中考复习专题二次函数应用题ppt课件课件ppt

合集下载

二次函数的应用(经典) PPT

二次函数的应用(经典) PPT
(1)若商场平均每天要盈利1200元,每件 衬衫应降价多少元?
(2)每件衬衫降价多少元时,商场平均每天 盈利最多?
最值应用题——销售问题
某商场以每件42元的价钱购进一种服装,根据 试销得知这种服装每天的销售量t(件)与每 件的销售价x(元/件)可看成是一次函数关系: t=-3x+204。 写出商场卖这种服装每天销售利润y(元) 与每件的销售价x(元)间的函数关系式; 通过对所得函数关系式进行配方,指出商场 要想每天获得最大的销售利润,每件的销售 价定为多少最为合适?最大利润为多少?
显而易见:顶点式
已知函数y=ax2+bx+c的图象是以点(2,3) 为顶点的抛物线,并且这个图象通过点(3, 1),求这个函数的解析式。(要求分别用一 般式和顶点式去完成,对比两种方法)
已知某二次函数当x=1时,有最大值-6, 且图象经过点(2,-8),求此二次函数的 解析式。
思维小憩:
用待定系数法求二次函数的解析式,什么 时候使用顶点式y=a(x-m)2+n比较方便?
求函数最值点和最值的若干方法: 直接代入顶点坐标公式 配方成顶点式 借助图象的顶点在对称轴上这一特性,结合 和x轴两个交点坐标求。
二次函数的三种式
一般式:y=ax2+bx+c 顶点式:y=a(x-m)2+n 交点式:y=a(x-x1) (x-x2)
已知二次函数y=ax2+bx+c的图象与x 轴的一个交点坐标是(8,0),顶点是 (6,-12),求这个二次函数的解析式。 (分别用三种办法来求)
窗的形状是矩形上面加一个半圆。窗的 周长等于6cm,要使窗能透过最多的光 线,它的尺寸应该如何设计?
A
O
D
B

二次函数的应用课件ppt课件ppt课件ppt

二次函数的应用课件ppt课件ppt课件ppt
要点一
导数在二次函数中的应用
利用导数研究二次函数的单调性、极值和拐点,解决实际 问题。
要点二
定积分在二次函数中的应用
利用定积分计算二次函数的面积,解决与面积相关的实际 问题。
THANKS
感谢观看
详细描述
二次函数是数学中一类重要的函数,其形式由参数$a$、$b$ 和$c$决定。当$a > 0$时,函数图像开口向上;当$a < 0$ 时,函数图像开口向下。
二次函数的图像
总结词
二次函数的图像是一个抛物线, 其形状由参数$a$、$b$和$c$决 定。
详细描述
二次函数的图像是一个抛物线, 其顶点的位置由参数$b$和$c$决 定,而开口的大小和方向则由参 数$a$决定。
在生产和生活中,经常需要解决诸如利润最大化、成本最小化等最优化问题。利 用二次函数开口方向和顶点坐标的性质,可以快速找到最优解,为决策提供依据 。
利用二次函数解决周期性问题
总结词
利用二次函数的对称性和周期性,解 决具有周期性规律的问题。
详细描述
在物理学、工程学和生物学等领域, 许多现象具有周期性规律。通过将实 际问题转化为二次函数模型,可以更 好地理解和预测这些周期性现象。
利用二次函数解决面积问题
总结词
利用二次函数与坐标轴的交点,解决 与面积相关的实际问题。
详细描述
在几何学和实际生活中,经常需要计 算图形的面积。通过将问题转化为求 二次函数与坐标轴围成的面积,可以 简化计算过程,提高解决问题的效率 。
04
如何提高二次函数的应用能力
掌握基本概念和性质
理解二次函数的一般 形式: $y=ax^2+bx+c$, 其中$a neq 0$。

