水库液位自动测控系统
水库大坝GNSS位移自动监测系统方案

水库大坝GNSS位移自动监测系统方案一、方案背景我国已拥有水库大坝9.8万余座,其中95%以上为土石坝,95%以上是上个世纪80年代以前建设的老坝。
虽然近10年来我国进行了大规模的病险水库除险加固,但水库大坝数量多,土石坝多,出险的几率非常高。
大坝作为一种大型水工建筑物,其投资和建成后产生的效果都是巨大的,同时由于其结构、运行环境等因素的复杂性,加上设计、施工、运维的不确定性,如果发生意外变形,失事后造成的灾难也是极其严重的。
因此对水利水电大坝运行状态进行持续的实时监测,是十分有必要的,不仅可以为大坝提供安全评估,保证大坝的安全运行,对水库大坝安全自动化监测预警意义重大。
二、系统组成水库大坝GNSS位移自动监测系统采用无人值守自动化监测,以物联网、互联网、北斗+等技术为理论基础,以自主研发的监测平台及各类传感器为核心,充分利用各种监测手段,建立地表和地下深部的三维立体监测网,对水库大坝坡进行系统、可靠的变形监测。
实时监测水库大坝不同部位各类型裂缝的发展过程,岩土体松弛以及局部坍塌、沉降、隆起活动;地下、地面变形动态(包括滑坡体变形方向、变形速速、变形范围等);地下水水位、水量、水化学特征变化;倾斜和大坝各种建筑物变形状况;降雨以及地震活动等外部环境变化等,据此对水库大坝滑坡变形发展和变形趋势作出预测,判断其稳定状态给出水库大坝失稳预警值,指导施工,反馈设计和检验治理效果,了解工程实施后的变化特征,为设计施工及灾害预警提供科学依据。
可以把高水库大坝综合在线监测分为四层:感知层、网络层、平台层、应用层。
感知层:实时感应水库大坝监测参数传感器的状态,如GNSS表面位移监测、地下水位、土壤含水率、土压力、和视频监控摄像机,降雨量等前端感知设备;网络层:支持数据通信,可上、下双向通讯,支持无线蜂窝网络、短信、北斗、PSTN、超短波、ZigBee等通信方式。
感应设备可通过监测预警平台的通讯方式,上行发送至监测控制中心平台。
水库水情自动测报系统实施方案

水库水情自动测报系统实施方案目录第1章系统简介 (4)1.1 系统介绍 (4)1.2 系统构架 (4)1.2.1 现场部分 (5)1.2.2 中心工作站 (6)1. 3 预报系统模型及分析方法选择 (6)第2章系统功能和性能 (8)2.1系统功能 (8)2.1.1采集功能 (8)2.1.2存储功能 (8)2.1.3数据通讯功能 (9)2.1.4管理功能 (9)2.1.5自检功能 (9)2.1.6防雷抗干扰功能 (9)2.2系统性能 (10)2.2.1先进性 (10)2.2.2可靠性 (11)2.2.3兼容性 (12)2.2.4可扩充性 (12)2.2.5易维修性 (12)2.2.6经济性 (12)第3章系统设计依据和原则 (14)3.1 系统设计 (14)3.2 系统设计依据 (14)3.3 系统设计原则 (15)第4章监测项目和测点布置 (16)第5章设备选型及安装方案 (17)5.1 监测设备选型 (17)5.1.1 水位传感器 (17)5.1.2雨量传感器 (17)5.1.3电源部分 (18)5.1.4 遥测终端RTU (20)5.1.5 避雷器 (21)5.2 监测设备安装方案 (22)5.2.1 电台的安装及调试 (22)5.2.2 雨量传感器的安装 (23)5.2.3 水位计的安装及调试 (23)5.3.4水情遥测终端的安装 (24)5.3 避雷系统 (30)第6章水情自动预报软件设计 (31)6.1 项目总体方案及实现目标 (31)6.2 总体构成及子系统 (33)6.2.1 系统总体构成 (33)6.2.2 专业功能 (37)6.3 信息输入模块 (37)6.3.1 系统结构方案 (37)6.3.2 水雨情遥测数据镜像 (38)6.3.3 水雨情数据查询修改 (38)6.3.4 气象预报信息录入 (40)6.3.5 水库基本信息查询修改 (40)6.3.6 预报参数查询修改 (41)6.3.7 工作内容及实施策略 (41)6.4 水雨情查询模块 (41)6.4.1 实时监视 (42)6.4.2 图形基本操作 (42)6.4.3 数据查询操作 (43)6.4.5 雨量图形查询 (47)6.4.6 水情图形查询 (49)6.4.7 水雨情报表查询 (50)6.4.8 工作内容及实施策略 (51)6.5 实时洪水预报模块 (52)6.5.1 系统结构方案 (52)6.5.2 自动滚动预报 (53)6.5.3 入库洪峰水位经验预报 (53)6.5.4 半分布式新安江模型预报 (54)6.5.5 河道洪水预报 (56)6.5.6 入库实时预报模型 (57)6.5.7 预报洪水分析 (58)6.5.8 预报方案评价 (58)6.5.9 工作内容及实施策略 (61)6.6 预报成果管理与输出模块 (61)6.6.1 预报结果维护 (61)6.6.2 预报成果保存与查询 (62)6.6.3 预报成果网页查询 (63)6.6.4 预报成果上传 (64)6.6.5 工作内容及实施策略 (64)第7章项目预算 (66)第1章系统简介1.1 系统介绍某水库水情自动测报系统根据设计要求,在河道两旁建设2个水位观测站、1个雨量观测点,选用已建设好的20个雨量监测站点,使用无线数传电台传输方式,与某水库管理所信息中心连接起来,完成对某水库水情的自动监测,并采用是以新安江三水源模型为基础的降雨径流自动预报为主的水情自动预报系统,供管理者决策。
水库监测系统方案

水库监测系统方案1. 引言水库是重要的水利工程项目,对于水资源的储存和调度起着至关重要的作用。
然而,由于水库在工程设计和运维中面临许多潜在的风险和灾害,如泄洪、溃坝等,因此需要建立一套可靠的水库监测系统来保障水库安全。
本文将介绍一种水库监测系统的方案。
2. 系统架构水库监测系统主要由传感器、数据采集器、数据传输设备、数据处理服务器和数据显示终端组成。
2.1 传感器传感器是水库监测系统的核心部件,用于感知并采集水库的各项参数数据。
常用的传感器包括水位传感器、温度传感器、压力传感器、倾斜传感器等。
这些传感器应具备高精度、高稳定性和抗干扰能力。
2.2 数据采集器数据采集器用于将传感器采集到的数据进行采集并存储。
数据采集器一般具备多个输入通道,可接入多个传感器,采集器需要提供稳定的电源和存储设备。
采集器还需要具备数据压缩和传输的能力。
2.3 数据传输设备数据传输设备用于将采集到的数据传输到数据处理服务器。
传输设备可以采用有线或无线传输方式。
对于远程或移动的水库,无线传输方式更为适用;而对于已有有线网络覆盖的水库,有线传输方式即可。
2.4 数据处理服务器数据处理服务器是整个水库监测系统的核心,负责接收、解析和存储来自数据采集器的数据,并进行数据分析和处理。
数据处理服务器需要具备较高的计算能力和存储能力。
同时,数据处理服务器还需要能够实时监测水库的工作状态,并能够根据预设的规则进行报警和控制。
2.5 数据显示终端数据显示终端用于将处理后的数据展示给水库运维人员。
数据显示终端可以是电脑、手机、平板等设备,以便运维人员能够随时随地监测水库的运行状态。
数据显示终端需要提供用户友好的界面和实时的数据更新功能。
3. 系统功能水库监测系统的功能主要包括数据采集、数据传输、数据存储、数据分析和报警控制。
3.1 数据采集系统通过传感器实时采集水库的各项参数数据,如水位、温度、压力等。
传感器的采集频率可以根据实际需求进行设置。
液位自动控制系统工作原理

液位自动控制系统工作原理
液位自动控制系统的工作原理是通过传感器感知液位的变化,并将这些信号转换成电信号,然后由控制器对这些信号进行处理和分析,最终通过执行机构调节流量或液位来控制液位的变化。
