2 .f (x )= ax

3 +3 x 2 +2 ,若 f ′(-1 )=

4 ,则 a 的值等于

A .

19

B .

16

3

3

C .

13

D .

10

3

3

3 .函数 y= x sin x 的导数为

A .y ′=2 x sin x+

x cos x

B . y ′=

sin x

+ x cos x

2 x

C .y ′=

sin x

+ x cos x

D . y ′=

sin x

- x cos x

x

x

4 .函数 y= x 2 cos x 的导数为

A .y ′=2 xcos x -x 2

sinx

B . y ′=2 xcosx+ x 2

sin x

C .

y ′x 2 cos x - x sin x D . y ′x cos x - x 2

sin x = 2

=

5.若 y=(2 x 2 -3)( x 2

-4), 则 y ’=

.

6. 若 y=3 cosx -4 sinx ,则 y ’ =

.

7 .与直线 2x - 6y+1=0 垂直,且与曲线 y= x 3 +3 x 2 -1 相切的直线方程是 ______.

8 .质点运动方程是 s= t 2(1+sin t ),则当 t = 时,瞬时速度为

2

9.求曲 y=x3+x2-1在点P(-1,-1)的切方程.

10 .用求的方法求和: 1+2 x+3 x2 + ?+ nx n-1(x ≠1 ).

11 .水以 20 米3/ 分的速度流入一圆锥形容器,设容器深 30 米,上底直径 12 米,

试求当水深 10 米时,水面上升的速度.

同步练习 X03032

1 .函数 y= x

2

2

a

(a>0 )的导数为 0 ,那么 x 等于

x

A .a

B .±a

C .- a

D . a 2

2 .函数 y=

sin x

的导数为

x

A .y ′ x cos x

sin x

B . y ′

=

x 2

=

C .y ′=

x sin x

cos x

D . y ′=

x 2

3.若 y

1 x

2 , 则 y ’=

.

2 x 4.若 3x 4 3x 2 5

x 3

, 则 y ’ =

.

y

5.若 y

1

cos x

, 则 y ’= .

1 cos x

6 .已知 f ( x )= 3 x 7

x 3

5

x 4 ,则 f ′(x )=

3 x

7 .已知 f ( x )=

1

1 ,则 f ′(x ) = 1

x

1

x

8 .已知 f ( x )= 1 sin 2x ,则 f ′(x )=

cos2x

x cos x sin x

x 2

x sin x

cos

x

x 2

9 .求过点( 2,0 )且与曲线 y= 1

相切的直线的方程.x

10. 质点的运动方程是s t23

, 求质点在时刻t=4时的速度 . t

同步练习X03041

1.函数 y=

1

的导数是(3x 1) 2

A .

6

B.

666

1)31) 2

C.-

3

D.-

2 (3x(3x(3x 1)(3x 1)

2.已知 y= 1

sin2 x+sin x,那么 y ′是2

A .仅有最小值的奇函数B.既有最大值,又有最小值的偶函数

C.仅有最大值的偶函数 D .非奇非偶函数

3.函数 y=sin 3(3x+ )的导数为

4

A .3sin 2(3x+)cos ( 3x+)B.9sin 2(3 x+ ) cos (3 x+)

4444 C.9sin 2(3x+) D .- 9sin 2(3x+)cos ( 3x+)

444 4.若 y= ( sinx-cosx)3,则y’=.

5.若 y= 1cosx2,则 y’=.

6.若 y=sin3(4x+3) ,则 y’=.

7.函数 y = (1+sin3x)3是由两个函数复合而成.

8.曲线 y=sin3 x 在点 P(,0 )处切线的斜率为.

3

9.求曲线y1在M (2,1)处的切线方程.

( x23x)24

10. 求曲线y sin 2x在 M ( ,0) 处的切线方程.

11 .已知函数 y= ( x)是可导的周期函数,试求证其导函数y= f′(x)也为周期函数.

