2014-2017新课标卷极坐标与参数方程选做题
2017年高考数学试题分项版—极坐标参数方程(解析版)

2017年高考数学试题分项版—极坐标参数方程(解析版)2017年高考数学试题分项版—极坐标参数方程(解析版)一、填空题1.(2017·北京理,11)在极坐标系中,点A 在圆ρ2-2ρcos θ-4ρsin θ+4=0上,点P 的坐标为(1,0),则|AP |的最小值为________. 1.【答案】1【解析】由ρ2-2ρcos θ-4ρsin θ+4=0,得x 2+y 2-2x -4y +4=0,即(x -1)2+(y -2)2=1,圆心坐标为C (1,2),半径长为1.∵点P 的坐标为(1,0),∴点P 在圆C 外. 又∵点A 在圆C 上, ∴|AP |min =|PC |-1=2-1=1.2.(2017·天津理,11)在极坐标系中,直线4ρcos ⎝⎛⎭⎪⎪⎫θ-π6+1=0与圆ρ=2sin θ的公共点的个数为________. 2.【答案】2【解析】由4ρcos ⎝⎛⎭⎪⎪⎫θ-π6+1=0,得23ρcos θ+2ρsin θ+1=0,故直线的直角坐标方程为23x +2y +1=0, 由ρ=2sin θ,得ρ2=2ρsin θ, 故圆的直角坐标方程为x 2+y 2=2y , 即x 2+(y -1)2=1,圆心为(0,1),半径为1, ∵圆心到直线23x +2y +1=0的距离d =|2×1+1|(23)2+22=34<1, ∴直线与圆相交,有两个公共点. 二、解答题1.(2017·全国Ⅰ文,22)[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧ x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎨⎧x =a +4t ,y =1-t(t 为参数).(1)若a =-1,求C 与l 的交点坐标;(2)若C 上的点到l 的距离的最大值为17,求a . 1.解 (1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0.由⎩⎨⎧x 29+y 2=1,x +4y -3=0,解得⎩⎨⎧x =3,y =0或⎩⎪⎨⎪⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),⎝⎛⎭⎪⎪⎫-2125,2425.(2)直线l 的普通方程为x +4y -a -4=0, 故C 上的点(3cos θ,sin θ)到l 的距离为d=|3cos θ+4sin θ-a-4|17.当a≥-4时,d的最大值为a+9 17.由题设得a+917=17,所以a=8;当a<-4时,d的最大值为-a+117.由题设得-a+117=17,所以a=-16.综上,a=8或a=-16.2.(2017·全国Ⅱ文,22)[选修4-4:坐标系与参数方程]在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcos θ=4.(1)M为曲线C1的动点,点P在线段OM上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎪⎪⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值.2.解 (1)设点P 的极坐标为(ρ,θ)(ρ>0),点M 的极坐标为(ρ1,θ)(ρ1>0).由题设知|OP |=ρ,|OM |=ρ1=4cos θ.由|OM |·|OP |=16得C 2的极坐标方程ρ=4cos θ(ρ>0).因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0). 由题设知|OA |=2,ρB =4cos α,于是△OAB 的面积S =12|OA |·ρB ·sin ∠AOB=4cos α·⎪⎪⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎪⎫α-π3 =2⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎪⎫2α-π3-32≤2+ 3.当α=-π12时,S 取得最大值2+ 3.所以△OAB 面积的最大值为2+ 3.3.(2017·全国Ⅲ文,22)[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,直线l 1的参数方程为⎩⎨⎧x =2+t ,y =kt(t 为参数),直线l 2的参数方程为⎩⎨⎧x =-2+m ,y =mk(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.3.解 (1)消去参数t ,得l 1的普通方程l 1:y =k (x -2);消去参数m ,得l 2的普通方程l 2:y =1k (x +2).设P (x ,y ),由题设得⎩⎨⎧y =k (x -2),y =1k (x +2).消去k 得x 2-y 2=4(y ≠0).所以C 的普通方程为x 2-y 2=4(y ≠0). (2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π).联立⎩⎨⎧ρ2(cos 2θ-sin 2θ)=4,ρ(cos θ+sin θ)-2=0,得cos θ-sin θ=2(cos θ+sin θ).故tan θ=-13,从而cos 2θ=910,sin 2θ=110.代入ρ2(cos 2θ-sin 2θ)=4,得ρ2=5,所以交点M 的极径为 5. 4.(2017·江苏,21)C .[选修4—4:坐标系与参数方程]在平面直角坐标系中xOy 中,已知直线l 的参数方程为⎩⎨⎧x =-8+t ,y =t2(t 为参数),曲线C 的参数方程为⎩⎨⎧x =2s 2,y =22s(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值. 4.解 直线l 的普通方程为x -2y +8=0, 因为点P 在曲线C 上,设P (2s 2,22s ), 从而点P 到直线的距离d =|2s 2-42s +8|5=|2(s -2)2+4|5,当s =2时,d min =455.因此当点P 的坐标为(4,4)时,曲线C 上的点P 到直线l 的距离取到最小值455.5.(2017·全国Ⅰ理,22)[选修4-4,坐标系与参数方程]在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧ x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎨⎧x =a +4t ,y =1-t(t 为参数). (1)若a =-1,求C 与l 的交点坐标;(2)若C 上的点到l 的距离的最大值为17,求a . 5.解 (1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0.由⎩⎨⎧ x +4y -3=0,x 29+y 2=1, 解得⎩⎨⎧ x =3,y =0或⎩⎪⎨⎪⎧ x =-2125,y =2425,从而C 与l 的交点坐标是(3,0),⎝⎛⎭⎪⎪⎫-2125,2425. (2)直线l 的普通方程是x +4y -4-a =0,故C 上的点(3cos θ,sin θ)到l 距离为d =|3cos θ+4sin θ-a -4|17. 当a ≥-4时,d 的最大值为a +917. 由题设得a +917=17,所以a =8; 当a <-4时,d 的最大值为-a +117.由题设得-a +117=17, 所以a =-16.综上,a =8或a =-16.6.