具体而言,液位自动控制系统通常包括以下几个基本组成部分:
1. 传感器:常用的液位传感器有浮子传感器、电容式传感器、超声波传感器等。
传感器可以感知液位的变化,并将其转换成电信号。
2. 控制器:控制器接收传感器发出的电信号,并对其进行处理和分析。
根据预设的控制策略和设定值,控制器计算出相应的控制命令。
3. 执行机构:执行机构根据控制器发出的控制命令,控制液体的流量或液位。
常见的执行机构包括阀门、泵等。
4. 反馈回路:为了确保控制的准确性,液位自动控制系统通常还需要建立反馈回路。
反馈回路将实际液位信息反馈给控制器,控制器可以根据实际液位与设定值之间的差异进行调整,以实现闭环控制。
整个液位自动控制系统的工作原理是不断地感知、处理和调控液位的变化,以使液位保持在设定值附近。
通过控制液体流量
或液位,液位自动控制系统可以实现液位的稳定、准确的控制,从而满足工业生产的需求。
液位控制系统的工作原理及应用

液位控制系统的工作原理及应用1. 液位控制系统的概述液位控制系统是一种用于测量、监控和控制液体在容器中的高度的系统。
它主要通过测量液体的高度来调节液体的进出量,以保持液体在设定的液位范围内。
2. 液位控制系统的工作原理液位控制系统通常由以下几个组成部分组成:传感器、控制器和执行器。
下面是液位控制系统的工作原理:2.1 传感器液位传感器是液位控制系统中最关键的部分之一。
它通常通过物理或电子方法来测量液体的高度,并将测量结果转化为电信号。
常见的液位传感器包括浮球传感器、电容传感器和超声波传感器等。
2.2 控制器控制器是液位控制系统中的中枢部件,负责接收传感器的信号并进行处理和判断。
根据设定的液位范围,控制器可以发出控制信号来调节液体的进出量。
控制器还可以通过显示屏或指示灯等方式提供工作状态和警告信息。
2.3 执行器执行器是液位控制系统中用于调节液体进出量的设备。
常见的执行器包括阀门、泵和搅拌器等。
根据控制器的信号,执行器可以自动打开或关闭阀门、启动或停止泵等操作,从而实现液位的控制。
3. 液位控制系统的应用3.1 工业生产液位控制系统在工业生产中广泛应用。
例如,在化工过程中,液位控制系统可以用于调节液体的进出量,保持反应器中恰当的液位,从而确保反应的稳定性和安全性。
在石油行业,液位控制系统可以用于储罐中的油品或化学品的管理,提高生产效率和安全性。
3.2 水处理液位控制系统在水处理领域也有广泛的应用。
例如,在污水处理厂,液位控制系统可以用于调节混凝剂的投加量,控制沉淀池的液位,以确保废水的处理效果。
在供水系统中,液位控制系统可以用于监控水库或水井的液位,并自动控制水泵的启停,保持水源的稳定供应。
3.3 智能家居随着智能家居的发展,液位控制系统也开始在家庭生活中得到应用。
例如,在水器中,液位控制系统可以用于检测水位,防止水箱溢出。
在洗衣机中,液位控制系统可以用于监测洗衣机内的水位,确保洗衣的效果和节约水资源。
水位控制系统工作原理

水位控制系统工作原理水位控制系统是一种用于监测和控制液体水位的自动化系统,它在工业生产、环境监测、农业灌溉等领域有着广泛的应用。
其工作原理主要包括传感器检测、信号传输、控制执行等几个方面。
首先,水位控制系统的工作原理是基于传感器的检测。
传感器通常安装在液体容器的上、下部位,通过测量液位高度来实现对水位的监测。
常用的传感器有浮子式传感器、电容式传感器、超声波传感器等。
这些传感器能够将检测到的水位信息转化为电信号,为后续的控制提供准确的数据支持。
其次,水位控制系统通过信号传输将传感器获取的水位信息传送至控制中心。
传统的信号传输方式主要是通过导线连接,将传感器采集的信号传输至控制设备。
而随着无线技术的发展,如今也有许多水位控制系统采用无线传输技术,通过无线模块将信号传输至控制终端,实现远程监控和控制。