高中数学导数经典100题

题401:省峨山彝族自治县第一中学2018届高三2月份月考理科 已知函数()ln f x ax x =+,其中a 为常数,e 为自然对数的底数. (1)若()f x 在区间(0,]e 上的最大值为3-,求a 的值; (2)当1a =-时,判断方程ln 1|()|2x f x x = +是否有实根?若无实根请说明理由,若有实根请给出根的个数. 题402:2018年普通高等学校招生全国统一考试仿真卷-(理六) 已知()ln()f x x m mx =+- (1)求()f x 的单调区间; (2)设1m >,12,x x 为函数()f x 的两个零点,求证:120x x +< 题403:省实验中学2018届高三上学期第六次月考数学(文) 已知函数2()ln (0)f x x a x a =-> (1)讨论函数()f x 在(,)a +∞上的单调性; (2)证明:322ln x x x x -≥且322ln 16200x x x x --+> 题404:西北师大附中2017届高三校第二次诊断考试试题数学(理科) 已知函数21()ln (1)..2 f x a x x a x a R =+-+∈ (1)求函数()f x 的单调区间; (2)若()0f x ≥对定义域的任意x 恒成立,数a 的取值围; (3)证明:对于任意正整数,,m n 不等式 111...ln(1)ln(2)ln()() n m m m n m m n +++>++++恒成立.

题405:一中2017-2018学年度高三年级第五次月考 数学(理)试 已知函数3()ln(1)ln(1)(3)()f x x x k x x k R =++---∈ (1)当3k =时,求曲线()y f x =在原点处的切线方程; (2)若()0f x >对(0,1)x ∈恒成立,求k 的取值围. 题406:第一中学2018届高三上学期期末考试数学(理) 已知函数()ln 1,a f x x a R x =+-∈ (1)若函数()f x 的最小值为0,求a 的值; (2)证明:(ln 1)sin 0x e x x +-> 题407:2017—2018学年度衡中七调理科数学 已知函数1()x f x e a -=+,函数()ln ,g x ax x a R =+∈ (1)求函数()y g x =的单调区间; (2)若不等式()()1f x g x ≥+在区间[1,)+∞恒成立,数a 的取值围 (3)若(1,)x ∈+∞,求证不等式12ln 1x e x x -->-+

导数经典专题整理版

导数在研究函数中的应用 知识点一、导数的几何意义 函数()y f x =在0x x =处导数()0f x '是曲线()y f x =在点()()00,P x f x 处切线的 ,即_______________;相应地,曲线()y f x =在点()()00,P x f x 处的切线方程是 例1.(1)曲线x e x y +=sin 在点)1,0(处的切线方程为( ) A.033=+-y x B.022=+-y x C.012=+-y x D.013=+-y x (2)若曲线x x y ln =上点P 处的切线平行于直线012=+-y x ,则点P 的坐标是( ) A.),(e e B.)2ln 2,2( C.)0,1( D.),0(e 【变式】 (1)曲线21x y xe x =++在点)1,0(处的切线方程为( ) A.13+=x y B.12+=x y C.13-=x y D.12-=x y (2)若曲线x ax y ln 2-=在点),1(a 处的切线平行于x 轴,则a 的值为( ) A.1 B.2 C.21 D.2 1- 知识点二、导数与函数的单调性 (1)如果函数)(x f y =在定义域内的某个区间(,)a b 内,使得'()0f x >,那么函数()y f x =在这个区间内为 且该区间为函数)(x f 的单调_______区间; (2)如果函数)(x f y =在定义域内的某个区间(,)a b 内,使得'()0f x <,那么函数()y f x =在这个区间内为 ,且该区间为函数)(x f 的单调_______区间.

例1.(1)函数x e x x f )3()(2-=的单调递增区间为( ) A.)0,(-∞ B.),0(+∞ C.)1,3(- D.),1()3,(+∞--∞和 (2)函数x x y ln 2 12-=的单调递减区间为( ) A.(]1,1- B.(]1,0 C.[)+∞,1 D.),0(+∞ 例2.求下列函数的单调区间,并画出函数)(x f y =的大致图像. (1)3)(x x f = (2)x x x f 3)(3+= (3)1331)(23+--=x x x x f (4)x x x x f 33 1)(23++-= 知识点三、导数与函数的极值 函数)(x f y =在定义域内的某个区间(,)a b 内,若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数)(x f '异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的 ,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是 (熟练掌握求函数极值的步骤以及一些注意点) 例1.(1)求函数133 1)(23+--=x x x x f 的极值 (2)求函数x x x f ln 2)(2-=的极值