(2017·全国Ⅱ理,22)[选修4—4:坐标系与参数方程]在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎪⎪⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值.6.解 (1)设点P 的极坐标为(ρ,θ)(ρ>0),点M 的极坐标为(ρ1,θ)(ρ1>0),由题设知,|OP |=ρ,|OM |=ρ1=4cos θ. 由|OM |·|OP |=16,得C 2的极坐标方程ρ=4cosθ(ρ>0).所以C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0).(2)设点B 的极坐标为(ρB ,α)(ρB >0). 由题设知|OA |=2,ρB =4cos α.于是△OAB 的面积S =12|OA |·ρB ·sin ∠AOB =4cos α⎪⎪⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎪⎫α-π3 =4cos α⎪⎪⎪⎪⎪⎪12sin α-32cos α =|sin 2α-3cos 2α-3|=2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎪⎫2α-π3-32≤2+ 3. 当2α-π3=-π2,即α=-π12时,S 取得最大值2+3,所以△OAB 面积的最大值为2+ 3.7.(2017·全国Ⅲ理,22)[选修4—4:坐标系与参数方程]在直角坐标系xOy 中,直线l 1的参数方程为⎩⎨⎧x =2+t ,y =kt (t 为参数),直线l 2的参数方程为⎩⎨⎧x =-2+m ,y =m k(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.7.解 (1)消去参数t ,得l 1的普通方程l 1:y =k (x -2);消去参数m ,得l 2的普通方程l 2:y =1k (x +2).。
2014_2017新课标卷极坐标与参数方程选做题

word格式可复制编辑试卷第2页,总12页3.[2017新课标2卷理科](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程; (2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.4.【2016新课标2卷理科】(10分)在直角坐标系xOy 中,圆C 的方程为(x+6)2+y 2=25.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (Ⅱ)直线l 的参数方程是cos ,sin ,x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A ,B 两点,∣AB∣l 的斜率.word格式可复制编辑试卷第4页,总12页7.2015年新课标1卷文科在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (Ⅰ)求12,C C 的极坐标方程. (Ⅱ)若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积.8.2015年新课标2卷理科 在直角坐标系xoy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,0t ≠),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2:2sin C ρθ=,曲线3:C ρθ=.(Ⅰ).求2C 与1C 交点的直角坐标;(Ⅱ).若2C 与1C 相交于点A ,3C 与1C 相交于点B ,求AB 的最大值.word格式可复制编辑试卷第6页,总12页2014-2017新课标卷极坐标与参数方程选做题【参考答案】1.[2017新课标3卷理科](10分)在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数【来源】2017年全国普通高等学校招生统一考试理科数学(全国卷3正式版)【答案】(1)C 的普通方程为224x y -=. 【解析】(1)消去参数t 得l 1的普通方程()12l :y k x =-;消去参数m 得l 2的普所以C 的普通方程为()2240x y y -=≠(2)C 的极坐标方程为()()22240<<2cossin ,-=≠()()2224+-2=0cossin cossin⎧-=⎪⎨⎪⎩得()=2+cos sin cos sin -.13tan=-,从而2291=,=1010cos sin 代入()222-=4cossin 得2=5,所以交点2.[2017年新课标1卷理科](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t y t =+⎧⎨=-⎩(t 为参数).(1)若a=-1,求C 与l 的交点坐标;(2)若C 上的点到l a.【来源】2017年全国普通高等学校招生统一考试理科数学(全国卷1正式版) 【答案】(1)(3,0)或2124(,)2525-.(2)8a =或16a =-. 【解析】(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线l 的普通方程为430x y +-=.由2243019x y x y +-=⎧⎪⎨+=⎪⎩解得30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩.word 格式可复制编辑16OP =的直角坐标方程为)设点B 的极坐标为sin cos sin sin 23B AOB ρααπα∠⎛- ⎝⎛⎫--⎪⎝⎭试卷第8页,总12页【答案】(Ⅰ)212cos 110ρρθ++=;(Ⅱ)3±.【解析】试题分析:(Ⅰ)利用222x y ρ=+,cos x ρθ=可得C 的极坐标方程;(Ⅱ)先将直线l 的参数方程化为极坐标方程,再利用弦长公式可得l 的斜率.试题解析:(Ⅰ)由cos ,sin x y ρθρθ==可得圆C 的极坐标方程212cos 110.ρρθ++=(Ⅱ)在(Ⅰ)中建立的极坐标系中,直线l 的极坐标方程为()θαρ=∈R . 设,A B 所对应的极径分别为12,,ρρ将l 的极坐标方程代入C 的极坐标方程得212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-=12||||AB ρρ=-==由||AB =得23cos ,tan 83αα==±,所以l. 【考点】圆的极坐标方程与普通方程互化, 直线的参数方程,弦长公式【名师点睛】极坐标方程与直角坐标方程互化时注意:在将点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一;在将曲线的方程进行互化时,一定要注意变量的范围,注意转化的等价性. 5.2016新课标1卷理科在直角坐标系xOy 中,曲线C 1的参数方程为cos 1sin x a ty a t =⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(Ⅰ)说明C 1是哪种曲线,并将C 1的方程化为极坐标方程;(Ⅱ)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a.【来源】2016年全国普通高等学校招生统一考试理科数学(新课标1卷精编版) 【答案】(Ⅰ)圆,222sin 10a ρρθ-+-=;(Ⅱ)1【解析】试题分析:(Ⅰ)把cos 1sin x a t y a t =⎧⎨=+⎩化为直角坐标方程,再化为极坐标方程;(Ⅱ)联立极坐标方程进行求解.