接着,控制中心接收到传感器传来的水位信息后,根据预设的控制策略,通过控制执行器对水位进行调节。
控制执行器通常是阀门、泵或其他控制装置,它们能够根据控制中心发送的指令,自动调节液体的流入或流出,从而实现对水位的精确控制。
此外,水位控制系统还包括了一些辅助设备,如控制面板、报警装置等。
控制面板用于设置和调整控制参数,监视系统运行状态;报警装置则能够在水位异常时发出警报信号,提醒操作人员进行处理,确保系统安全运行。
总的来说,水位控制系统通过传感器检测、信号传输、控制执行等环节,实现了对液体水位的自动化监测和控制。
它能够提高生产效率,减少人力成本,保障生产安全,对于各种液位控制场景都具有重要的意义和价值。
随着科技的不断进步,水位控制系统的工作原理也在不断完善和创新,为各行各业的发展带来了更多可能性。
水位自动检测与控制系统的设计
1 引言1.1 探讨背景在社会经济飞速发展的今日,水在人们生活和生产中起着越来越重要的作用。
一旦断水,轻则给人民生活带来极大的不便,重则可能造成重大的生产事故及损失。
因此,对水位的自动检测及限制的探讨,有着极其重要的地位。
任何时候都能供应足够的水量,平稳的水压,合格的水质,是对供水系统的基本要求。
就目前而言,多数工业生活供水系统,都接受水塔,层顶水箱等基本储水设备,由一级二级水泵从地下市政水管补给,因此如何建立一个牢靠平安又利于维护的给水系统是值得我们探讨的课题。
现今社会,自动扮装置无所不在,在限制技术需求的推动下,限制理论本身也取得了显著的进步。
水塔水位的监测和限制,再也不须要人工进行操作。
实践证明,自动化操作,具有不行替代的应用价值。
在工农业生产以及日常生活应用中,常常会须要对容器中的液位(水位)进行自动限制。
比如自动限制水箱、水池、水槽、锅炉等容器中的蓄水量,生活中抽水马桶的自动补水限制、自动电热水器、电开水机的自动进水限制等。
虽然各种水位限制的技术要求不同,精度不同,但基本的限制原理都可以归纳为一般的反馈限制方式,就是利用传感器对于信号的供应通过单片机对数码显示、电机限制、报警限制部分的限制[1]。
本设计从分析水塔水位报警器的原理和设计方法入手,主要基于单片机的硬件电路和语言程序设计,实现一种能够实现水位自动限制、具有自动爱惜、自动声光报警功能的限制系统。
本限制系统由A/D转换部分、单片机限制部分、数码显示部分、电机驱动部分、电机限制部分等构成。
这是个简洁而灵敏的监测报警电路,操作简洁,接通电源即可工作。
因为大部分电路接受数字电路,所以本水位监测报警器还具有耗能低、精确性高的特点。
该系统设计新颖、简易,灵敏度高,工作稳定,能够自动检测和显示当前水位、凹凸水位报警等功能水位自动限制电路是通过水位传感器将水位高度转换为0~10V的直流电压,再经过A/D转换后,将转换所得的数字量送入单片机进行处理来达到对水位进行自动限制的目的。
液位控制系统的原理
液位控制系统的原理
液位控制系统采用传感器检测液位变化,并通过控制器对液位进行监测和调节,以达到控制液位的目的。
其基本工作原理如下:
1. 传感器检测液位:液位控制系统通过安装在液体容器中的液位传感器来检测液位的变化。
传感器可以使用不同的原理,如浮球测量、压力传感、电容测量等,来实现对液位的实时监测。
2. 液位信号传输:传感器将检测到的液位信号转换为电信号,然后通过传输线路将信号传递给控制器。
传输线路可以采用模拟信号传输方式或数字信号传输方式,具体根据系统的要求和信号的特性进行选择。
3. 控制器处理信号:控制器是液位控制系统的核心部件,负责对传感器传来的液位信号进行处理。
控制器将接收到的信号与预设的设定值进行比较,并根据差异调整控制执行器的动作,以维持液位在设定范围内。
4. 控制执行器调节液位:根据控制器的指令,控制执行器采取相应的控制动作,来实现液位的调节。