高考数学 导数及其应用的典型例题

第二部分 导数、微分及其导数的应用 知识汇总 一、求导数方法 1.利用定义求导数 2.导数的四则运算法则 3.复合函数的求导法则 若)(u f y =与)(x u φ=均可导,则[])(x f y φ=也可导,且dx du du dy dx dy ? = 即 [])()(x x f y φφ'?'=' 4.反函数的求导法则 若)(x f y =与)(y x φ=互为反函数,且)(y φ单调、可导,则 )(1)(y x f φ'= ',即dy dx dx dy 1 = 5.隐函数求导法 求由方程0),(=y x F 确定的隐函数 )(x f y =的导数dx dy 。只需将方程0),(=y x F 两边同时对x 求导(注意其中变量y 是x 的函数),然后解出 dx dy 即可。 6.对数求导法 对数求导法是先取对数,然后按隐函数求导数的方法来求导数。对数求导法主要解决两类函数的求导数问题: (1)幂指数函数y=)()(x v x u ;(2)由若干个因子的乘积或商的显函数,如 y= 3 4 )3(52)2)(1(---++x x x x x ,3 ) 2)(53() 32)(1(--+-=x x x x y ,5 5 2 2 5 +-=x x y 等等。 7.由参数方程所确定函数的求导法则 设由参数方程 ? ? ?==)() (t y t x ?φ ),(βα∈t 确定的函数为y=f(x),其中)(),(t t ?φ

可导,且)(t φ'≠0,则y=f(x)可导,且 dt dx dt dy t t dx dy =''=)()(φ? 8.求高阶导数的方法 二、求导数公式 1.基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 2.常见函数的高阶导数 (1) n n x n x -+-?-?-?=αα αααα)1()2()1()() ( (2) x n x e e =) () ( (3) ()()ln x n x n a a a = (4) () (sin ) sin 2n x x n π? ?=+? ??? (5) ??? ? ??+=2cos )(cos )(πn x x n (6) () 1 (1)!ln()(1) ()n n n n a x a x --+=-+ (7) 1 )() (!)1()1(++-=+n n n n b ax a n b ax

导数经典练习题及答案

1.设函数f(x)在0x 处可导,则x x f x x f x ?-?-→?) ()(lim 000 等于 A .)('0x f B .)('0x f - C .0'()f x - D .0'()f x -- 2.若13)()2(lim 000 =?-?+→?x x f x x f x ,则)('0x f 等于 A .32 B .2 3 C .3 D .2 3.若函数f(x)的导数为f ′(x)=-sinx ,则函数图像在点(4,f (4))处的切线的倾斜角为 A .90° B .0° C .锐角 D .钝角 4.对任意x ,有34)('x x f =,f(1)=-1,则此函数为 A .4)(x x f = B .2)(4-=x x f C .1)(4+=x x f D .2)(4+=x x f 5.设f(x)在0x 处可导,下列式子中与)('0x f 相等的是 (1)x x x f x f x ??--→?2)2()(lim 000 ; (2)x x x f x x f x ??--?+→?) ()(lim 000; (3)x x x f x x f x ??+-?+→?)()2(lim 000 (4)x x x f x x f x ??--?+→?)2()(lim 000. A .(1)(2) B .(1)(3) C .(2)(3) D .(1)(2)(3)(4) 6.若函数f(x)在点0x 处的导数存在,则它所对应的曲线在点))(,(00x f x 处的切线程是___. 7.已知曲线x x y 1+ =,则==1|'x y _____________. 8.设3)('0-=x f ,则=---→h h x f h x f h ) 3()(lim 000 _____________. 9.在抛物线2x y =上依次取两点,它们的横坐标分别为11=x ,32=x ,若抛物

