高中数学 考点49 随机事件的概率、古典概型、几何概型(含高考试题)新人教A版
随机事件的概率(古典概型、简单的几何概型、抽样方法)

所以该学校阅读过《西游记》的学生人数为70人, 则该学校阅读过《西游记》的学生人数与
该学校学生总数比值的估计值为:70 0.7.故选C. 100
7.(2018西安八校联考)某班对八校联考成绩进行分析,利用随机 数表法抽取样本时,先将60个同学按01,02,03,…,60进行编号, 然后从随机数表第9行第5列的数开始向右读,则选出的第6个 个体是 ( )
(红,黄),(红,蓝),(红,绿),(红,紫),共4种,
故所求概率P 4 2. 10 5
3.(2018新课标Ⅲ卷)若某群体中的成员只用现金支付的概率为
0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支
第1节 随机事件的概率(古典概型、简单的几何概型、抽样方法)
付的概率为 ( ) 第三组取的数为(10号)36,第四组取的数为(14号)43,
A .2 3
B .3 5
C .2 5
D .1 5
【答案】 B 【解析】由题意,通过列举可知从这5只兔子中随机取出3只的 所有情况数为10, 恰有2只测量过该指标的所有情况数为6.
所以P 6 3.故选B. 10 5
9.(2019新课标Ⅲ卷,文)两位男同学和两位女同学随机排成一列,
则两位女同学相邻的概率是
表第9行第5列的数开始向右读,则选出的第6个个体是 ( )
4.取一根长度为5m的绳子,拉直后在任意位置剪断,那么所得两
段绳子的长度都不小于2m的概率是
()
A .1 5
B .1 3
C .1 4
D .1 2
【 答 案 】 A 【 解 析 】 记 两 段 绳 子 的 长 度 都 不 小 于 2m为 事 件 A, 则 只 能 在 中 间 1m的 绳 子 上 剪 断 ,所 得 两 段 绳 子 的 长 度 才 都 不 小 于 2m,
高考数学专练题 随机事件、古典概型与几何概型(试题部分)

专题十一概率与统计【真题探秘】11.1随机事件、古典概型与几何概型探考情悟真题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点1.随机事件的概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.(3)理解古典概型及其概率计算公式.2019课标Ⅰ,6,5分古典概型排列与组合★★★2018课标Ⅱ,8,5分古典概型组合2018课标Ⅰ,10,5分与面积有关的几何概型圆的面积和三角形的面积2.古典概型2017课标Ⅰ,2,5分与面积有关的几何概型圆的面积3.几何概型2016课标Ⅰ,4,5分与长度有关的几何概型(4)会计算一些随机事件所含的基本事件数及事件发生的概率.(5)了解随机数的意义,能运用模拟方法估计概率. (6)了解几何概型的意义2016课标Ⅱ,10,5分与面积有关的几何概型随机模拟分析解读本节是高考的热点,常以选择题或填空题的形式出现,主要考查利用频率估计随机事件的概率,常涉及对立事件、互斥事件,古典概型及与长度、面积有关的几何概型,有时也与其他知识进行交汇命题,以解答题的形式出现,如概率与统计和统计案例的综合,主要考查学生的逻辑思维能力和数学运算能力.破考点练考向【考点集训】考点一随机事件的概率1.(2019山东烟台一模,3)已知甲袋中有1个红球1个黄球,乙袋中有2个红球1个黄球,现从两袋中各随机取一个球,则取出的两球中至少有1个红球的概率为()A.13B.12C.23D.56答案D2.(2019山西太原模拟,2)已知随机事件A和B互斥,且P(A∪B)=0.7,P(B)=0.2,则P(A)=()A.0.5B.0.1C.0.7D.0.8答案A考点二古典概型1.(2020届河南百校联盟9月联合检测,4)2019年7月1日,《上海市生活垃圾管理条例》正式实施,生活垃圾要按照“可回收物”“有害垃圾”“湿垃圾”“干垃圾”的分类标准进行分类,没有垃圾分类和未投放到指定垃圾桶内等会被罚款和行政处罚.若某上海居民提着厨房里产生的“湿垃圾”随意地投放到楼下的垃圾桶,若楼下分别放有“可回收物”“有害垃圾”“湿垃圾”“干垃圾”四个垃圾桶,则该居民会被罚款和行政处罚的概率为()A.13B.23C.14D.34答案D2.(2019江西南昌一模,6)2021年广东新高考将实行3+1+2模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.今年上高一的小明与小芳都准备选历史与政治,假若他们都对后面三科没有偏好,则他们选课相同的概率为()A.12B.13C.16D.19答案B考点三几何概型1.(2020届贵州贵阳8月月考,7)某学校星期一至星期五每天上午共安排五节课,每节课的时间为40分钟,第一节课上课的时间为7:50~8:30,课间休息10分钟.某同学请假后返校,若他在8:50~9:30之间随机到达教室,则他听第二节课的时间不少于20分钟的概率为()A.15B.14C.13D.12答案B2.(2018湖南三湘名校教育联盟第三次联考,3)已知以原点O为圆心,1为半径的圆以及函数y=x3的图象如图所示,则向圆内任意投掷一粒小米(视为质点),则该小米落入阴影部分的概率为()A.12B.14C.16D.18答案B炼技法提能力【方法集训】方法1古典概型概率的求法1.(2019安徽蚌埠二模,4)从1,2,3,4中选取两个不同数字组成两位数,则这个两位数能被4整除的概率为()A.13B.14C.16D.112答案B2.(2019江西九江一模,4)洛书,古称龟书,是阴阳五行术数之源.在古代传说中有神龟出于洛水,其甲壳上有此图案,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四隅黑点为阴数,其各行各列及对角线点数之和皆为15.如图,若从四个阴数中随机抽取两个数,则能使这两数与居中阳数之和等于15的概率是()A.12B.23C.14D.13答案D方法2几何概型概率的求法1.(2020届河南安阳第一次调研月考,10)从[-2,3]中任取一个实数a,则a的值能使函数f(x)=x+asin x在R上单调递增的概率为()A.45B.35C.25D.15答案C2.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是()A.1-π4B.π12C.π4D.1-π12答案A【五年高考】A组统一命题·课标卷题组考点一古典概型(2018课标Ⅱ,8,5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.112B.114C.115D.118答案C考点二几何概型1.(2018课标Ⅰ,10,5分)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3答案A2.(2017课标Ⅰ,2,5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.14B.π8C.12D.π4答案B3.(2016课标Ⅰ,4,5分)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.13B.12C.23D.34答案B4.