中考复习二次函数的应用PPT课件

中考复习二次函数的应用PPT课件
5
第13课时解┃ 二次函数的应用
(1)依题意得顶点 C 的坐标为(0,11),点 B 的坐标为(8, 8),设抛物线解析式为 y=ax2+c,
有811==8c2×,a+c,解得ca==1-1,634,
(∴2)令抛-物线1解(t析-式19为)2+y8==-1163-4x52+,1解1.得 128
t1=35,t2=3.
(1)当h=2.6时,求y与x的关系式(不要求写出自变量 x的取值范围)
(2)当h=2.6时,球能否越过球网?球会不会出界?请 说明理由;
(3)若球一定能越过球网,又不出边界,求h的取值范 围。
9
探究二 二次函数在营销问题方面的应用 第13例课时2┃[2二0次12函·黄数冈的] 应某用科技开发公司研制出一种新型产
图 13-3
8
皖考解读
考点聚焦
皖考探究
当堂检测
如图,排球运动员站在点O处练习发球,将球从O点正 上方2m的A处发出,把球看成点,其运行的高度y(m )与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知 球网与O点的水平距离为9m,高度为2.43m,球场的 边界距O点的水平距离为18m。
(3000-2400)x,(0≤x≤10,且x为整数) (2)y=(3100-10x-2400)x,(10<x≤50,且x为整数)
200x,(x>50,且x为整数)
600x,(0≤x≤10,且x为整数) 即 y=-10x2+700x,(10<x≤50,且x为整数)
200x.(x>50,且x为整数)
11
过某一数量时,会出现随着一次购买的数量的增多,公司所获
的利润反而减少这一情况.为使商家一次购买的数量越多,公
司所获的利润越大,公司应将最低销售单价调整为多少元(其

中考数学专题:二次函数应用专题(共17张ppt)

中考数学专题:二次函数应用专题(共17张ppt)

解:当S=288时
s
-2(x-15)2+450=288
500
450
∴x1=6,x2=24
400 300
288
当S≥288时,
200
由图象可知 6≤x≤24. 又∵墙长为36m,
100
6
24
O 5 10 15 20 25 30 x
∴ 12≤x<30
综上所述:12≤x≤24.
变式5.如图,若将60m的篱笆改为79m,墙长为36m, 为了方便进出,在平行于墙的一边开一个1m宽的门. (1)求菜园的最大面积;(2)若菜园面积不小于750m2,求 x的取值范围.
解:设矩形垂直墙的一边为xm,
则平行墙的一边为(60-2x)m.
S=(60-2x)x=-2x2+60x
s
=-2(x-15)2+450
500
450
400
∵x>0且60-2x>0,∴ 0<x<30 300
Hale Waihona Puke ∵a=-2<0, ∴S有最大值
200 100
当x=15时,S的最大值是450m2 O
则:60-2x=30(m)
墙20m
解:S=(60-2x) x=-2x2+60x
=-2(x-15)2+450
s
∵x>0且0<60-2x≤20
500
450
∴ 20≤x<30
400 300
∵a=-2<0,对称轴x=15.
200
∴当x>15时,S随x的增大而减小. 100
∵20≤x<30,
O 5 10 15 20 25 30 x
∴当x=20时,S的最大值是400m2.

中考数学总复习17二次函数的应用 (共42张PPT)

中考数学总复习17二次函数的应用 (共42张PPT)
最大年利润是800万元.
(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价
x(元/件)的取值范围.
解 当40≤x<60时,由W≥750得:
-2(x-50)2+800≥750,解得:45≤x≤55,
当60≤x≤70时,W的最大值为600<750,
∴要使企业销售该产品的年利润不少于750万元,该产品的售价x(元/件)
规律方法
规律方法
利用二次函数解决抛物线型问题,一般先根据实际问题的具体情况建立平 面直角坐标系,选择合适的二次函数的解析式,把实际问题中的已知条件 转化为点的坐标,代入解析式求解,最后把求出的结果转化为实际问题的 答案.此题主要考查了二次函数的应用题,求范围的问题,可以利用临界 点法求出自变量的值,再根据题意确定范围.
(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数 关系x=10t,已知球门的高度为 2.44m,如果该运动员正对球门射门时, 离球门的水平距离为28m,他能否将球直接射入球门?