常见的控制执行器包括阀门、泵和电机等,根据实际需求来选择合适的控制设备。
5. 反馈控制:液位控制系统通过反馈机制实现闭环控制。
控制器会不断监测液位的变化,并根据实际液位反馈信息对控制参数进行调整。
这样可以保持系统稳定性,并减小由于外界干扰和液体特性变化带来的影响。
通过以上的工作原理,液位控制系统可以实现对液位的准确控制和稳定性维持,广泛应用于工业生产和自动化控制领域。
水库调度自动化系统介绍
水库调度自动化系统介绍水库调度自动化系统是一种将计算机技术、自动控制技术和水利工程相结合的先进技术系统。
它通过传感器、数据采集装置、数据通信设备和计算机软件等组成的综合系统来实现水库调度任务的自动化。
本文将介绍水库调度自动化系统的原理、功能和优势。
一、系统原理水库调度自动化系统通过不同类型的传感器采集水文数据、气象数据、水库运行状态等信息,然后将采集到的数据传输给计算机。
计算机通过预先编写的调度算法,根据水库的情况和调度要求,自动完成水库的调度决策。
随后,计算机会通过控制器和执行器来控制水库中相关设备的操作,实现水位调节、闸门开启关闭、水流调控等功能。
二、系统功能1. 数据采集和监测功能:系统能够实时、准确地采集和监测水文数据、气象数据、水位数据、流量数据等相关信息,为调度提供准确的参考依据。
2. 模型建立和预测功能:系统可以根据历史数据和实时数据建立水库的数学模型,并结合气象预测、水文预测等因素,进行长期、中期和短期的水位、流量预测,以指导决策。
3. 调度决策功能:系统根据水库运行状况、调度要求和预测结果,通过计算机算法进行调度决策,确定最佳操作方案,包括调节水位、控制闸门开闭、实施泄洪等。
4. 故障诊断和优化功能:系统能够自动识别设备故障、异常情况,并给出相应的诊断结果和处理建议。
同时,系统还可以根据历史数据和调度结果,进行模型参数的优化,提高调度效能。
三、系统优势1. 提高调度效能:水库调度自动化系统能够实现全天候、全时段的运行监测和调度决策,减少人工干预,大大提高了调度的效率和准确性。
2. 降低安全风险:系统可以实时监测水库的运行状态和环境变化,及时发现异常情况并进行预警,防止水灾事故的发生,保障人民生命财产安全。
3. 节约人力成本:水库调度自动化系统能够替代部分人工操作和监测,减少了人力资源的消耗,降低了运维成本。
4. 提高水资源利用效率:系统通过科学的调度算法和模型预测,优化水库的调度方案,合理分配水资源,提高水资源的利用率和供水能力。
水位控制系统工作原理
水位控制系统工作原理水位控制系统是一种用于监测和控制水位的自动化系统,广泛应用于水利工程、工业生产、生活用水等领域。
它能够实现对水位的精准监测和控制,保障水资源的合理利用和安全运行。
本文将从水位控制系统的工作原理入手,详细介绍其组成结构和工作过程。
1. 传感器。
水位控制系统的核心部件是传感器,它能够实时感知水位的高低。
常见的水位传感器有浮子式传感器、压力传感器和超声波传感器。
浮子式传感器通过浮动物体的上升和下降来感知水位的变化,压力传感器则是通过测量水压的变化来确定水位高低,而超声波传感器则是利用超声波在水面和传感器之间的反射时间来计算水位高度。
传感器的选择取决于具体的应用场景和要求。
2. 控制器。
传感器采集到的水位信号将被送入控制器进行处理。
控制器根据预设的水位设定值和实际水位信号进行比较,然后输出控制信号给执行机构,以实现对水位的调节。
控制器通常采用微处理器或 PLC 控制器,具有高精度、稳定性和可靠性。
3. 执行机构。
执行机构是根据控制器输出的信号来实现对水位的调节。
常见的执行机构有电磁阀、水泵、闸门等。
电磁阀通过控制水流的通断来调节水位,水泵则是通过控制水的进出来实现水位的调节,而闸门则是通过控制水流通道的开合来实现水位的控制。