(2016课标Ⅱ,10,5分)从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n,构成n个数对(x1,y1),(x2,y2),…,(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.4nm B.2nmC.4mnD.2mn答案CB组自主命题·省(区、市)卷题组考点一古典概型1.(2017山东,8,5分)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是()A.518B.49C.59D.79答案C2.(2019江苏,6,5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.答案7103.(2018江苏,6,5分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为.答案310考点二几何概型1.(2015陕西,11,5分)设复数z=(x-1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.34+12πB.14-12πC.12-1πD.12+1π答案 B2.(2017江苏,7,5分)记函数f(x)=√6+x -x 2的定义域为D.在区间[-4,5]上随机取一个数x,则x ∈D 的概率是 . 答案593.(2015福建,13,4分)如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f(x)=x 2.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于 .答案512C 组 教师专用题组考点一 古典概型1.(2014课标Ⅰ,5,5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A.18B.38C.58D.78答案 D2.(2016江苏,7,5分)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 . 答案563.(2015江苏,5,5分)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为 . 答案564.(2013课标Ⅱ,14,5分)从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n= . 答案 85.(2016天津,16,13分)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率;(2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望. 解析 (1)由已知,有P(A)=C 31C 41+C 32C 102=13.所以,事件A 发生的概率为13.(2)随机变量X 的所有可能取值为0,1,2. P(X=0)=C 32+C 32+C 42C 102=415,P(X=1)=C 31C 31+C 31C 41C 102=715,P(X=2)=C 31C 41C 102=415.所以,随机变量X 的分布列为X 01 2 P415 715 415随机变量X 的数学期望E(X)=0×415+1×715+2×415=1.6.(2015陕西,19,12分)设某校新、老校区之间开车单程所需时间为T,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:T(分钟) 25 30 35 40 频数(次)20304010(1)求T 的分布列与数学期望ET;(2)刘教授驾车从老校区出发,前往新校区作一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率. 解析 (1)由统计结果可得T 的频率分布为T(分钟)25 3035 40频率0.2 0.3 0.4 0.1以频率估计概率得T 的分布列为T 25 30 35 40 P0.2 0.3 0.4 0.1从而ET=25×0.2+30×0.3+35×0.4+40×0.1=32(分钟).(2)设T 1,T 2分别表示往、返所需时间,T 1,T 2的取值相互独立,且与T 的分布列相同.设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在路途中的时间不超过70分钟”.解法一:P(A)=P(T 1+T 2≤70)=P(T 1=25,T 2≤45)+P(T 1=30,T 2≤40)+P(T 1=35,T 2≤35)+P(T 1=40,T 2≤30) =0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.解法二:P(A )=P(T 1+T 2>70)=P(T 1=35,T 2=40)+P(T 1=40,T 2=35)+P(T 1=40,T 2=40) =0.4×0.1+0.1×0.4+0.1×0.1=0.09. 故P(A)=1-P(A )=0.91.考点二 几何概型1.(2015湖北,7,5分)在区间[0,1]上随机取两个数x,y,记p 1为事件“x+y ≥12”的概率,p 2为事件“|x-y|≤12”的概率,p 3为事件“xy ≤12”的概率,则( ) A.p 1<p 2<p 3 B.p 2<p 3<p 1 C.p 3<p 1<p 2 D.p 3<p 2<p 1答案 B2.(2016山东,14,5分)在[-1,1]上随机地取一个数k,则事件“直线y=kx 与圆(x-5)2+y 2=9相交”发生的概率为 . 答案34【三年模拟】一、选择题(每小题5分,共35分)1.(2020届陕西百校联盟九月联考,4)“沉鱼、落雁、闭月、羞花”是由精彩故事组成的历史典故.“沉鱼”讲的是西施浣纱的故事;“落雁”指的就是昭君出塞的故事;“闭月”是述说貂蝉拜月的故事;“羞花”谈的是杨贵妃醉酒观花的故事.她们分别是中国古代的四大美女,某艺术团要以四大美女为主题排演一部舞蹈剧,甲、乙、丙、丁抽签决定扮演的对象,则甲不扮演貂蝉且乙不扮演杨贵妃的概率为()A.13B.712C.512D.12答案B2.(2020届四川成都青羊石室中学10月月考,9)2021年广东新高考将实行3+1+2模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.今年高一的小明与小芳都准备选历史,假若他们都对后面四科没有偏好,则他们选课相同的概率为()A.136B.116C.18D.16答案D3.(2018重庆九校联盟第一次联考,4)已知随机事件A,B发生的概率满足条件P(A∪B)=34,某人猜测事件A∩B发生,则此人猜测正确的概率为()A.1B.12C.14D.0答案C4.(2019河北石家庄3月教学质量检测,9)袋子中有大小、形状完全相同的四个小球,分别写有“和”“谐”“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”“谐”两个字都被摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间取整数值的随机数,分别用1,2,3,4代表“和”“谐”“校”“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数:343432341342234142243331112342241244431233214344142134由此可以估计,恰好第三次就停止摸球的概率为()A.16B.29C.518D.19答案B5.