把 x=28 代入 x=10t,得 t=2.8,
25 1 2 ∴当 t=2.8 时,y=-16×2.8 +5×2.8+2=2.25<2.44, ∴他能将球直接射入球门.
件售价-每件进价;再根据所列二次函数求最大值.本题主要考查待定
系数法求一次函数解析式与二次函数的应用,根据相等关系列出函数解
析式,并由二次函数的性质确定其最值是解题的关键.
练习2
(2016· 襄阳)襄阳市某企业积极响应政府“创新发展”的号召,研发了一 种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量 -2x+14040≤x<60, y= y(万件)关于售价x(元/件)的函数解析式为: -x+8060≤x≤70. (1) 若企业销售该产品获得的年利润为 W( 万元 ) ,请直接写出年利润 W(万元)关于售价x(元/件)的函数解析式;

中考数学复习课件:二次函数的综合应用(共21张PPT)

中考数学复习课件:二次函数的综合应用(共21张PPT)

∵∠DME=∠OCB,∠DEM=∠BOC,
������������ ������������ ∴△DEM∽△BOC,∴ = , ������������ ������������ 4 ∵OB=4,OC=3,∴BC=5,∴DE= DM 5 3 12 3 12 ∴DE=﹣ a2+ a=﹣( (a﹣2)2+ , 5 5 5 5 12 当 a=2 时,DE 取最大值,最大值是 , 5
∵点 B(4,1),直线 l 为 y=﹣1, ∴点 B′的坐标为(4,﹣3). 设直线 AB′的解析式为 y=kx+b(k≠0), 将 A(1, )、B′(4,﹣3)代入 y=kx+b,得:
,解得:

∴直线 AB′的解析式为 y=﹣
x+

当 y=﹣1:x=

∴点 P 的坐标为(
【例3】如图,在平面直角坐标系 ∠ACB=90°,OC=2OB,tan∠ABC=2,点B 的坐标为(1,0).抛物线y=﹣x2+bx+c经 过A、B两点. (1)求抛物线的解析式;
解题过程 (1)∵B(1,0), ∴OB=1, ∵OC=2OB=2, ∴C(﹣2,0), Rt△ABC中,tan∠ABC=2
当x=-0.75时y=6.625即M2(-0.75,6.625)
例4.如图,抛物线y=-x2+bx+c
与x 轴的两个交点分别为A(3,0),D(-1, 0),与y轴交于点C,点B在y轴正半轴上, 且OB=OD(1)求抛物线的解析式
解:(1)把A(3,0),D(﹣1,0)代入
y=﹣x2+bx+c得到, 解得,
K
E D
解:S△ABP=
PE×BC =
△APE △BPE=

中考数学专题《二次函数》复习课件(共18张PPT)

(3)抛物线与y轴的交点坐标是(0,c) c决定抛物线与y轴的交点位置
(4)b2-4ac>0,抛物线与x轴有两个公共点 b2-4ac=0,抛物线与x轴有一个公共点 b2-4ac<0,抛物线与x轴没有公共点
基础训练
• 如图,是y=ax2+bx+c的图像, 则a___<___0 b___<___0 c___>__0 , b2-4ac___>__0 a+b+c_ <__0 4a-2b+c__>__0 2a-b__=__0
桥面
-5 0 5
x/m
抛物线顶点的纵坐标是
⑴钢缆的最低点到桥面的距离是__1_米__;
两条抛物线顶点间的距离是
⑵两条钢缆最低点之间的距离是__4_0_米_;
关于y轴对称的抛物线是
(3)右边的抛物线解析式是y_=__0_._0_2_2_5__(_x_-2__0_)__2.+1
高屋建瓴
——函数与几何的综合题
高屋建瓴
——求解析式
5、已知一条抛物线的对称轴是直线x=1,它 与x轴相交于A、B两点(点A在点B的左边)且线 段AB的长是4,它还与过点C(1,-2)的直线有 一个交点是点D(2,-3),求抛物线的解析式
模式识别: 顶点式
若这条抛物线有P点,使 S△ABP=12,求点P的坐标
高屋建瓴 ——实际应用
y
AO C
P Bx
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5