关于导数的29个典型习题

关于导数的29个典型习题 习题1设函数在0=x 的某邻域内1 C 类(有一阶连续导数),且.0)0(,0)0(≠'≠f f 若)0()2()(f h f b h f a -+在 0→h 时是比h 高阶的无穷小,试确定b a ,的值。 解 由题设知 0)0()1()]0()2()([lim 0 =-+=-+→f b a f h f b h f a h . .01,0)0(=-+∴≠b a f 由洛比达法则知 ).0()2(1 ) 2(2)(lim )0()2()(lim 000f b a h f b h f a h f h bf h af h h '+='+'=-+=→→洛,0)0(≠'f 故.02=+b a 联立可 解出.1,2-==b a 习题2 设,0,00,)()(?????=≠-=-x x x e x g x f x 其中)(x g 有二阶连续导数,且1)0(,1)0(-='=g g .(1) 求);(x f '(2) 讨论 )(x f '在),(+∞-∞上的连续性. 解 (1) 当0≠x 时,用公式有 ,)1()()()(])([)(2 2x e x x g x g x x e x g e x g x x f x x x ---++-'=+-+'=' 当0=x 时,用定义求导数,有 .21)0()(lim )0(2 0-''=-='-→g x e x g f x x 二次洛 ???? ?=-''≠++-'='∴-.0,2 1)0(0,)1()()()(2x g x x e x x g x g x x f x (2) 因在0=x 处有 ).0(2 1)0(2)(lim 2)1()()()(lim )(lim 000f g e x g x e x e x g x g x x g x f x x x x x x '=-''=-''=+-+'-''+'='-→--→→洛 而)(x f '在0≠x 处连续,故).,()(+∞-∞∈'C x f 习题3 证明:若022=++++c y b x a y x (圆),其中c b a ,,为定数),04(22>-+c b a 则 =+x d y d dx dy 222 3 2])(1[定数。 证 求导,,022='++'+y b a y y x 即.22b y a x y ++-=' 再导一次,,02222 =''+'+''+y b y y y 即 .2)1(22b y y y +'--='' )(.42 1...1)2(21...)1(22 22 3 2定数c b a y b y y y -+-=='++-=='''+∴

导数及其应用高考题精选含答案

导数及其应用高考题精选 1.(2010·海南高考·理科T3)曲线2 x y x = +在点()1,1--处的切线方程为() (A )21y x =+(B )21y x =-(C )23y x =--(D )22y x =-- 【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解. 【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程. 【规范解答】选 A.因为22 (2) y x '= +,所以,在点()1,1--处的切线斜率12 2 2(12)x k y =-' == =-+,所以,切线方程为12(1)y x +=+,即21y x =+,故选A. 2.(2010·山东高考文科·T8)已知某生产厂家的年利润y (单位:万元) 与年产量x (单位:万件)的函数关系式为3 1812343 y x x =-+-,则使该生产厂 家获得最大年利润的年产量为() (A)13万件(B)11万件 (C)9万件(D)7万件 【命题立意】本题考查利用导数解决生活中的优化问题,考查了考生的分析问题解决问题能力和运算求解能力. 【思路点拨】利用导数求函数的最值. 【规范解答】选C ,2'81y x =-+,令0y '=得9x =或9x =-(舍去),当9x <时'0y >;当9x >时'0y <,故当9x =时函数有极大值,也是最大值,故选C. 3.(2010·山东高考理科·T7)由曲线y=2 x ,y=3 x 围成的封闭图形面积为() (A ) 1 12 (B)14 (C)13 (D) 712 【命题立意】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的

导数有关知识点总结、经典例题及解析、近年高考题带答案

导数及其应用 【考纲说明】 1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。 2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。 3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。 【知识梳理】 一、导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们 就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明:

(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在点x 0处不可导, 或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 二、导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。 三、几种常见函数的导数 ①0;C '= ②() 1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a ' =; ⑦ ()1ln x x '= ; ⑧()1 l g log a a o x e x '=. 四、两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( .)' ''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数, 即: .)('''uv v u uv += 若C 为常数,则' ''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu = 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: ? ?? ??v u ‘=2' 'v uv v u -(v ≠0)。 形如y=f [x (?])的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y '|x = y '|u ·u '|x 五、导数应用 1、单调区间: 一般地,设函数)(x f y =在某个区间可导,