(2020届安徽合肥一中、安庆一中第一次素质测试,8)2019年5月22日具有“国家战略”意义的“长三角一体化”会议在芜湖举行.长三角城市群包括上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市”.现有4名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游,则恰有一个地方未被选中的概率为()A.2764B.916C.81256D.716答案B6.(2020届四川石室中学高三开学考试,7)一个平面封闭图形的周长与面积之比为“周积率”,如图是由三个半圆构成的图形,最大半圆的直径为6,若在最大的半圆内随机取一点,该点取自阴影部分的概率为49,则阴影部分图形的“周积率”为()A.2B.3C.4D.5答案B7.(2019山西阳泉二模,8)赵爽是我国古代数学家、天文学家,大约在公元222年赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的,如图1).类比“赵爽弦图”,可构造如图2所示的图形,它是由3个全等的三角形与中间的一个小等边三角形组成的一个大等边三角形,设DF=2AF,若在大等边三角形中随机取一点,则此点取自小等边三角形内的概率是()图1 图2A.2√1313B.413C.2√77D.47 答案 B二、填空题(每小题5分,共10分)8.(2020届山西静乐第一中学高三月考,15)如图所示,阴影部分是由曲线y=x 2和圆x 2+y 2=2及x 轴围成的封闭图形.在圆内随机取一点,则此点取自阴影部分的概率为 .答案 18-112π9.(2018广东江门一模,16)两位教师对一篇初评为“优秀”的作文复评,若批改成绩都是两位正整数,且十位数字都是5,则两位教师批改成绩之差的绝对值不超过2的概率为 .答案 0.44。
2023年高考分类题库考点46 随机事件的概率、古典概型、几何概型

考点46随机事件的概率、古典概型、几何概型4.(2023·全国甲卷·文科·T4)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16 B.13 C.12 D.23【解析】选D .依题意设高一年级的学生编号为1和2,高二年级的学生编号为3和4,则从这4名学生中随机选2名组织校文艺汇演情况有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种情况,符合情况的有(1,3),(1,4),(2,3),(2,4)这4种情况,故这2名学生来自不同年级的概率为46=23.9.(2023·全国乙卷·文科·T9)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为()A .56B .23C .12D .13【解析】选A .将这6个主题分别编号为1~6号,建立如下表格:项目甲123456乙1×2×3×4×5×6×其中一共有36种情况,表格画“×”表示甲、乙两位参赛同学抽到相同主题的情况,有6种,那么甲、乙两位参赛同学抽到不同主题的情况就有36-6=30(种),所以甲、乙两位参赛同学抽到不同主题概率为3036=56.21.(2023·新高考Ⅰ卷·T21)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量X i 服从两点分布,且P (X i =1)=1-P (X i =0)=q i ,i=1,2,…,n ,则E (∑ =1 X i )=∑i=1nq i .记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求E (Y ).【命题意图】本题综合考查了全概率的计算公式、两点分布及数学期望,考查了等比数列的通项及前n 项和.考查了学生综合运用所学知识解决问题的能力,考查了学生的逻辑推理及运算能力,培养了学生的数学抽象素养.【解析】(1)记“第i 次投篮的人是甲”为事件A i ,“第i 次投篮的人是乙”为事件B i ,所以P (B 2)=P (A 1B 2)+P (B 1B 2)=P (A 1)P (B 2|A 1)+P (B 1)P (B 2|B 1)=0.5×(1-0.6)+0.5×0.8=0.6.(2)设P (A i )=p i ,依题可知,P (B i )=1-p i ,则P (A i+1)=P (A i A i+1)+P (B i A i+1)=P(Ai)P(A i+1|A i)+P(B i)P(A i+1|B i),即p i+1=0.6p i+(1-0.8)×(1-p i)=0.4p i+0.2,构造等比数列{p i+λ},设p i+1+λ=25(p i+λ),解得λ=-13,则p i+1-13=25p i-13,又p1=12,p1-13=16,所以p i-13是首项为16,公比为25的等比数列,即p i-13=16×,p i=16×+13.(3)因为p i=16×+13,i=1,2,…,n,所以当n∈N*时,E(Y)=p1+p2+…+p n=16×251−25+ 3=5181+ 3,故E(Y)=5181+ 3.13.(2023·天津高考)甲、乙、丙三个盒子中装有一定数量的黑球和白球,其总数之比为5∶4∶6.这三个盒子中黑球占总数的比例分别为40%,25%,50%.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为;将三个盒子混合后任取一个球,是白球的概率为.【解析】设盒子中共有球15n个,则甲盒子中有黑球2n个,白球3n个,乙盒子中有黑球n个,白球3n个,丙盒子中有黑球3n个,白球3n 个,从三个盒子中各取一个球,取到的三个球都是黑球的概率为2 5 × 4 ×3 6 =120;将三个盒子混合后任取一个球,是白球的概率为9 15 =35.答案:120356.(2023·全国甲卷·理科·T6)有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为() A.0.8B.0.4C.0.2D.0.1【解析】选A.报名两个俱乐部的人数为50+60-70=40,记“某人报足球俱乐部”为事件A,记“某人报兵乓球俱乐部”为事件B,则P(A)=5070=57,P(AB)=4070=47,所以P(B|A)= ( ) ( )=4757=0.8.。
高考数学一轮复习 7.49 随机事件的概率 古典概型 几何概型 理

5.几何概型 (1)几何概型的概念 如果每个事件发生概率只与构成该事件区域 的 长度 (面积或体积)成比例,则称这样的概率 模型为几何概率模型,简称几何概型. (2)几何概型的概率公式
P(A)=试验的构全成部事结件果A所的构区成域的长区度域面长积度或面体积积或 体积
(3)几种常见的几何概型 ①设线段 l 是线段 L 的一部分,向线段 L 上任 投一点.若落在线段 l 上的点数与线段 l 的长度成 正比,而与线段 l 在线段 L 上的相对位置无关,则 点落在线段 l 上的概率为: l的长度/L的长度 . ②设平面区域 g 是平面区域 G 的一部分,向区 域 G 上任投一点,若落在区域 g 上的点数与区域 g 的面积成正比,而与区域 g 在区域 G 上的相对位置 无关,则点落在区域 g 上概率为:g的面积/G的面积.