试题解析:解:(Ⅰ)消去参数t 得到1C 的普通方程222)1(a y x =-+.1C 是以)1,0(为圆心,a 为半径的圆.将θρθρsin ,cos ==y x 代入1C 的普通方程中,得到1C 的极坐标方程为01sin 222=-+-a θρρ.(Ⅱ)曲线21,C C 的公共点的极坐标满足方程组⎩⎨⎧==-+-,cos 4,01sin 222θρθρρa 若0≠ρ,由方程组得01cos sin 8cos 1622=-+-a θθθ,由已知2tan =θ,可得0cos sin 8cos162=-θθθ,从而012=-a ,解得1-=a (舍去),1=a .word格式可复制编辑试卷第10页,总12页程;(Ⅱ)将将代入即可求出|MN|,利用三角形面积公式即可求出的面积. 试题解析:(Ⅰ)因为,∴的极坐标方程为,的极坐标方程为.……5分(Ⅱ)将代入,得,解得=,|MN|=-因为的半径为1,则的面积=. 考点:直角坐标方程与极坐标互化;直线与圆的位置关系8.2015年新课标2卷理科 在直角坐标系xoy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,0t ≠),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2:2sin C ρθ=,曲线3:C ρθ=.(Ⅰ).求2C 与1C 交点的直角坐标;(Ⅱ).若2C 与1C 相交于点A ,3C 与1C 相交于点B ,求AB 的最大值. 【来源】2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ带解析) 【答案】(Ⅰ)(0,0)和3()22;(Ⅱ)4. 【解析】(Ⅰ)曲线2C 的直角坐标方程为2220x y y +-=,曲线3C 的直角坐标方程为220x y +-=.联立222220,0,x y y x y ⎧+-=⎪⎨+-=⎪⎩解得0,0,x y =⎧⎨=⎩或,23,2x y ⎧=⎪⎪⎨⎪=⎪⎩所以2C 与1C 交点的直角坐标为(0,0)和3)2. (Ⅱ)曲线1C 的极坐标方程为(,0)R θαρρ=∈≠,其中0απ≤<.因此A 得到极坐标为(2sin ,)αα,B 的极坐标为,)αα.所以2sin AB αα=-4in()3s πα=-,当56πα=时,AB 取得最大值,最大值为4.考点:1、极坐标方程和直角坐标方程的转化;2、三角函数的最大值. 9.2014年新课标1卷理科已知曲线221:149x y C +=,直线l :2,22,x t y t =+⎧⎨=-⎩(t 为参数). (I )写出曲线C 的参数方程,直线l 的普通方程;(II )过曲线C 上任意一点P 作与l 夹角为30︒的直线,交l 于点A ,PA 的最大值与最小值.【来源】2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ带解析) 【答案】(I )2cos ,3sin ,x y θθ=⎧⎨=⎩260x y +-=;(II ). 【解析】=4πθ22cos 4sin 40ρρθρθ--+=2C MN cos ,sin x y ρθρθ==1C cos 2ρθ=-2C 22cos 4sin 40ρρθρθ--+==4πθ22cos 4sin 40ρρθρθ--+=240ρ-+=1ρ2ρ1ρ2ρ2C 2C MN o 11sin 452⨯12word格式可复制编辑试卷第12页,总12页因为C 在点D 处的切线与l 垂直,所以直线GD 与l的斜率相同,tan β=3πβ=,故D 点的直角坐标为(1cos,sin )33ππ+,即3(2.【易错点】对第(1)问,极坐标与普通方程、参数方程之间的互化,有一部分学生不熟练而出错;对第(2)问,不理解题意而出错.考点:本小题主要考查坐标系与参数方程的基础知识,熟练这部分的基础知识是解答好本类题目的关键.。
新课标高考《坐标系与参数方程》(选修4-4)含答案

第二讲 坐标系与参数方程(选修4-4)1.(2014·新课标全国卷Ⅰ)已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.2.(2014·新课标全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎦⎤0,π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.3.(2013·新课标全国卷Ⅰ)已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).4.(2013·福建高考)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为⎝⎛⎭⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.1.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,并在两坐标系中取相同的长度单位.设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则⎩⎨⎧x =ρcos θ,y =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).2.圆的极坐标方程若圆心为M (ρ0,θ0),半径为r ,则圆的方程为:ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0. 几个特殊位置的圆的极坐标方程: (1)当圆心位于极点,半径为r :ρ=r ;(2)当圆心位于M (a,0),半径为a :ρ=2a cos θ;(3)当圆心位于M ⎝⎛⎭⎫a ,π2,半径为a :ρ=2a sin θ. 3.直线的极坐标方程若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α).几个特殊位置的直线的极坐标方程: (1)直线过极点:θ=θ0和θ=π-θ0;(2)直线过点M (a,0)且垂直于极轴:ρcos θ=a ;(3)直线过M ⎝⎛⎭⎫b ,π2且平行于极轴:ρsin θ=b . 4.几种常见曲线的参数方程 (1)圆以O ′(a ,b )为圆心,r 为半径的圆的参数方程是⎩⎨⎧x =a +r cos α,y =b +r sin α,其中α是参数.当圆心在(0,0)时,方程为⎩⎨⎧x =r cos α,y =r sin α,其中α是参数.(2)椭圆椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程是⎩⎨⎧x =a cos φ,y =b sin φ,其中φ是参数.椭圆x 2b 2+y 2a 2=1(a >b >0)的参数方程是⎩⎨⎧x =b cos φ,y =a sin φ,其中φ是参数.(3)直线经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程是⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α,其中t 是参数.[例1] (1)(2014·江西高考改编)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,求线段y =1-x (0≤x ≤1)的极坐标方程.(2)(2014·东北三校联考)已知点P (1+cos α,sin α),参数α∈[0,π],点Q 在曲线C :ρ=92sin ⎝⎛⎭⎫θ+π4上.①求点P 的轨迹方程和曲线C 的直角坐标方程; ②求点P 与点Q 之间距离的最小值.1.在极坐标系下,已知圆O:ρ=cos θ+sin θ和直线l:ρsin⎝⎛⎭⎫θ-π4=22.