导数典型例题.doc

导数典型例题 导数作为考试内容的考查力度逐年增大 .考点涉及到了导数的所有内容,如导数的定 义,导数的几何意义、物理意义,用导数研究函数的单调性,求函数的最(极)值等等, 考查的题型有客观题(选择题、填空题) 、主观题(解答题)、考查的形式具有综合性和多 样性的特点.并且,导数与传统内容如二次函数、二次方程、三角函数、不等式等的综合考 查成为新的热点. 一、与导数概念有关的问题 【例1】函数f(x)=x(x-1) (x-2)…(x-100)在x= 0处的导数值为 2 A.0 B.100 C.200 D.100 ! 解法一 “(0、_ .. f (° tx) _f(o) .. .-xC-x-DO-2V'^-100)-0 解法 f (0)_叽 L _叽 - _ ||m (A x-1)( △ x-2)…(△ x-100)_ (-1) (-2)-( - 100) =100 ! ???选 D. .x _0 解法二 设 f(x)_a 101x 101 + a 100X 100+ …+ a 1X+a 0,则 f z (0)_ 而 a 1_ (-1)(-2 ) - (- 100) _100 ! . ???选 D. 点评解法一是应用导数的定义直接求解, 函数在某点的导数就是函数在这点平均变化 率的极限.解法二是根据导数的四则运算求导法则使问题获解 111 【例2】已知函数f(x)_ c ; c ^x ? — C ;X 2亠■亠— C ;X k 亠■亠一

导数经典题

1.抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线px y 22=p (>)0,弦AB 过焦点,△ABQ 为其阿基米德三角形,则△ABQ 的面积的最小值为 A .22 p B .2p C .22p D .24p 【答案】B 2.已知 x x x f -=3 )(,如果过点),2(m 可作曲线)(x f y =的三条切线,则m 的取值范围是 A. 6在点(,())a f a 处的切线与两条坐标轴围成的三角形的面积为54,则a =( ) A .3 B .6 C .9 D .18 【答案】B 试题分析:因为,2()(0)f x x x =>,所以,'()2(0)f x x x =>曲线2()(0)f x x x =>在点(,())a f a 处的切 线斜率为2a (0)a >,2()f a a =,所以,切线方程为220ax y a --=,其纵、横截距分别为2,2 a a -, 从而215422 a a ??=,a =6,选B. 考点:导数的几何意义,直线方程,三角形面积公式. 5.已知函数()f x 在R 上可导,其导函数为()f x ',若()f x 满足:(1)[()()]0'-->x f x f x , 22(2)()--=x f x f x e ,则下列判断一定正确的是 ( ) A .(1)(0)f ef C .3(3)(0)>f e f D .4 (4)(0)x 时,()()()[]()()()()0001>-'?>-'?>-'---x f e x f e x f x f x f x f x x x ,令 ()()()()()0>-'='?=---x f e x f e x F x f e x F x x x ,所以()x F 在区间[)+∞∈,1x 上单调递增,所 以()()23F F >,即()()2323f e f e -->;又22(2)()--=x f x f x e ,则()()2 20-=e f f ,于是()()033f f e >-,即3(3)(0)>f e f .

导数及其应用经典题型总结

《导数及其应用》经典题型总结 一、知识网络结构 题型一 求函数的导数及导数的几何意义 考 点一 导数的概念,物理意义的应用 例 1.(1)设函数()f x 在 2x =处可 导,且(2)f '=, 求 0(2)(2) lim 2h f h f h h →+--; (2)已知()(1)(2) (2008)f x x x x x =+++,求(0)f '. 考点二 导数的几何意义的应用 例2: 已知抛物线y=ax 2+bx+c 通过点P(1,1),且在点Q(2,-1)处与直线y=x-3相切,求实数a 、b 、c 的值 例3:已知曲线y=.3 43 13+x (1)求曲线在(2,4)处的切线方程;(2)求曲线过点(2,4)的切线方程. 题型二 函数单调性的应用 考点一 利用导函数的信息判断f(x)的大致形状 例1 如果函数y =f(x)的图象如图,那么导函数y =f(x)的图象可能是( ) 考点二 求函数的单调区间及逆向应用 例1 求函数522 4 +-=x x y 的单调区间.(不含参函数求单调区间) 例2 已知函数f (x )=1 2x 2+a ln x (a ∈R ,a ≠0),求f (x )的单调区间.(含参函数求单调区间) 练习:求函数x a x x f + =)(的单调区间。 例3 若函数f(x)=x 3 -ax 2 +1在(0,2)内单调递减,求实数a 的取值范围.(单调性的逆向应用) 练习1:已知函数0],1,0(,2)(3 >∈-=a x x ax x f ,若)(x f 在]1,0(上是增函数,求a 的取值范围。 2. 设a>0,函数ax x x f -=3 )(在(1,+∞)上是单调递增函数,求实数a 的取值范围。 导 数 导数的概念 导数的运算 导数的应用 导数的几何意义、物理意义 函数的单调性 函数的极值 函数的最值 常见函数的导数 导数的运算法则