二次函数的应用ppt课件


②根据题意,得绿化区的宽为
= (x-20)(m),
∴y=100×60-4x(x-20).又 ∵28≤100-2x≤52,∴24≤x≤36. 即 y 与 x 的函数关系式及 x 的取值范围为 y=-4x2+80x+6 000 (24≤x≤36);
-7-
2.4 二次函数的应用
(2)y=-4x2+80x+6 000=-4(x-10)2+6 400. ∵a=-4<0,抛物线的开口向下,对称轴为直线 x= 10. 当 24≤x≤36 时,y 随 x 的增大而减小, ∴ 当 x=24 时,y 最大=5 616,即停车场的面积 y 的最大值为 5 616 m2; (3)设费用为 w. 由题意,得 w=100(-4x2+80x+6 000)+50×4x(x- 20)=-200(x-10)2 +620 000, ∴ 当 w=540 000 时,解得 x1=-10,x2=30. ∵24≤x≤36,∴30≤x≤36,且 x 为整数, ∴ 共有 7 种建造方案. 题型解法:本题是确定函数表达式及利用函数的性质设计工程方案的问题. 解题过程中应理解:(1)工程总造价是绿化区造价和停车场造价两部分的和; (2)根据投资额得出方程,结合图象的性质求出完成工程任务的所有方案.
(1)解决此类问题的关键是建立恰当的平面直角坐标系; 注意事项
(2)根据题目特点,设出最容易求解的函数表达式形式
-9-
2.4 二次函数的应用
典题精析 例 1 赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系, 其函数的关系式为 y=- x2,当水面离桥拱顶的高度 DO 是 4 m 时,水面宽 度 AB 为 ( ) A. -20 m B. 10 m C. 20 m D. -10 m

中考二次函数复习课件【优质PPT】


x=2,y最大值=3
练习 根据下列条件,求二次函数的解析式。
(1)、图象经过(-1,3), (1,3) , (2,6) 三点;
(2)、图象的顶点(2,3), 且经过点(3,1) ;
(3)、图象经过(0,0), (12,0) ,且最高点
的纵坐标是3 。
顶点(6,3)
解法一设解析式为y=a(x-0)(x-12)
令y=1.4,则-0.2x2+3.2=1.4
B x解得x=-3或x=3 ∴M(-3,1.4),N(3,1.4) ∴MN=6 20 答:横向活动范围是6米。
练习、已知二次函数y=ax2-5x+c的图象如图。
(1)、当x为何值时,y随x的增大而增大; (2)、当x为何值时,y<0。 (3)、求它的解析式和顶点坐标y ;
(3)、图象经过(0,0), (12,0) ,且最高点 的纵坐标是3 。
2021/10/10
14
5一.待般定式系数y法=a求x解2+b析x式+c (a≠0) 顶点式 y=a(x-h)2+k (a≠0)
交点式 y=a(x-x1)(x-x2) (a≠0)
6–
3–
-2 -1
12
练习 根据下列条件,求二次函数的解析式。
二次函数的图象是一条 对称轴平行于 y 轴.
抛物线
,它是 轴
对称图形,其
2021/10/10
2
y 3.二次函数的图象及性质y
0
x
0
x
抛物线 顶点坐标 对称轴 开口方向
y=ax2+bx+c(a>0)
b 2a
,
4acb2 4a
直线x b
2a

中考数学总复习课件:二次函数的应用(共35张PPT)


★知识点2
★考点2
9
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2
★考点2
10
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2
★考点2
11
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2
★考点2
12
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2
★知识点1 ★考点1
★知识点2
★考点2
26
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2
★考点2
27
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2
★考点2
28
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2
★考点2
29
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
17
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2
★考点2
18
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2
★考点2
19
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2
★考点2
20
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2
★考点2
21
★考点2
34
★知识要点导航 ★热点分类解析
★知识点1 ★考点1
★知识点2
★考点2
35
★知识点2
★考点2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∵a=-1<0 ∴y有最大值 ∴当x=3cm时,y最大值=9 cm2,此时矩形 的另一边也为3cm
答:矩形的两边都是3cm,即为正方形时,矩形的面积最大。
例1:如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有 二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。
(1)求S与x的函数关系式及自变量的取值范围; (2)当x取何值时所围成的花圃面积最大,最大值是多少? (3)若墙的最大可用长度为8米,则求围成花圃的最大面积。
10
10
(3)w=-110x2+34x+8 000=-110(x-170)2+10 890.
当 x<170 时,w 随 x 的增大而增大,但 0≤x≤160,
当 x=160 时,y=50-110x=34,此时利润最大.
即当一天订住 34 个房间时,宾馆每天利润最大,最大利润是 10 880 元.
y