(ρ≥0,0≤θ<2π)(1)求圆O和直线l的直角坐标方程;(2)当θ∈(0,π)时,求直线l与圆O的公共点的极坐标.热点二参数方程及其应用[例2](2014·福建高考)已知直线l的参数方程为⎩⎪⎨⎪⎧x=a-2t,y=-4t(t为参数),圆C的参数方程为⎩⎪⎨⎪⎧x=4cos θ,y=4sin θ(θ为参数).(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围.2.倾斜角为α的直线l过点P(8,2),直线l和曲线C:⎩⎨⎧x=42cos θ,y=2sin θ(θ为参数)交于不同的两点M1,M2.(1)将曲线C的参数方程化为普通方程,并写出直线l的参数方程;(2)求|PM1|·|PM2|的取值范围.[例3](2014·辽宁高考)将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C的参数方程;(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.3.极坐标系与直角坐标系xOy取相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知直线l的参数方程为⎩⎪⎨⎪⎧x=2+t cos α,y=t sin α(t为参数).曲线C的极坐标方程为ρsin2θ=8cos θ.热点三极坐标方程与参数方程的综合应用(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 交于A ,B 两点,与x 轴的交点为F ,求1|AF |+1|BF |的值.1.(2014·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.2.(2014·南京模拟)在极坐标系中,圆C 的方程为ρ=2a cos θ,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +2,y =4t +2(t 为参数),若直线l 与圆C 相切,求实数a 的值.3.(2014·郑州模拟)已知曲线C 1:⎩⎪⎨⎪⎧ x =-2+cos t ,y =1+sin t (t 为参数),C 2:⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)过曲线C 2的左顶点且倾斜角为π4的直线l 交曲线C 1于A ,B 两点,求|AB |.4.(2014·贵阳模拟)以直角坐标系的原点为极点,x 轴非负半轴为极轴建立极坐标系,在两种坐标系中取相同的单位长度,已知直线l 的方程为ρcos θ-ρsin θ-1=0(ρ>0),曲线C的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),点M 是曲线C 上的一动点.(1)求线段OM 的中点P 的轨迹方程;(2)求曲线C 上的点到直线l 的距离的最小值.5.(2014·沈阳模拟)已知曲线C 1的极坐标方程为ρ2cos 2θ=8,曲线C 2的极坐标方程为θ=π6,曲线C 1、C 2相交于A 、B 两点. (1)求A 、B 两点的极坐标;(2)曲线C 1与直线⎩⎨⎧x =1+32t ,y =12t(t 为参数)分别相交于M 、N 两点,求线段MN 的长度.6.(2014·昆明模拟)在直角坐标系xOy 中,l 是过定点P (4,2)且倾斜角为α的直线,在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为ρ=4cos θ.(1)写出直线l 的参数方程,并将曲线C 的方程化为直角坐标方程;(2)若曲线C 与直线l 相交于不同的两点M 、N ,求|PM |+|PN |的取值范围.第二部分题1.(2014·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.2.(2014·南京模拟)在极坐标系中,圆C 的方程为ρ=2a cos θ,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +2,y =4t +2(t 为参数),若直线l 与圆C 相切,求实数a 的值.3.(2014·郑州模拟)已知曲线C 1:⎩⎪⎨⎪⎧ x =-2+cos t ,y =1+sin t (t 为参数),C 2:⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)过曲线C 2的左顶点且倾斜角为π4的直线l 交曲线C 1于A ,B 两点,求|AB |.4.(2014·贵阳模拟)以直角坐标系的原点为极点,x 轴非负半轴为极轴建立极坐标系,在两种坐标系中取相同的单位长度,已知直线l 的方程为ρcos θ-ρsin θ-1=0(ρ>0),曲线C的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),点M 是曲线C 上的一动点.(1)求线段OM 的中点P 的轨迹方程;(2)求曲线C 上的点到直线l 的距离的最小值.5.(2014·沈阳模拟)已知曲线C 1的极坐标方程为ρ2cos 2θ=8,曲线C 2的极坐标方程为θ=π6,曲线C 1、C 2相交于A 、B 两点. (1)求A 、B 两点的极坐标;(2)曲线C 1与直线⎩⎨⎧x =1+32t ,y =12t(t 为参数)分别相交于M 、N 两点,求线段MN 的长度.6.(2014·昆明模拟)在直角坐标系xOy 中,l 是过定点P (4,2)且倾斜角为α的直线,在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为ρ=4cos θ.(1)写出直线l 的参数方程,并将曲线C 的方程化为直角坐标方程;(2)若曲线C 与直线l 相交于不同的两点M 、N ,求|PM |+|PN |的取值范围.答案解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|. 则|P A |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255.当sin(θ+α)=1时,|P A |取得最小值,最小值为255.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ),由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎫1+cos π3,sin π3,即⎝⎛⎭⎫32,32.解:(1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0, 得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0.由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0,解得⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝⎛⎭⎫2,π4,⎝⎛⎭⎫2,π2.解:(1)由点A ⎝⎛⎭⎫2,π4在直线ρcos ⎝⎛⎭⎫θ-π4=a 上, 可得a = 2.所以直线l 的方程可化为ρcos θ+ρsin θ=2, 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1,所以圆C 的圆心为(1,0),半径r =1, 因为圆心C 到直线l 的距离d =12=22<1, 所以直线l 与圆C 相交.[师生共研] (1)因为x =ρcos θ,y =ρsin θ,且y =1-x ,所以ρsin θ=1-ρcos θ,所以ρ(sin θ+cos θ)=1,ρ=1sin θ+cos θ.