高二数学导数及其应用练习题及答案

(数学选修1-1)第一章 导数及其应用 [提高训练C 组]及答案 一、选择题 1.若()sin cos f x x α=-,则'()f α等于( ) A .sin α B .cos α C .sin cos αα+ D .2sin α 2.若函数2()f x x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象是( ) 3.已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的 取值范围是( ) A .),3[]3,(+∞--∞ B .]3,3[- C .),3()3,(+∞--∞ D .)3,3(- 4.对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( ) A . (0)(2)2(1)f f f +< B. (0)(2)2(1)f f f +≤ C. (0)(2)2(1)f f f +≥ D. (0)(2)2(1)f f f +> 5.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 6.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示, 则函数)(x f 在开区间),(b a 内有极小值点( A .1个 B .2个 C .3个 D .4个 二、填空题 1.若函数()()2 f x x x c =-在2x =处有极大值,则常数c 的值为_________;

2.函数x x y sin 2+=的单调增区间为 。 3.设函数())(0)f x ??π=+<<,若()()f x f x '+为奇函数,则?=__________ 4.设3 2 1()252 f x x x x =- -+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的 取值范围为 。 5.对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则 数列1n a n ?? ? ?+?? 的前n 项和的公式是 三、解答题 1.求函数3(1cos 2)y x =+的导数。 2.求函数y = 3.已知函数3 2 ()f x x ax bx c =+++在2 3 x =-与1x =时都取得极值 (1)求,a b 的值与函数()f x 的单调区间 (2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围。 4.已知23()log x ax b f x x ++=,(0,)x ∈+∞,是否存在实数a b 、,使)(x f 同时满足下列 两个条件:(1))(x f 在(0,1)上是减函数,在[)1,+∞上是增函数;(2))(x f 的最小值是1,若存在,求出a b 、,若不存在,说明理由. (数学选修1-1)第一章 导数及其应用 [提高训练C 组] 一、选择题 1.A ' ' ()sin ,()sin f x x f αα==

(完整版)函数与导数经典例题(含答案)

函数与导数 1. 已知函数3 2 ()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 【解析】(19)本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、 函数的零点、解不等式等基础知识,考查运算能力及分类讨论的思想方法,满分14分。 (Ⅰ)解:当1t =时,3 2 2 ()436,(0)0,()1266f x x x x f f x x x '=+-==+- (0) 6.f '=-所以曲线()y f x =在点(0,(0))f 处的切线方程为6.y x =- (Ⅱ)解:2 2 ()1266f x x tx t '=+-,令()0f x '=,解得.2 t x t x =-=或 因为0t ≠,以下分两种情况讨论: (1)若0,,2 t t t x <<-则 当变化时,(),()f x f x '的变化情况如下表: x ,2t ? ?-∞ ?? ? ,2t t ?? - ??? (),t -+∞ ()f x ' + - + ()f x 所以,()f x 的单调递增区间是(), ,,;()2t t f x ? ?-∞-+∞ ? ??的单调递减区间是,2t t ?? - ??? 。 (2)若0,2 t t t >-< 则,当x 变化时,(),()f x f x '的变化情况如下表: x (),t -∞ ,2t t ??- ?? ? ,2t ?? +∞ ??? ()f x ' + - + ()f x

最新导数及其应用知识点经典习题集

导数及其应用 1、函数的平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111 212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数在0x x =处的瞬时变化率是 ,则称函数在点处可导,并把这个极限叫做在处的导数,记作或,即= . 3.函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;(3)边际成本。 )(x f y =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000)(x f y =0x )(x f y =0x )(0'x f 0|'x x y =)(0'x f x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000