4. 工作原理。
水位控制系统的工作原理是通过传感器感知水位信号,将信号送入控制器进行处理,然后控制器输出控制信号给执行机构,最终实现对水位的精准调节。
当水位高于设定值时,控制器将输出信号给执行机构,执行机构将启动相应的设备,如泵或闸门,以减少水位;反之,当水位低于设定值时,执行机构将启动相应的设备,增加水位。
通过不断地监测和调节,水位控制系统能够保持水位在设定范围内,确保水资源的合理利用和安全运行。
总结。
水位控制系统通过传感器、控制器和执行机构的协调配合,实现了对水位的精准监测和控制。
它在水利工程、工业生产、生活用水等领域发挥着重要作用,为保障水资源的合理利用和安全运行提供了有力支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水库液位自动测控系统毕业论文(设计)任务书论文题目水库液位自动测控系统院部电子工程学院专业电子信息工程班级06级电信1班毕业论文(设计)的要求在开始实践前,应熟悉研究方法,用科学的研究方法进行研究,以获得较高质量的研究成果。
此外,所作的论文要有一定的实用性,作品在生产实践上或对某些技术进行改革、创新。
毕业设计从2010年3月1日开始,4月23日结束,共8周,优秀论文(设计)于5月上旬答辩。
毕业论文格式以及对学生的要求请研读烟台南山学院《毕业设计管理条例》。
两人或两人以上合作的题目,要有明确的分工,每人侧重自己的任务写一篇论文。
毕业论文(设计)的内容与技术参数1、本设计系统是以单片机核心对水库液面的自动测控。
该系统能自动调整库区水位的高低,通过对液面高度变化的显示可以很容易地得知流量的变化情况和到库区液位极限值的时间。
当水位下降到一定程度时,控制器自动接通电源,关小闸;当水位上升到一定高度时,则开大闸。
若因某种原因控制失灵,水位继续上升或下降到极限高度,则由蜂鸣器及双色LED指示灯发出报警信号,通知操作人员及时采取应付措施。
系统在电机强电控制部分采用交流接触器的无声运行电路与固体继电器,无触点电子开关,以减小噪声,增加运行的可靠性与实用性。
显示部分采用8位LED,使系统的状态更加直观。
从要完成的功能来看,整个系统可分为两大部分,即电机强电控制部分与微机系统的测控驱动部分。
本系统采用SYL型压力传感器,可依水压的大小而产生与其成正比关系的电压输出,从而得到液位值。
设计要求主要完成微机系统的测控驱动部分,强电部分前期已经完成,并调试成功。
2、设计内容要求:(1) 方案总体设计;(2) 控制系统硬件电路设计;(3) 软件流程图设计,汇编程序编写;(4) 电气原理图的绘制及工作原理分析。
毕业论文(设计)工作计划2010-3-1---2010-3-14 指导教师下达任务书,学生写出开题报告。
2010-3-15---2010-4-11 查找资料,完成系统总体设计与制作。
2010-4-12---2010-4-18 完成作品,并完成论文初稿。
2010-4-19---2010-4-23 完成论文终稿并交指导老师批阅。
接受任务日期2010 年3月1 日要求完成日期2010 年 4 月23 日学生(签名) 年月日指导教师(签名) 年月日院长(主任) (签名) 年月日摘要本设计介绍以单片机为核心的介质液位和质量测控系统的硬体系统结构、主要环节和器件以及软件系统的设计方法,同时介绍了该测控系统的功能和应用场合。