又0≤x ≤1,所以0≤y ≤1,所以点(x ,y )都在第一象限及坐标轴的正半轴上,则0≤θ≤π2,即所求线段的极坐标方程为ρ=1sin θ+cos θ⎝⎛⎭⎫0≤θ≤π2. (2)①由⎩⎪⎨⎪⎧x =1+cos α,y =sin α,消去α,得点P 的轨迹方程为(x -1)2+y 2=1(y ≥0),又由ρ=92sin ⎝⎛⎭⎫θ+π4,得ρ=9sin θ+cos θ,所以ρsin θ+ρcos θ=9.所以曲线C 的直角坐标方程为x +y =9.②因为半圆(x -1)2+y 2=1(y ≥0)的圆心(1,0)到直线x +y =9的距离为42, 所以|PQ |min =42-1.解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,故圆O 的直角坐标方程为:x 2+y 2-x -y =0,直线l :ρsin ⎝⎛⎭⎫θ-π4=22,即ρsin θ-ρcos θ=1, 则直线l 的直角坐标方程为:x -y +1=0.(2)由(1)知圆O 与直线l 的直角坐标方程,将两方程联立得⎩⎪⎨⎪⎧x 2+y 2-x -y =0,x -y +1=0,解得⎩⎪⎨⎪⎧x =0,y =1,即圆O 与直线l 在直角坐标系下的公共点为(0,1),将(0,1)转化为极坐标为⎝⎛⎭⎫1,π2,热点二参数方程及其应用[师生共研] (1)直线l 的普通方程为2x -y -2a =0,圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.解:(1)曲线C 的普通方程为x 232+y 24=1,直线l 的参数方程为⎩⎪⎨⎪⎧x =8+t cos α,y =2+t sin α(t 为参数).(2)将l 的参数方程代入曲线C 的方程得:(8+t cos α)2+8(2+t sin α)2=32, 整理得(8sin 2α+cos 2α)t 2+(16cos α+32sin α)t +64=0,由Δ=(16cos α+32sin α)2-4×64(8sin 2α+cos 2α)>0,得cos α>sin α,故α∈⎣⎡⎭⎫0,π4, ∴|PM 1||PM 2|=|t 1t 2|=641+7sin 2 α∈⎝⎛⎦⎤1289,64. 热点三极坐标方程与参数方程的综合应用[师生共研] (1)设(x 1,y 1)为圆上的点,在已知变换下变为曲线C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1得x 2+⎝⎛⎭⎫y 22=1, 即曲线C 的方程为x 2+y 24=1. 故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧ x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝⎛⎭⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝⎛⎭⎫x -12, 化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.解:(1)由ρsin 2θ=8cos θ得ρ2sin 2θ=8ρcos θ,,∴曲线C 的直角坐标方程为y 2=8x .(2)易得直线l 与x 轴的交点为F (2,0),将直线l 的方程代入y 2=8x ,得(t sin α)2=8(2+t cos α),整理得t 2sin 2 α-8t cos α-16=0.由已知sin α≠0,Δ=(-8cos α)2-4×(-16)sin 2 α=64>0,∴t 1+t 2=8cos αsin 2α,t 1t 2=-16sin 2α<0,故1|AF |+1|BF |=⎪⎪⎪⎪1t 1-1t 2=⎪⎪⎪⎪⎪⎪t 1-t 2t 1t 2=(t 1+t 2)2-4t 1t 2|t 1t 2|=⎝⎛⎭⎫8cos αsin 2α2+64sin 2α16sin 2α=12.解:将直线l 的参数方程⎩⎨⎧x =1-22t ,y =2+22t (t 为参数)代入抛物线方程y 2=4x ,得⎝⎛⎭⎫2+22t 2=4⎝⎛⎭⎫1-22t ,解得t 1=0,t 2=-8 2.所以AB =|t 1-t 2|=8 2.解:易求直线l :4x -3y -2=0,圆C :(x -a )2+y 2=a 2,依题意,有|4a -2|42+(-3)2=|a |,解得a =-2或29.解:(1)C 1:(x +2)2+(y -1)2=1,C2:x 216+y 29=1. 曲线C 1为圆心是(-2,1),半径是1的圆.曲线C 2为中心是坐标原点,焦点在x 轴上,长轴长是8,短轴长是6的椭圆.(2)曲线C 2的左顶点为(-4,0),则直线l 的参数方程为⎩⎨⎧x =-4+22s ,y =22s(s 为参数),将其代入曲线C 1整理可得:s 2-32s +4=0,设A ,B 对应参数分别为s 1,s 2,则s 1+s 2=32,s 1s 2=4.所以|AB |=|s 1-s 2|=(s 1+s 2)2-4s 1s 2= 2.解:(1)设中点P 的坐标为(x ,y ),依据中点公式有⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数).这是点P 轨迹的参数方程,消参得点P 的普通方程为x 2+(y -1)2=1.(2)直线l 的直角坐标方程为x -y -1=0,曲线C 的普通方程为x 2+(y -2)2=4,表示以(0,2)为圆心,以2为半径的圆,故所求最小值为圆心(0,2)到直线l 的距离减去半径,设所求最小距离为d ,则d =|-1×2-1|1+1-2=322-2.因此曲线C 上的点到直线l 的距离的最小值为322-2.解:(1)由⎩⎪⎨⎪⎧ρ2cos 2θ=8,θ=π6得:ρ2cos π3=8,所以ρ2=16,即ρ=±4.所以A 、B 两点的极坐标为:A ⎝⎛⎭⎫4,π6,B ⎝⎛⎭⎫-4,π6或B ⎝⎛⎭⎫4,7π6. (2)由曲线C 1的极坐标方程得其直角坐标方程为x 2-y 2=8,将直线⎩⎨⎧x =1+32t ,y =12t代入x 2-y 2=8,整理得t 2+23t -14=0,所以|MN |=(23)2-4×(-14)1=217.解:(1)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数).∵ρ=4cos θ,∴ρ2=4ρcos θ,∴曲线C 的直角坐标方程为x 2+y 2=4x .(2)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数),代入x 2+y 2=4x ,得t 2+4(sin α+cos α)t +4=0,⎩⎪⎨⎪⎧Δ=16(sin α+cos α)2-16>0,t 1+t 2=-4(sin α+cos α),t 1t 2=4,∴sin α·cos α>0,又0≤α<π,∴α∈⎝⎛⎭⎫0,π2,且t 1<0,t 2<0. ∴|PM |+|PN |=|t 1|+|t 2|=|t 1+t 2|=4(sin α+cos α)=42sin ⎝⎛⎭⎫α+π4, 由α∈⎝⎛⎭⎫0,π2,得α+π4∈⎝⎛⎭⎫π4,3π4, ∴22<sin ⎝⎛⎭⎫α+π4≤1, 故|PM |+|PN |的取值范围是(4,4 2 ].第二部分题答案:1.解:将直线l 的参数方程⎩⎨⎧x =1-22t ,y =2+22t (t 为参数)代入抛物线方程y 2=4x ,得⎝⎛⎭⎫2+22t 2=4⎝⎛⎭⎫1-22t ,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2.2.解:易求直线l :4x -3y -2=0,圆C :(x -a )2+y 2=a 2,依题意,有|4a -2|42+(-3)2=|a |,解得a =-2或29.3.