6、常见的导数和定积分运算公式:若()f x ,()g x 均可导(可积),则有: 7.用导数求函数单调区间的步骤:①求函数f (x )的导数'()f x ②令'()f x >0,解不等式,得x 的范围就是递增区间.③令'()f x <0,解不等式,得x 的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。 8.求可导函数f (x )的极值的步骤:(1)确定函数的定义域。(2) 求函数f (x )的导数 '()f x (3)求方程'()f x =0的根(4) 用函数的导数为0的点,顺次将函数的定义区 间分成若干小开区间,并列成表格,检查/()f x 在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值 9.利用导数求函数的最值的步骤:求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在[]b a ,上的极值;⑵将)(x f 的各极值与(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值。[注]:实际问题的开区间唯一极值点就是所求的最值点;

导数复习经典例题分类(含答案)

导数解答题题型分类之拓展篇(一) 编 制:王 平 审 阅:朱 成 2014-05-31 题型一:最常见的关于函数的单调区间;极值;最值;不等式恒成立; 经验1:此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到几个根;第二步:列表如下;第三步:由表可知; 经验2:不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种:第一 种:变更主元(即关于某字母的一次函数);题型特征(已知谁的范围就把谁作为主元); 第二种:分离变量求最值(请同学们参考例5); 第三种:关于二次函数的不等式恒成立; 第四种:构造函数求最值;题型特征()()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立) ;参考例4; 例1.已知函数321()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,22()3 f x a ->恒成立,求a 的取值范围. 例2.设2 2(),1 x f x x = +()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域;

(2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例3.已知函数32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 32 6()(1)3(0)2 t g x x x t x t -=+ -++> (Ⅰ)求,a b 的值; (Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例4.已知定义在R 上的函数32()2f x ax ax b =-+)(0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围.

历年导数压轴经典题目

历年导数压轴经典题目 证题中常用的不等式: ① ln 1(0)x x x ≤-> ②≤ln +1(1)x x x ≤>-() ③ 1x e x ≥+ ④ 1x e x -≥- ⑤ ln 1(1)12x x x x -<>+ ⑥ 22ln 11(0)22x x x x <-> ⑦ 1≥e^x (1-x ) 1.已知函数 321 ()3 f x x ax bx =++,且'(1)0f -= (1) 试用含a 的代数式表示b,并求()f x 的单调区间; (2)令1a =-,设函数()f x 在1212,()x x x x <处取得极值,记点M (1x , 1()f x ),N(2x ,2()f x ), P(, ()m f m ), 12x m x <<,请仔细观察曲线()f x 在点P 处的切线与线段MP 的位置变化趋势, 并解释以下问题: (I )若对任意的m ∈(t, x 2),线段MP 与曲线f(x)均有异于M,P 的公共点,试确定t 的最小值,并证明你 的结论; (II )若存在点Q(n ,f(n)), x ≤n< m ,使得线段PQ 与曲线f(x)有异于P 、Q 的公共点,请直接写出m 的取值 范围(不必给出求解过程) 2. 本小题满分14分)已知函数 ,,且 是函数 的极值点。 (Ⅰ)求实数的值; (Ⅱ)若方程有两个不相等的实数根,求实数 的取值范围; (Ⅲ)若直线是函数 的图象在点处的切线,且直线与函数 的图象相切于点,,求实数的取值范围。 1 x x +

3. 已知函数()() ()()201,10.x f x ax bx c e f f =++==且 (I )若()f x 在区间[]0,1上单调递减,求实数a 的取值范围; (II )当a=0时,是否存在实数m 使不等式()224141x f x xe mx x x +≥+≥-++对任意 x R ∈恒成立?若存在,求出m 的值,若不存在,请说明理由 4. 已知:二次函数()g x 是偶函数,且(1)0g =,对,()1x R g x x ?∈≥-有恒成立,令 1 ()()ln ,()2 f x g x m x m R =++∈ (I )求()g x 的表达式; (II )当0m 0,使f(x)0成立,求m 的最大值; (III )设12,()()(1),m H x f x m x <<=-+证明:对12,[1,]x x m ?∈,恒有 12|()()| 1.H x H x -< 5. 已知函数()(a x ax x f ln -=>)().2 8,0+=x x x g (I )求证();ln 1a x f +≥ (II )若对任意的??????∈32,211x ,总存在唯一的?? ????∈e e x ,1 22(e 为自然对数的底数),使得 ()()21x f x g =,求实数a 的取值范围. 6. 已知函数2 ()8,()6ln .f x x x g x x m =-+=+ (I )求()f x 在区间[],1t t +上的最大值();h t (II )是否存在实数,m 使得()y f x =的图象与()y g x =的图象有且只有三个不同的交 点?若存在,求出m 的取值范围;若不存在,说明理由。 7. 已知函数()x f x e kx =-,x ∈R