关键字:液位测量,单片机,传感器AbstractIn this paper the author introduces the hardware system, main chain and brief introduction of devices and design method of software of the medium liquid level and mass multiplex circuit measuring and controlling system which is around the monolithic computer. At the same time this paper also explains the function and adaptive place of the controlling system.Key words: level measurement, MCU, sensor目录绪论 (1)1 电机强电控制部分 (2)1.1 报警电路的设计及原理 (2)1.1.1 报警电路用途 (2)1.1.2 工作原理 (2)1.2 水库液位控制的原理 (3)1.3 控制系统硬件电路设计 (3)2 微机系统的测控驱动部分 (4)2.1 单片机的概述 (4)2.2 单片机控制电路 (4)2.3 程序流程图设计 (6)2.4 汇编程序的编写 (6)总结 (7)附录 (8)参考文献 (9)绪论1、概述传统的液位控制绝大多数是人工控制,造成了人力资源的浪费,同时安全性可靠性都不高。
现代工业生产正处于一个由劳动密集型、设备密集型向知识密集型转变的过程。
在这一过程中,智能控制无疑起至关重要的作用。
本课题主要对水库液位进行检测与控制,水库工程为完成不同任务不同时期和各种水文情况下,需控制达到或允许消落的各种库水位称为水库特征水位。
水库的规划设计,首先要合理确定各种库容和相应的库水位。
具体讲,就是要根据河流的水文条件、坝址的地形地质条件和各用水部门的需水要求,通过调节计算,并从政治、技术、经济等方面进行全面的综合分析论证,来确定水库的各种特征水位及相应的库容值。
这些特征水位和库容各有其特定的任务和作用,体现着水库利用和正常工作的各种特定要求。
目前由于气候的变化,季节的更替,现在很多水库呈现夏天储水,冬天放水的状态,但是其液面变化情况很不遵循一定的规律,因此为了能提高工作效益,一个设计水库液位自动测控系统的想法走进了很多设计者的视线。
这样从一方面很好地控制水库液位能在一个稳定的水位,从而能更好地利用水库的作用,更好地造福人类。
2、液位控制研究现状液位控制问题是工业过程中的一类常见问题,例如在饮料、溶液过滤、化工生产等多种行业的生产加工过程中都需要对液位进行适当的控制,在实际生产中,通常采用系统辨识的方法,对复杂系统进行建模,以建立一个简化的数学模型。
然而对于一些控制精度较高的场合,则需要建立较精确的数学模型,一提高控制精度。
生产过程自动控制(简称过程控制)是自动控制技术在石油、化工,电力,冶金,机械。
轻工,纺织等生产过程的具体应用,是自动化技术的重要组成部分。
进入21世纪,随着自动化技术,计算机技术,通信技术的迅速发展,过程控制发生了深刻的变革,正在向着数字化,网络化和综合自动化方向发展,在实现各种最优控制和经济指标,保证生产的质量和产量,提高经济效益和劳动生产率,节约能源,改善劳动条件,保证生产安全,保护环境等方面发挥着越来越巨大的作用。
目前,世界各工业发达国家,正集中全力进行工厂综合自动化技术的研究。
在我国以最大的社会效益和经济效益为目标,研究和开发综合自动化技术是国民经济发展的需要,是参加国际市场剧烈竞争的需要。
在世纪交替之际,新技术的研究和开发将大大推动工业过程自动化的发展,并带来巨大的社会效益和经济效益。
水库液位自动测控系统该系统能自动调整库区水位的高低,通过对液面高度变化的显示可以很容易地得知流量的变化情况和到库区液位极限值的时间。
当水位下降到一定程度时,控制器自动接通电源,关小闸;当水位上升到一定高度时,则开大闸。
若因某种原因控制失灵,水位继续上升或下降到极限高度,则由蜂鸣器及双色LED指示灯发出报警信号,通知操作人员及时采取应付措施。