解:(1)C 1:(x +2)2+(y -1)2=1,C 2:x 216+y 29=1. 曲线C 1为圆心是(-2,1),半径是1的圆.曲线C 2为中心是坐标原点,焦点在x 轴上,长轴长是8,短轴长是6的椭圆.(2)曲线C 2的左顶点为(-4,0),则直线l 的参数方程为⎩⎨⎧x =-4+22s ,y =22s(s 为参数),将其代入曲线C 1整理可得:s 2-32s +4=0,设A ,B 对应参数分别为s 1,s 2,则s 1+s 2=32,s 1s 2=4.所以|AB |=|s 1-s 2|=(s 1+s 2)2-4s 1s 2= 2.4. 解:(1)设中点P 的坐标为(x ,y ),依据中点公式有⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数).这是点P 轨迹的参数方程,消参得点P 的普通方程为x 2+(y -1)2=1.(2)直线l 的直角坐标方程为x -y -1=0,曲线C 的普通方程为x 2+(y -2)2=4,表示以(0,2)为圆心,以2为半径的圆,故所求最小值为圆心(0,2)到直线l 的距离减去半径,设所求最小距离为d ,则d =|-1×2-1|1+1-2=322-2.因此曲线C 上的点到直线l 的距离的最小值为322-2.5. 解:(1)由⎩⎪⎨⎪⎧ρ2cos 2θ=8,θ=π6得:ρ2cos π3=8,所以ρ2=16,即ρ=±4.所以A 、B 两点的极坐标为:A ⎝⎛⎭⎫4,π6,B ⎝⎛⎭⎫-4,π6或B ⎝⎛⎭⎫4,7π6.(2)由曲线C 1的极坐标方程得其直角坐标方程为x 2-y 2=8,将直线⎩⎨⎧x =1+32t ,y =12t代入x 2-y 2=8,整理得t 2+23t -14=0,所以|MN |=(23)2-4×(-14)1=217.6.解:(1)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数).∵ρ=4cos θ,∴ρ2=4ρcos θ,∴曲线C 的直角坐标方程为x 2+y 2=4x .(2)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos α,y =2+t sin α(t 为参数),代入x 2+y 2=4x ,得t 2+4(sin α+cos α)t +4=0,⎩⎪⎨⎪⎧Δ=16(sin α+cos α)2-16>0,t 1+t 2=-4(sin α+cos α),t 1t 2=4,∴sin α·cos α>0,又0≤α<π,∴α∈⎝⎛⎭⎫0,π2,且t 1<0,t 2<0. ∴|PM |+|PN |=|t 1|+|t 2|=|t 1+t 2|=4(sin α+cos α)=42sin ⎝⎛⎭⎫α+π4, 由α∈⎝⎛⎭⎫0,π2,得α+π4∈⎝⎛⎭⎫π4,3π4, ∴22<sin ⎝⎛⎭⎫α+π4≤1, 故|PM |+|PN |的取值范围是(4,4 2 ].。
2014年全国高考试卷极坐标与参数方程部分汇编

知识清单(四) 2014年全国高考试卷极坐标与参数方程部分汇编1. (2014安徽理4)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩,(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为 ( )AB .CD .2. (2014北京理3)曲线{1cos 2sin x y =-+=+θθ,(θ为参数)的对称中心( )A .在直线2y x =上B .在直线2y x =-上C .在直线1y x =-上D .在直线1y x =+上3. (2014福建理21⑵)已知直线l 的参数方程为24x a t y t =-⎧⎨=-⎩,(t 为参数),圆C 的参数方程为4cos 4sin x y θθ=⎧⎨=⎩,(θ为常数).①求直线l 和圆C 的普通方程;②若直线l 与圆C 有公共点,求实数a 的取值范围.4. (2014广东理14)在极坐标系中,曲线1C 和2C 的方程分别为2sin cos ρθθ=和sin 1ρθ=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 和2C 的交点的直角坐标为____________.5. (2014广东文14)在极坐标系中,曲线1C 与2C 的方程分别为22cos sin ρθθ=与cos ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的交点的直角坐标为____________.6. (2014湖北理16)已知曲线1C的参数方程是x y ⎧=⎪⎨=⎪⎩t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2ρ=,则1C 与2C 交点的直角坐标为________7. (2014湖南理11)在平面直角坐标系中,倾斜角为π4的直线l 与曲线C :2cos 1sin x y αα=+⎧⎨=+⎩,(α为参数)交于A ,B 两点,且2AB =,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是_____________.8. (2014湖南文12)在平面直角坐标系中,曲线2:12x C y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数)的普通方程为___________.9. (2014江苏理21C )在平面直角坐标系xoy 中,已知直线l的参数方程12x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 是参数),直线l 与抛物线24y x =相交于,A B 两点,求线段AB 的长.10. (2014江西理11⑵)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段()101y x x =-≤≤的极坐标为()A .1π,0cos sin 2ρθθθ=+≤≤ B .1π,0cos sin 4ρθθθ=+≤≤C .πcos sin ,02ρθθθ=+≤≤D .πcos sin ,04ρθθθ=+≤≤11. (2014辽宁理23文23)将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .⑴写出C 的参数方程; ⑵设直线220l x y +-=∶与C 的交点为12P P ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程.12. (2014陕西理15C 文15C )在极坐标系中,点π26⎛⎫ ⎪⎝⎭,到直线πsin 16ρθ⎛⎫-= ⎪⎝⎭的距离是_______.13. (2014天津理13)在以O 为极点的极坐标系中,圆4sin ρθ=和直线sin a ρθ=相交于A B ,两点.若AOB △是等边三角形,则a 的值为_______.14. (2014新课标1理23文23)已知曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩(t 为参数). ⑴写出曲线C 的参数方程,直线l 的普通方程;⑵过曲线C 上任一点P 作与l 夹角为30︒的直线,交l 于点A ,求||PA 的最大值与最小值.15. (2014新课标2理23文23)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,π02θ⎡⎤∈,⎢⎥⎣⎦.