0≤x≤24 则0y-≤xy≤>424 ,
x-y>2 对应的平面区域如图.
设“两艘轮船不需要等待码头空出”为事件 B 则 P(B)=21×20×2204+×122×4 22×22=222818.
【点评】问题实质最终化归为求有关长度、 面积、体积的问题,应用几何概型概率计算 公式求解.
例 4 设函数 f(x)=log2(x2-2(a-1)x+b2)的定义 域为 D.
(2)抛 6 次,若前两次均出现正面,则可能结果 有 24 种.
设 2≤S6≤6 为事件 B,S6=2 表示 4 次中,2 次正面向上,2 次正面向下,有 6 种可能;S6=4 表示 4 次中恰好 3 次正面向上,1 次反面向上,有 4 种可能;S6=6 表示都是正面向上,有 1 种可能, 则 B 包含 6+4+1=11 种可能,所以 P(B)=1214=1116.
第49讲 随机事件的概率、 古典概型、几何概型
重难点32 随机事件的概率、古典概型—2023年高考数学(原卷版)

重难点32 随机事件的概率、古典概型1.求复杂的互斥事件的概率一般有两种方法:(1)直接求法:将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的求和公式计算.(2)间接求法:先求此事件的对立事件的概率,再用公式P (A )=1-P (A -),即运用逆向思维(正难则反),特别是“至多”“至少”型题目,用间接求法就显得较简便.2.有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出.(2)基本事件总数较多时,常利用排列、组合以及计数原理求基本事件数.(3) 计算公式:P (A )=A 包含的基本事件的个数基本事件的总数.注意:基本事件总数和A 包含的基本事件个数必须在同一个样本空间中(即同一个分类标准下)计数.本考点以考查随机事件、互斥事件与对立事件的概率及古典概型为主,常与事件的频率交汇考查.在高考中三种题型都有可能出现,随机事件的频率与概率的题目往往以解答题的形式出现,互斥事件、对立事件的概念及概率常常以选择题、填空题的形式出现.(建议用时:40分钟)一、单选题1.有5把外形一样的钥匙,其中3把能开锁,2把不能开锁,现准备通过一一试开将其区分出来,每次随机抽出一把进行试开,试开后不放回,则恰好试开3次就将能开锁的和不能开锁的钥匙区分出来的概率是()A.35B.310C.45D.252.从装有两个红球和两个白球的口袋内任取两个球,那么互斥而不对立的事件是()A.恰好有一个白球与都是红球B.至多有一个白球与都是红球C.至多有一个白球与都是白球D.至多有一个白球与至多一个红球3.将3个1和2个0随机排成一行,则2个0不相邻的概率为()A.0.3 B.0.5 C.0.6 D.0.84.袋子中有4个大小质地完全相同的球,其中3个红球,1个黄球,从中随机抽取2个球,则抽取出的2个球恰好是1个红球1个黄球的概率是()A.13B.12C.23D.15.2021年高考结束后小明与小华两位同学计划去老年公寓参加志愿者活动.小明在如图的街道E处,小华在如图的街道F处,老年公寓位于如图的G处,则下列说法正确的个数是()①小华到老年公寓选择的最短路径条数为4条②小明到老年公寓选择的最短路径条数为35条③小明到老年公寓在选择的最短路径中,与到F处和小华会合一起到老年公寓的概率为18 35④小明与小华到老年公寓在选择的最短路径中,两人并约定在老年公寓门口汇合,事件A:小明经过F事件B;从F到老年公寓两人的路径没有重叠部分(路口除外),则2 ()15 P B AA.1个B.2个C.3个D.4个6.连续抛掷一枚硬币3次,观察正面出现的情况,事件“至少2次出现正面”的对立事件是()A.只有2次出现反面B.至多2次出现正面7.分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.68.纸箱里有编号为1到9的9个大小相同的球,从中不放回地随机取9次,每次取1个球,则编号为偶数的球被连续抽取出来的概率为()A.14B.112C.121D.1169.第24届冬奥会奥运村有智能餐厅A、人工餐厅B,运动员甲第一天随机地选择一餐厅用餐,如果第一天去A餐厅,那么第二天去A餐厅的概率为0.7;如果第一天去B餐厅,那么第二天去A餐厅的概率为0.8.运动员甲第二天去A餐厅用餐的概率为()A.0.75 B.0.7 C.0.56 D.0.3810.掷一枚硬币的试验中,下列对“伯努利大数定律”的理解正确的是()A.大量的试验中,出现正面的频率为0.5B.不管试验多少次,出现正面的概率始终为0.5C.试验次数增大,出现正面的经验概率为0.5D.以上说法均不正确11.在一段时间内,甲去某地的概率是14,乙去此地的概率是15,假定两人的行动相互之间没有影响,那么在这段时间内至少有1人去此地的概率是()A.320B.15C.25D.92012.