1 电机强电控制部分在电机强电控制部分采用交流接触器的无声运行电路与固体继电器,无触点电子开关,以减小噪声,增加运行的可靠性与实用性。
在硬件电路里采用三只金属棒传感器,来感知液位的变化,从而接通或断开电源,开启或关闭闸门。
在报警电路里利用蜂鸣器和LED指示灯,当到达极限值后,发出报警信号,作出应对措施。
1.1 报警电路的设计及原理1.1.1 报警电路用途指示。
报警电路,是水库液位达到极限值时产生报警信号,通知操作人员做出相应的处理措施。
1.1.2 工作原理电路如图表1所示:金属片置于水中检测水位,时间长了会受到腐蚀,这时检测水位的传感器应在容器外部。
一种较好的解决方案是在容器中加装玻璃细管状连通器,能反映水位变化情况,连通器内置有塑料管浮子,浮子内置小磁铁或一小段铁丝,在连通器外侧放置霍尔元件或检测线圈等传感器。
当浮子上升或下降时,由传感器检测到水位情况,驱使控制电路发生动作。
该电路的核心元件为LM1830(IC1),其内部振荡器产生的60HZ信号通过C2加到探头上,幅度为2.4U P-P,探头浸在水中。
由于C2的作用,探头上无直流信号,因此不会产生电离的问题。
当探头浸在水中时,IC1的10脚输入信号几乎为0,一旦探头离开水面,IC1的10脚输入信号的幅度等于C2输出的幅度,当IC11的10脚输入的信号幅度1.8U P-P时,IC1内部的检波电路控制输出三极管导通,并输出的600HZ的信号通过反馈电路从而使T1导通,并将输出的600HZ信号到蜂鸣器和LED指示灯,发出到达设定值的报警信号。
图表 1 报警电路电路图1.2 水库液位控制的原理水库是由电机带动水闸,单片机控制电机转动,以达到水位控制之目的。
蓄水时,水位上升,当达到上限水位时,由于水的导电作用,B、C棒连通+5V电源,因此b、c两端均为1状态,这时应开启电机和水闸的工作,实现开闸放水。
当水库水位降到下限时,B、C棒都不能与A棒导电,因此,b、c两端均为0状态,这时应停止电机,关闭水闸,实现水库的蓄水当水位处于上下限之间时,B棒与A棒导通,因为C棒不能与A棒导通,b 端为1状态,c端为0状态。
这时,无论电机已在带动水闸,水位在不断上升,还是电机没有工作,放水使水位不断下降,都应该继续维持原有的工作状态。
1.3 控制系统硬件电路设计图表2是水库液位控制原理图,图中虚线表示允许水位变化的上下限。
在正常情况下,应保证水位在虚线范围之内。
为此,在水库边沿的不同高度安装了3根金属棒,以感知水位变化情况。
其中,A棒处于下限水位,C棒处于上限水位,B棒再上下水位之间。
A棒接+5V电源,B棒、C棒各通过一个电阻与地相连。
图表 2水库水位控制原理图2 微机系统的测控驱动部分微机测控驱动部分是此次液位自动测控系统的主要部分,它是设计的神经中枢,这里利用了单片机的控制原理,实现了信号的远程控制。
2.1 单片机的概述单片机是大规模集成电路技术发展的产物。
普遍认为单片机是在一块硅片上集成了中央处理器(CPU),存储器(RAM,ROM,EPROM)和各种输入、输出接口(定时器,计数器,并行I/O口,串行口,A/D转换器等),被称为单片微型计算机。
它的特点是体积小,重量轼抗干扰能力强,环境要求不高,价格低廉,可靠性高,灵活性好,开发较为容易。
随着微控制技术的日益完善和发展,单片机的应用必定导致传统控制技术发生巨大变化。
2.2 单片机控制电路水库液位控制电路如图表3所示。
图表 1 水库水位控制电路控制电路说明如下:(1)由于8031单片机没有内部ROM,因此需要外扩展ROM作为程序存储器。
这里使用2732构成4KB的外扩展程序存储器,74LS373作为地址锁存器。
(2)两个水位信号由P1.0口和P1.1口输入,这两个信号共有4种组合状态,如下表所示。
其中,第三种组合(b=0,c=1)在正常情况下是不可能发生的,但在设计中还是应该考虑到,并作为一种故障状态。