⑴求C 的参数方程;⑵设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据⑴中你得到的参数方程,确定D 的坐标.16. (2014重庆理15)已知直线l 的参数方程为23x ty t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 正半轴为极轴线建立极坐标系,曲线C 的极坐标方程为2sin 4cos 0ρθθ-=(002πρθ,<≥≤),则直线l 与曲线C 的公共点的极径ρ=________.2014年全国高考试卷极坐标与参数方程部分汇编17. (2014安徽理4)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩,(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为 ( )AB .CD .【解析】 D由13x t y t =+⎧⎨=-⎩,消去t 得40x y --=,24cos 4cos C ρθρρθ=⇒=:,∴224C x y x +=:,即22(2)4x y -+=,∴(20)2C r =,,.∴点C 到直线l 的距离d =∴所求弦长==D .18. (2014北京理3)曲线{1cos 2sin x y =-+=+θθ,(θ为参数)的对称中心( )A .在直线2y x =上B .在直线2y x =-上C .在直线1y x =-上D .在直线1y x =+上【解析】 参数方程1cos 2sin x y θθ=-+⎧⎨=+⎩所表示的曲线为圆心在(12)-,,半径为1的圆.其对称中心为圆心(12)-,.逐个代入选项可知,(12)-,在直线2y x =-上,即选项B .19. (2014福建理21⑵)已知直线l 的参数方程为24x a t y t =-⎧⎨=-⎩,(t 为参数),圆C 的参数方程为4cos 4sin x y θθ=⎧⎨=⎩,(θ为常数).①求直线l 和圆C 的普通方程;②若直线l 与圆C 有公共点,求实数a 的取值范围.【解析】 本小题主要考查直线与圆的参数方程等基础知识,考查运算求解能力,考查化归与转化思想.⑴直线l的普通方程为220x y a--=,圆C的普通方程为2216x y+=⑵因为直线l与圆C又公共点,故圆C的圆心到直线l的距离4d=,解得a-20.(2014广东理14)在极坐标系中,曲线1C和2C的方程分别为2sin cosρθθ=和sin1ρθ=.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线1C和2C的交点的直角坐标为____________.【解析】(1,1).曲线1C的方程化为22sin cosρθρθ=,化为直角坐标方程即2y x=,2C的直角坐标方程为1y=,显而易见,交点坐标为(1,1).21.(2014广东文14)在极坐标系中,曲线1C与2C的方程分别为22cos sinρθθ=与cosρθ=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线1C与2C的交点的直角坐标为____________.【解析】()12,22.(2014湖北理16)已知曲线1C的参数方程是xy⎧=⎪⎨=⎪⎩t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线2C的极坐标方程是2ρ=,则1C与2C交点的直角坐标为________【解析】1)曲线1C为射线(0)y x=≥.曲线2C为圆224x y+=.设P为1C与2C的交点,如图,作PQ 垂直x轴于点Q.因为tan POQ=∠所以30POQ=∠º,又∵2OP=,所以1C与2C的点交P的直线坐标为)1.评析0,≥误认为1C为直线y x.23.(2014湖南理11)在平面直角坐标系中,倾斜角为π4的直线l与曲线C:2cos1sinxyαα=+⎧⎨=+⎩,(α为参数)交于A,B两点,且2AB=,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则直线l的极坐标方程是_____________.【解析】sin 4πρθ⎛⎫-= ⎪⎝⎭曲线C 的普通方程为()()22211x y -+-=,设直线l 的方程为y x b =+,因为弦长2AB =,所以圆心()21,到直线l 的距离0d =,所以圆心在直线l 上,故1y x =-πs i n c o s 1s i 4ρθρθρθ⎛⎫⇒=-⇒-= ⎪⎝⎭πsin 4ρθ⎛⎫-= ⎪⎝⎭. 24. (2014湖南文12)在平面直角坐标系中,曲线22:1x C y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)的普通方程为___________. 【解析】 10x y --= 25. (2014江苏理21C )在平面直角坐标系xoy 中,已知直线l的参数方程122x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 是参数),直线l 与抛物线24y x =相交于,A B 两点,求线段AB 的长.【解析】 直线:3l x y +=代入抛物线方程24y x =并整理得21090x x -+=∴交点(1,2)A ,(9,6)B -,故AB26. (2014江西理11⑵)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段()101y x x =-≤≤的极坐标为()A .1π,0cos sin 2ρθθθ=+≤≤ B .1π,0cos sin 4ρθθθ=+≤≤C .πcos sin ,02ρθθθ=+≤≤D .πcos sin ,04ρθθθ=+≤≤【解析】 A∵cos sin x y ρθρθ=⎧⎨=⎩,,∴1y x =-化为极坐标方程为cos sin 1ρθρθ+=,即1c o s s i n ρθθ=+,∵01x ≤≤,∴线段在第一象限内(含端点),∴π02θ≤≤.故选A .27. (2014辽宁理23文23)将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .⑴写出C 的参数方程; ⑵设直线220l x y +-=∶与C 的交点为12P P ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程.【解析】 ⑴ 设11(,)x y 为圆上的点,在已知变换下变为C 上点(),x y ,依题意,得112x x y y =⎧⎨=⎩;由22111x y +=得22()12y x +=,即曲线C 的方程为2214y x +=.故C 的参数方程为cos 2sin x ty t =⎧⎨=⎩(t 为参数).⑵ 由2214220y x x y ⎧+=⎪⎨⎪+-=⎩解得:10x y =⎧⎨=⎩,或02x y =⎧⎨=⎩. 不妨设12(1,0),(0,2)P P ,则线段12P P 的中点坐标为1(,1)2,所求直线斜率为12k =,于是所求直线方程为111()22y x -=-,化为极坐标方程,并整理得2cos 4sin 3,ρθρθ-=-即34sin 2cos ρθθ=-.28. (2014陕西理15C 文15C )在极坐标系中,点π26⎛⎫ ⎪⎝⎭,到直线πsin 16ρθ⎛⎫-= ⎪⎝⎭的距离是_______.【解析】 1由πsin 16ρθ⎛⎫-= ⎪⎝⎭,得ππsin cos cos sin 166ρθρθ⋅-⋅=,∴直线的直角坐标方程为1102x y +=,又点π26⎛⎫⎪⎝⎭,的直角坐标为1), ∴点到直线的距离1d ==.29. (2014天津理13)在以O 为极点的极坐标系中,圆4sin ρθ=和直线sin a ρθ=相交于A B ,两点.若AOB △是等边三角形,则a 的值为_______.