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.23二、填空题13.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足,医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援.若某医疗团队从甲,乙,丙,丁4名医生志愿者中,随机选取2名医生赴湖北支援,则甲被选中的概率为_____.14.甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,已知甲每轮猜对的概率为34,乙每轮猜对的概率为23.在每轮活动中,甲和乙猜对与否互不影响,各轮结果也互不影响,则“星队”在两轮活动中猜对3个成语的概率为___________.15.古典概率的性质:性质1:()P Ω=______,()P ∅=______;性质2:设A 是一个事件,那么______()P A ≤≤______.16.一个口袋内有()3n n >个大小相同的球,其中3个红球和()3n -个白球,已知从口袋中随机取出1个球是红球的概率为p ,6p N ∈,若有放回地从口袋中连续4次取球(每次只取1个球),在4次取球中恰好2次取到红球的概率大于827,则n =________. 17.2022北京冬奥会期间,吉祥物冰墩墩成为“顶流”,吸引了许多人购买,使一“墩”难求.甲、乙、丙3人为了能购买到冰墩墩,商定3人分别去不同的官方特许零售店购买,若甲、乙2人中至少有1人购买到冰墩墩的概率为12,丙购买到冰墩墩的概率为13,则甲,乙、丙3人中至少有1人购买到冰墩墩的概率为___________.18.甲、乙两名同学进行篮球投篮练习,甲同学一次投篮命中的概率为34,乙同学一次投篮命中的概率为23,假设两人投篮命中与否互不影响,则甲、乙两人各投篮一次,至少有一人命中的概率是___________.。
高考必考知识点 (人教A版)文科数学 第九章 概率、统计与算法

第九章 概率、统计与算法(选修3、选修1-2)专题一:概率1、随机事件及其概率:⑴事件:试验的每一种可能的结果,用大写英文字母表示;⑵必然事件、不可能事件、随机事件的特点;⑶随机事件A 的概率:1)(0,)(≤≤=A P nm A P . 2、古典概型:⑴基本事件:一次试验中可能出现的每一个基本结果;⑵古典概型的特点:①所有的基本事件只有有限个;②每个基本事件都是等可能发生。
⑶古典概型概率计算公式:一次试验的等可能基本事件共有n 个,事件A 包含了其中的m 个基本事件,则事件A 发生的概率nm A P =)(. 3、几何概型:⑴几何概型的特点:①所有的基本事件是无限个;②每个基本事件都是等可能发生。
⑵几何概型概率计算公式:的测度的测度D d A P =)(;其中测度根据题目确定,一般为线段、角度、面积、体积等。
4、互斥事件:⑴不可能同时发生的两个事件称为互斥事件;⑵如果事件n A A A ,,,21 任意两个都是互斥事件,则称事件n A A A ,,,21 彼此互斥。
⑶如果事件A ,B 互斥,那么事件A+B 发生的概率,等于事件A ,B 发生的概率的和,即:)()()(B P A P B A P +=+⑷如果事件n A A A ,,,21 彼此互斥,则有:)()()()(2121n n A P A P A P A A A P +++=+++ ⑸对立事件:两个互斥事件中必有一个要发生,则称这两个事件为对立事件。
①事件A 的对立事件记作A ,则)(1)(,1)()(A P A P A P A P -==+②对立事件一定是互斥事件,互斥事件未必是对立事件。
专题二:统计1、抽样方法:①简单随机抽样(总体个数较少)②系统抽样(总体个数较多)③分层抽样(总体中差异明显)注意:在N 个个体的总体中抽取出n 个个体组成样本,每个个体被抽到的机会(概率)均为Nn 。
2、总体分布的估计:⑴一表二图:①频率分布表——数据详实②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势注:总体分布的密度曲线与横轴围成的面积为1。
(完整版)高中数学第三章第1节随机事件的概率(理)知识精讲人教新课标A版必修3
选项 B ,由于射击 10 次,中 8 次,能说明击中靶心的概率为 0.8,选项 B 的说法正确。
选项 C,由直线方程我们可以知道这是直线的点斜式方程,过定点(- 观的事实,因此是必然事件。故选项 C 的说法正确。
1, 0),这是客
选项 D ,根据先后抛掷两枚硬币,共出现四种情况:两面都正,两面都反,一个正面一
用心 爱心 专心
射击次数 n
10
20
50
100
200
500
击中靶心次数 m
8
19
44
92
178
455
m
击中靶心的频率
n
( 1)填写表中击中靶心的频率;
( 2)这个射手射击一次,击中靶心的概率约是多少?