导数及导数应用专题练习题

高二文科数学《变化率与导数及导数应用》专练(十) 一、选择题 1. 设函数f (x )存在导数且满足 ,则曲线y=f (x )在 点(2,f (2))处的切线斜率为( ) A .﹣1 B .﹣2 C .1 D .2 2. 函数()1x f x e =-的图像与x 轴相交于点P ,则曲线在点P 处的切线的方程为 ( ) A .1y e x =-?+ B .1y x =-+ C . y x =- D . y e x =-? 3. 曲线)0(1 )(3>-=x x x x f 上一动点))(,(00x f x P 处的切线斜率的最小值为() A .3 B .3 C. 32 D .6 4. 设P 为曲线2:23C y x x =++上的点,且曲线C 在点P 处的切线的倾斜角的取值范围为0,4π?????? ,则点P 的横坐标的取值范围为() A .[]0,1 B .[]1,0- C .11,2??--??? ? D .1,12?????? 5. 已知23 ()1(1)(1)(1)(1)n f x x x x x =+++++++ ++,则(0)f '=( ). A .n B .1n - C .(1)2 n n -D .1 (1)2n n + 6. 曲线y=2lnx 上的点到直线2x ﹣y+3=0的最短距离为( ) A . B .2 C .3 D .2 7. 过点(0,8)作曲线32()69f x x x x =-+的切线,则这样的切线条数为() A .0 B .1 C .2 D .3 8. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )= +6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2 B .3 C .4 D .5

导数及其应用大题精选

导数及其应用大题精选 姓名____________班级___________学号____________分数______________ 1 .已知函数)0()(>++ =a c x b ax x f 的图象在点(1,)1(f )处的切线方程为1-=x y . (1)用a 表示出c b ,; (2)若x x f ln )(≥在[1,+∞)上恒成立,求a 的取值范围. 2 .已知2 ()I 若()f x 在x=1处取得极值,求a 的值; ()II 求()f x 的单调区间; (Ⅲ)若()f x 的最小值为1,求a 的取值范围 . 4 .已知函数 ()ln f x x x =. (Ⅰ)求()f x 的单调区间; (Ⅱ) 当1k ≤时,求证:()1f x kx ≥-恒成立. 5 .已知函数()ln a f x x x =- ,其中a ∈R . (Ⅰ)当2a =时,求函数()f x 的图象在点(1,(1))f 处的切线方程; (Ⅱ)如果对于任意(1,)x ∈+∞,都有()2f x x >-+,求a 的取值范围.

6 .已知函数 2()4ln f x ax x =-,a ∈R . (Ⅰ)当1 2 a = 时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)讨论()f x 的单调性. 7 .已知函数 ()e (1)x f x x =+. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若对于任意的(,0)x ∈-∞,都有()f x k >,求k 的取值范围. 8 .已知函数 a ax x x f 23)(3+-=,)(R a ∈. (Ⅰ) 求)(x f 的单调区间; (Ⅱ)曲线)(x f y =与x 轴有且只有一个公共点,求a 的取值范围. 9 .已知函数 22()2ln (0)f x x a x a =->. (Ⅰ)若()f x 在1x =处取得极值,求实数a 的值; (Ⅱ)求函数()f x 的单调区间; (Ⅲ)若()f x 在[1]e , 上没有零点,求实数a 的取值范围. 10.已知曲线 ()x f x ax e =-(0)a >. (Ⅰ)求曲线在点(0,(0)f )处的切线; (Ⅱ)若存在实数0x 使得0()0f x ≥,求a 的取值范围.

相关文档
最新文档