4 200 8000 37002 4 200

9112.5
所以销售单价是9.25元时,获利最多,达到9112.5元
纯牛奶何时利润最大
驶向胜利 的彼岸
6.某商场销售某种品牌的纯牛奶,已知进价为每箱40元, 生产厂家要求每箱售价在40元~70元之间.市场调查发现:
解: (1) ∵ AB为x米、篱笆长为24米
∴ AD为(24-4x)米
A
D
∴ S=x(24-4x)
=-4x2+24 x (0<x<6)
B
C
(2)∵当ax==-4<0b∴S3有时最,大S值最大值= 4ac b2 =36(平方米)
(3) ∵墙的可2用a 长度为8米
Hale Waihona Puke 4a∴ 0<24-4x ≤8 解得:4≤x<6
二次函数与最大利润
13.5
500
13.5 2.5
x
500 20013.5 x
x 2.5
13.5 2.5 500 x 2.5500 20013.5 x
例1.某商店经营T恤衫,已知成批购进 时单价是2.5元。根据市场调查,销售 量与销售单价满足如下关系:在一段 时间内,单价是13.5元时,销售量是 500件;而单价每降低1元,就可以多 售出200件。
请你帮助分析,销售单价是多少时,可以获利最多?
解:设销售单价为 x 元,则所获利润
y x 2.5500 20013.5 x
二次函数与最大利润

y 200x2 3700x 8000

x


2
3700
200

9.25
时 ,
y 200 9.252 3700 9.25 8000
若每箱发50元销售,平均每天可售出90箱,价格每降低1
元,平均每天多销售3箱;价格每升高1元,平均每天少销
售3箱.
(1)写出售价x(元/箱)与每天所得利润w(元)之间的函
数关系式; y (x 40)90 350 x
(2)每箱定价多少元时,才能使平均每天的利润最大?最
大利润是多少?或y (x 40)90 3x 50
确定自变量的取值范围;
(4)在自变量的取值范围内,运用公式法或通过配方
求出二次函数的最大值或最小值;
(5)检验结果的合理性、拓展等。
5.某宾馆有 50 个房间供游客住宿,当每个房间的房价为每天 180 元时,房间会全部住 满.当每个房间每天的房价每增加 10 元时,就会有一个房间空闲.宾馆需对游客居住的每个 房间每天支出 20 元的各种费用.根据规定,每个房间每天的房价不得高于 340 元.设每个房 间的房价每天增加 x 元(x 为 10 的整数倍).
(1)设一天订住的房间数为 y,直接写出 y 与 x 的函数关系式及自变量 x 的取值范围; (2)设宾馆一天的利润为 w 元,求 w 与 x 的函数关系式; (3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?
解:(1)y=50-110x(0≤x≤160,且 x 是 10 的整数倍).
(2)w=(50- 1 x)(180+x-20)=- 1 x2+34x+8 000.
回顾
列二次函数解应用题的一般步骤:
1 .审清题意。 2 .设出两个变量,注意分清
自变量和因变量。 3.列函数表达式。 4.检验所得解是否符合题意。
5 写出答案。
已知:用长为12cm的铁丝围成一个矩形,问何 时矩形的面积最大?
解:设此矩形的一边为x cm,面积为ycm2 另一边长为(6-x)cm
∴ y=x(6-x)=-x2+6x =-(x-3) 2+9 (0< x<6)
∵a=-4<0 ∴当 4≤x<6时,y随x的增大而减小
例1.某商店经营T恤衫,已知成批购进 时单价是2.5元。根据市场调查,销售 量与销售单价满足如下关系:在一段 时间内,单价是13.5元时,销售量是 500件;而单价每降低1元,就可以多 售出200件。
请你帮助分析,销售单价是多少时,可以获利最多?
3x2 360x 9600
3x 602 1200.
回顾《何时获得最大利润》和《最大面积是多少》 这两节解决问题的过程,试总结解决此类问题的基本思 路。
(1)理解问题; (2)分析问题中的变量和常量,以及它们之间的关系; (3)列出二次函数的解析式,并根据自变量的实际意义,
相关文档
最新文档