【思路分析】
题意分析: 本题考查事件的频率这一基本概念,及频率与概率的关系的运用。
解题思路: 事件 A 出现的频数 nA 与试验次数 n 的比值即为事件 A 的频率,当事件 A
个反面, 一个反面一个正面, 那么出现两枚硬币都是反面的概率为 故答案为 D 。
1/4。选项 D 的说法错误。
【题后思考】 通过这几个选项, 我们充分认识到概率的基本概念及其性质的重要性,
因
此要熟练理解和掌握这些概念和性质。
例 6: 下列说法:( 1)频率反映的是事件发生的频繁程度,概率反映的是事件发生的可能
性的大小;( 2)做 n 次随机试验,事件 A 发生的频率 m 就是事件的概率; ( 3)百分率是频 n
率,但不是概率; (4)频率是不能脱离具体的 n 次试验的实验值,而概率是具有确定性的不
依赖于试验次数的理论值; ( 5)频率是概率的近似值,概率是频率的稳定值。 其中正确的是
2024届新高考一轮总复习人教版 第十章 第4节 随机事件的概率与古典概型 课件(37张)
图形表示
如果事件 B 包含事件 A,事件 A 也包含事件 B,即 B⊇A 且 A⊇B,则称事件 特殊情形
A 与事件 B 相等,记作 A=B
(2)并事件与交事件
并事件(和事件)
交事件(积事件)
一般地,事件 A 与事件 B_至__少__有__一___ 一般地,事件 A 与事件 B_同__时__发__生___,
1.事件的相关概念
备考第 1 步——梳理教材基础,落实必备知识
发生
不发生
ቤተ መጻሕፍቲ ባይዱ
2.事件的关系和运算
(1)包含关系与相等关系
定义
一般地,若事件 A 发生,则事件 B_一__定__发__生___,我们就称事件 B 包含事件 A(或事件 A 包含于事件 B)
含义
A 发生导致 B 发生
符号表示
B__⊇__A(或 A__⊆__B)
【小题热身】 1.思考辨析(在括号内打“√”或“×”) (1)事件发生的频率与概率是相同的.( ) (2)在大量重复试验中,概率是频率的稳定值.( ) (3)两个事件的和事件是指两个事件都得发生.( ) (4)若 A∪B 是必然事件,则 A 与 B 是对立事件.( ) 答案:(1)× (2)√ (3)× (4)×
(2)古典概型的概率公式 一般地,设试验 E 是古典概型,样本空间 Ω 包含 n 个样本点,事件 A 包含其中的 k 个样本点,则定义事件 A 的概率 P(A)=____n_k____=nn((ΩA)). 其中,n(A)和 n(Ω)分别表示事件 A 和样本空间 Ω 包含的样本点个数.
[必记结论] 1.从集合的角度理解互斥事件和对立事件. (1)几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集. (2)事件 A 的对立事件-A 所含的结果组成的集合,是全集中由事件 A 所含的结果组成 的集合的补集. 2.概率加法公式的推广 当一个事件包含多个结果且各个结果彼此互斥时,要用到概率加法公式的推广,即 P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).
2024年高考数学---随机事件、古典概型
2.互斥事件与对立事件
名称 互斥事件
对立事件
定义
若A∩B为不可能事件,那么称事 件A与事件B互斥
若A∩B为不可能事件,A∪B为 必然事件,那么称事件A与事件B 互为对立事件
符号表示 A∩B=⌀
A∩B=⌀ 且A∪B=Ω (Ω为全集)
3.概率的基本性质 性质1:对任意的事件A,都有P(A)≥0. 性质2:必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1,P(⌀)=0. 性质3:如果事件A与事件B互斥,那么P(A∪B)=P(A)+P(B). 性质4:如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)=1-P(B). 性质5:如果A⊆B,那么P(A)≤P(B). 性质6:设A,B是一个随机试验中的两个事件,则P(A∪B)=P(A)+P(B)-P(A∩ B).
基础篇
考点一 随机事件的概率 1.随机事件的频率与概率 1)频数与频率:在相同的条件S下进行n次试验,观察某一事件A是否出现, 称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比 例fn(A)= nA 为事件A出现的频率.
n
2)概率:对随机事件发生可能性大小的度量(数值)称为事件的概率,事件A 的概率用P(A)表示.
对角面(如平面AA1C1C),有6种情况,
在同一个平面的有6+6=12个结果,构成三棱锥的有70-12=58个结果; ②从正方体的8个顶点中任取3个,共有 C83 =56个结果,其中所取3点与中心 共面,则这4个点在同一对角面上,共有6C34 =24个结果,因此,所选3点与中 心构成三棱锥的有56-24=32个结果. 故从正方体的8个顶点和中心中任选4个,则这4个点恰好构成三棱锥的个 数为58+32=90,故所求概率P= 90 = 5 .故选D.
高中 概率、随机变量及其概率分布教案 知识点+例题+练习
教学过程(4)性质①E(aξ+b)=aE(ξ), V(aξ+b)=a2V(ξ);②X~B(n, p), 则E(X)=np, V(X)=np(1-p);③X~两点分布, 则E(X)=p, V(X)=p(1-p).考点一古典概型与几何概型例1已知关于x的一元二次函数f(x)=ax2-4bx+1.(1)设集合P={1,2,3}和Q={-1,1,2,3,4}, 分别从集合P和Q中随机取一个数作为a和b, 求函数y=f(x)在区间[1, +∞)上是增函数的概率;(2)设点(a, b)是区域内的随机点, 求函数y=f(x)在区间[1, +∞)上是增函数的概率.(1)解答有关古典概型的概率问题, 关键是正确求出基本事件总数和所求事件包含的基本事件数, 这常用到计数原理与排列、组合的相关知识.(2)在求基本事件的个数时, 要准确理解基本事件的构成, 这样教学效果分析教学过程(3)当构成试验的结果的区域为长度、面积、体积、弧长、夹角等时, 应考虑使用几何概型求解.(1)(2013·江苏)现有某类病毒记作XmYn, 其中正整数m, n(m≤7, n≤9)可以任意选取, 则m, n都取到奇数的概率为________.(2)(2013·四川)节日前夕, 小李在家门前的树上挂了两串彩灯, 这两串彩灯的第一次闪亮相互独立, 且都在通电后的4秒内任一时刻等可能发生, 然后每串彩灯以4秒为间隔闪亮, 那么这两串彩灯同时通电后, 它们第一次闪亮的时刻相差不超过2秒的概率是________.考点二相互独立事件和独立重复试验例2 甲、乙、丙三个同学一起参加某高校组织的自主招生考试, 考试分笔试和面试两部分, 笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取), 两次考试过程相互独立.根据甲、乙、丙三个同学的平时成绩分析, 甲、乙、丙三个同学能通过笔试的概率分别是0.6.0.5.0.4, 能通过面试的概率分别是0.6.0.6.0.75.(1)求甲、乙、丙三个同学中恰有一人通过笔试的概率;(2)求经过两次考试后, 至少有一人被该高校预录取的概率.教学效果分析概率模型的应用, 需熟练掌握以下常考的五种模型: (1)基本事件的发生具有等可能性, 一般可以抽象转化为古典概型问题, 解决古典概型问题的关键是分清基本事件个数n与事件A中包含的基本事件个数m;(2)与图形的长度、面积或体积有关的概率应用问题, 一般可以应用几何概型求解, 即随机事件A的概率可用“事件A包含的基本事件所占图形的度量(长度、面积或体积)”与“试验的基本事件所占图形的度量(长度、面积或体积)”之比表示;(3)两个事件或几个事件不能同时发生的应用问题, 可转化为互斥事件来解决, 解决这类问题的关键是分清事件是否互斥;(4)事件是否发生相互不影响的实际应用问题, 可转化为独立事件的概率问题, 其中在相同条件下独立重复多次的可转化为二项分布问题, 应用独立事件同时发生的概率和二项分布公式求解;(5)有关平均值和稳定性的实际应用问题, 一般可抽象为随机变量的期望与方差问题, 先求出事件在各种情况下发生的概率, 再应用公式求随机变量的期望和方差.课堂练习1. 如图, 用K、A1.A2三类不同的元件连结成一个系统. 当K正常工作且A1.A2至少有一个正常工作时, 系统正常工作. 已知K、A1.A2正常工作的概率依次为0.9、0.8、0.8, 则系统正常工作的概率为________.2. 某保险公司新开设了一项保险业务, 若在一年内事件E发生, 该公司要赔偿a元. 设在一年内E发生的概率为p, 为使公司收益的期望值等于a的百分之十, 公司应要求顾客交保险金为________元.3.甲乙两支球队进行总决赛, 比赛采用七场四胜制, 即若有。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点49 随机事件的概率、古典概型、几何概型一、选择题1. (2013·四川高考理科·T9)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯在4秒内为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是 ( ) A.14 B. 12 C. 34 D. 78【解题指南】本题考查的是几何概型问题,首先明确两串彩灯开始亮是通电后4秒内任一时刻等可能发生,第一次闪亮相互独立,而满足要求的是两串彩灯第一次闪亮的时刻相差不超过2秒.【解析】选C.由于两串彩灯第一次闪亮相互独立且在通电后4秒内任一时刻等可能发生,所以总的基本事件为如图所示的正方形的面积,而要求的是第一次闪亮的时刻相差不超过2秒的基本事件为如图所示的阴影部分的面积,根据几何概型的计算公式可知它们第一次闪亮的时刻相差不超过2秒的概率是123164,故选C.2.(2013·安徽高考文科·T5)若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为 ( )A.23B.25C. 35D.910【解题指南】 以甲、乙为选择对象分情况考虑,先组合再求概率。
【解析】选D.当甲、乙两人中仅有一人被录用时的概率2313536=22=1010C P C ??;当甲、乙两人都被录用时的概率132353=10C P C =,所以所求概率为12369+P =101010P P =+=。
3.(2013·新课标Ⅰ高考文科·T3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A.12B.13C.14D.16【解析】选B.从1,2,3,4中任取2个不同的数有6种,取出的2个数之差的绝对值为2有2种,则概率3162==P . 4. (2013·陕西高考理科·T5)如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是 ( )A . 14π-B. 12π-C . 22π-D.4π【解题指南】几何概型面积型的概率为随机事件所占有的面积和基本事件所占有的面积的比值求出该几何概型的概率.【解析】选A.由题设可知,矩形ABCD 的面积为2,曲边形DEBF 的面积为22π-,故所求概率为.41222ππ-=-5.(2013·江西高考文科·T4)集合A={2,3},B={1,2,3},从A,B 中各取任意一个数,则这两数之和等于4的概率是( )A.23 B. 12C. 13D.16【解题指南】属于古典概型,列举出所有的结果是关键.【解析】选C.所有的结果为(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共6种,满足所求事件的有2种,所以所求概率为13.6. (2013·湖南高考文科·T9).已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为21,则AD AB=( ) A.12 B.14【解题指南】本题的关键是找出使△APB 的最大边是AB 的临界条件,首先是确定AD<AB,然后作出矩形ABCD ,最后分别以A 、B 为圆心以AB 为半径作圆弧交CD 于F 、E ,当EF=21CD 时满足题意。
【解析】选D ,如图,在矩形ABCD 中,以AB 为半径作圆交CD 分别于E,F,当点P 在线段EF 上运动时满足题设要求,所以E 、F 为CD 的四等分点,设4=AB ,则4,3===AB AF DF 在直角三角形ADF中, 722=-=DF AF AD ,所以47=AB AD . 二、填空题7.(2013·浙江高考文科·T12)从3男3女6名同学中任选2名(每名同学被选中的机会均相等),则2名都是女同学的概率等于 . 【解题指南】根据概率的知识求解.【解析】232631155C P C ===.【答案】15. 8.(2013·上海高考理科·T8)盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是___________(结果用最简分数表示)【解析】9个数5个奇数,4个偶数,根据题意所求概率为252913118-=C C .【答案】1318. 9.(2013·上海高考文科·T11)盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是 (结果用最简分数表示).【解析】考查排列组合;概率计算策略:正难则反。
个个,共有个数中任取个偶数共个奇数和从21273427=C.62224个个数分别为奇数,共有个数之积为奇数=⇒C752161122724=-=-=C C P 个数之积为偶数的概率所以【答案】75.10. (2013·江苏高考数学科·T7)现在某类病毒记作n m Y X ,其中正整数m,n(m ≤7,n ≤9)可以任意选取,则m,n 都取到奇数的概率为 .【解题指南】先计算所有的结果数再计算事件所含结果数,利用古典概型概率公式求得. 【解析】所有的情况数为7×9=63,都取到奇数的情况数为4×5=20,所以m,n 都取到奇数的概率为2063. 【答案】2063.11.(2013·福建高考理科·T11)利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1>0”的概率为_______【解题指南】对于几何概型,一个变量是长度,两个变量是面积。
【解析】设事件A :“310a ->”,则1(,1]3a ∈,所以1123()13P A -== 【答案】23. 12.(2013·福建高考文科·T14)利用计算机产生01,之间的均匀随机数则事件a “3a-1<0”发生的概率为 .【解题指南】对于几何概型,一个变量是长度,两个变量是面积。
【解析】设事件A :“310a -<”,则1[0,)3a ∈,所以1013()13P A -== 【答案】13. 13. (2013·湖北高考文科·T15)在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为56,则m = . 【解题指南】解绝对值不等式,根据几何概型利用区间长度之比求解. 【解析】由|x |≤m ,得-m ≤x ≤m ,当m ≤2时,由题意2566m =,m=2.5矛盾,舍去;当2<m<4时,由题意得(2)5,66m --= 解得m=3. 【答案】3.14. (2013·山东高考理科·T14)在区间[-3,3]上随机取一个数x ,使得 |x+1 |- |x-2 |≥1成立的概率为__________.【解题指南】 可先定义新函数()12f x x x =+--,然后根据分段函数的特点将问题转化为几何概型问题.【解析】设()12f x x x =+--,则3,31()1221,123,23x f x x x x x x --≤≤-⎧⎪=+--=--<<⎨⎪≤≤⎩.由211x -≥,解得12x ≤<,即当13x ≤≤时,()1f x ≥.由几何概型公式得所求概率为31213(3)63-==--.【答案】31. 15.(2013·新课标全国Ⅱ高考理科·T14)从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n= . 【解题指南】表示出两数之和等于5的概率,并建立方程,利用组合数的计算公式,解方程求得n.【解析】从n 个正整数1,2,…,n 中任意取出两个不同的数,所有的取法有2n C 种,而取出的两数之和等于5的取法只有两种,即(1,4),(2,3),所以其概率为22114n C =,即n 2-n-56=0,所以n=8. 【答案】8.16. (2013·新课标全国Ⅱ高考文科·T13)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______.【解题指南】列举基本事件总数,从中找出和为5的情况,两者作比即可得概率.【解析】从5个正整数中任意取出两个不同的数,有10种,若取出的两数之和等于5,则有(1,4),(2,3),共有2个,所以取出的两数之和等于5的概率为21105=。
【答案】15. 三、解答题17. (2013·辽宁高考文科·T19)现有6道题,其中其中4道甲类题,2道乙类题,张同学从中任取2道题解答. 试求:()I 所取的2道题都是甲类题的概率;()II 所取的2道题不是同一类题的概率;【解题指南】利用列举法,弄清楚基本事件总数和所求的事件A 包含的基本事件数,利用古典概型的公式计算概率【解析】()I 将4道甲类题依次编号为1,2,3,4,2道乙类题依次编号为5,6.任取2道题的基本事件为{}{}{}{}{}{}{}{}{}1,21,31,41,51,62,32,42,52,6,,,,,,,,,{}{}{}3,43,53,6,,,{}{}{}4,54,65,6,,共有15个;并且这些基本事件的出现是等可能的,记事件A=“张同学所取的2道题都是甲类题”;则A包含的基本事件有{}{}{}{}{}{}1,21,31,42,32,43,4,,,,,共6个,所以62 ().155 P A==()II基本事件同()I.记事件B=“张同学所取的2道题不是同一类题”,则B包含的基本事件有{}{}{}{}{}{}{}{}1,51,62,52,63,53,64,54,6,,,,,,,共8个,所以8 ().15 P B=18.(2013·天津高考文科·T15)某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z 评价该产品的等级.若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:(1)利用上表提供的样本数据估计该批产品的一等品率.(2)在该样品的一等品中,随机抽取2件产品,①用产品编号列出所有可能的结果;②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.【解题指南】(1)先计算表格中各样本的综合指标,再计算其中一等品所占比例来估计该批产品的一等品率.(2)逐一列举,找出符合条件的结果,利用古典概型计算概率.【解析】(1)计算10件产品的综合指标S,如下表其中S≤4的有A1,A2,A4,A5,A7,A9,共6件,故该样本的一等品率为10=0.6,从而可估计该批产品的一等品率为0.6.(2)①在该样本的一等品中,随机抽取2件产品的所有可能结果为(A1,A2),(A1,A4),(A1,A5),(A1,A7),(A1,A9),(A2,A4),(A2,A5),(A2,A7),(A2,A9),(A4,A5),(A4,A7),( A4,A9),(A5,A7),(A5,A9),(A7,A9),共15种.②在该样本的一等品中,综合指标S等于4的产品编号分别为A1,A2,A5,A7,则事件B发生的所有可能结果为(A1,A2),(A1,A5),(A1,A7),(A2,A5),(A2,A7),(A5,A7),共6种.所以62().155P B == 19. (2013·湖南高考文科·T18)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物。