【解析】 3以极点为平面直角坐标系原点,极轴作为x 轴正半轴建立平面直角坐标系,则4sin ρθ=所表示圆的直角坐标方程为22(2)4x y +-=,而sin a ρθ=则表示直线y a =由已知,直线截圆所得弦与原点组成三角形为正三角形,则弦AB 所对圆心角为120︒,该弦到圆心距离等于半径的一半,因此易知213a =+=30. (2014新课标1理23文23)已知曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩(t 为参数). ⑴写出曲线C 的参数方程,直线l 的普通方程;⑵过曲线C 上任一点P 作与l 夹角为30︒的直线,交l 于点A ,求||PA 的最大值与最小值.【解析】 ⑴ 曲线C 的参数方程为2cos 3sin x y θθ=⎧⎨=⎩(θ为参数)直线l 的普通方程为260x y +-=.⑵ 在曲线C 上任意取一点(2cos 3sin )P θθ,到l的距离为3sin 6d θθ=+-则)6sin30d PA θα=+-︒,其中α为锐角.且4tan 3θ=.当sin()1θα+=-时,PA当sin()1θα+=时,PA .31. (2014新课标2理23文23)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,π02θ⎡⎤∈,⎢⎥⎣⎦.⑴求C 的参数方程;⑵设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据⑴中你得到的参数方程,确定D 的坐标.32. (2014重庆理15)已知直线l 的参数方程为23x ty t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 正半轴为极轴线建立极坐标系,曲线C 的极坐标方程为2sin 4cos 0ρθθ-=(002πρθ,<≥≤),则直线l 与曲线C 的公共点的极径ρ=________.【解析】。
极坐标与参数方程测试题(有详解答案)

极坐标与参数方程测试题一、选择题1.直线12+=x y 的参数方程是( )A 、⎩⎨⎧+==1222t y t x (t 为参数) B 、⎩⎨⎧+=-=1412t y t x (t 为参数)C 、 ⎩⎨⎧-=-=121t y t x (t 为参数) D 、⎩⎨⎧+==1sin 2sin θθy x (t 为参数) 2.已知实数x,y 满足02cos 3=-+x x ,022cos 83=+-y y ,则=+y x 2( )A .0B .1C .-2D .83.已知⎪⎭⎫ ⎝⎛-3,5πM ,下列所给出的不能表示点的坐标的是( )A 、⎪⎭⎫⎝⎛-3,5πB 、⎪⎭⎫ ⎝⎛34,5πC 、⎪⎭⎫⎝⎛-32,5π D 、⎪⎭⎫ ⎝⎛--35,5π 4.极坐标系中,下列各点与点P (ρ,θ)(θ≠k π,k ∈Z )关于极轴所在直线对称的是( )A .(-ρ,θ)B .(-ρ,-θ)C .(ρ,2π-θ)D .(ρ,2π+θ)5.点()3,1-P ,则它的极坐标是( )A 、⎪⎭⎫⎝⎛3,2π B 、⎪⎭⎫ ⎝⎛34,2πC 、⎪⎭⎫⎝⎛-3,2πD 、⎪⎭⎫ ⎝⎛-34,2π 6.直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建极坐标系,设点A,B 分别在曲线13cos :sin x C y θθ=+⎧⎨=⎩ (θ为参数)和曲线2:1C ρ=上,则AB 的最小值为( ).A.1B.2C.3D.47.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( )A .一条直线B .两条直线C .一条射线D .两条射线8.()124123x tt x ky k y t=-⎧+==⎨=+⎩若直线为参数与直线垂直,则常数( )A.-6B.16-C.6D.169.极坐标方程4cos ρθ=化为直角坐标方程是( )A .22(2)4x y -+= B.224x y += C.22(2)4x y +-= D.22(1)(1)4x y -+-=10.柱坐标(2,32π,1)对应的点的直角坐标是( ). A.(1,3,1-) B.(1,3,1-) C.(1,,1,3-) D.(1,1,3-)11.已知二面角l αβ--的平面角为θ,P 为空间一点,作PA α⊥,PB β⊥,A ,B 为垂足,且4PA =,5PB =,设点A 、B 到二面角l αβ--的棱l 的距离为别为,x y .则当θ变化时,点(,)x y 的轨迹是下列图形中的12.曲线24sin()4x πρ=+与曲线12221222x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩的位置关系是( )。
高考2014-2019全国卷理数极坐标与参数方程真题

⎩ ( 为 参数).⎨y = t s in α,⎨ 22014-2019 全国卷高考极坐标与参数方程真题(含答案)x 2+y =⎧ x = 2 + t(2014 年 1 卷)已知曲线C : 491,直线l :⎨ y = 2 - 2 t t (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点 P 作与l 夹角为30o的直线,交l 于点 A ,求| PA | 的最大值与最小值.(2014 年 2 卷)(本小题满分 10)选修 4-4:坐标系与参数方程在直角坐标系 xoy 中,以坐标原点为极点,x 轴正半轴 ρ= 2 cos θ θ ∈ ⎡ 0 , π ⎤为极轴建立极坐标系,半圆 C 的极坐标方程为,⎢⎣2 ⎥⎦ .(Ⅰ)求 C 的参数方程;(Ⅱ)设点 D 在 C 上,C 在 D 处的切线与直线l : y = 得到的参数方程,确定 D 的坐标.3x + 2 垂直,根据(Ⅰ)中你(2015 年 1 卷)在直角坐标系 xOy 中,直线C : x = - 2,圆C :(x -1)2+ ( y - 2)2= 1,以坐标原点为极点, x 12轴的正半轴为极轴建立极坐标系. (Ⅰ)求C 1 , C 2 的极坐标方程;π(Ⅱ)若直线C 3 的极坐标方程为θ=(ρ∈ R ) ,设C 2 与C 3 的交点为 M , N ,求 ∆C 2 MN 的面积.4(2015 年 2 卷)在直角坐标系 xOy 中,曲线 1 : ⎧ x = t c o s α, ⎩ (t 为参数,且 t≠0),其中 0≤α<π,在以 O 为极点,x 轴正半轴为极轴的极坐标系中,曲线 C 2:ρ=2sin θ,C 3:ρ=2cos θ.(1)求 C 2 与 C 3 交点的直角坐标.(2)若 C 1 与 C 2 相交于点 A,C 1 与 C 3 相交于点 B,求|AB|的最大值.(2016 年 1 卷)在直线坐标系 xOy 中,曲线 C 1 的参数方程为 ⎧x⎩y = acost,= 1 + asint(t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线 C 2:ρ=4cosθ. (1)说明 C 1 是哪一种曲线,并将 C 1 的方程化为极坐标方程.(2)直线 C 3 的极坐标方程为θ=α0,其中α0 满足 tanα0=2,若曲线 C 1 与 C 2 的公共点都在 C 3 上,求 a.C10 22 ⎨y = t sin α⎨ θ + ⎨y = sin θ⎨ y = 1 - t⎩ (2016 年 2 卷)在直线坐标系 xOy 中,圆 C 的方程为( x + 6)2+ y 2 = 25 .(I ) 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求 C 的极坐标方程; (II ) 直线 l 的参数方程是 ⎧ x = t co s α (t 为参数),l 与 C 交于 A 、B 两点, AB = ,求 l 的斜率.⎩(2016 年 3 卷)在直角坐标系 xOy 中,曲线 C 1 的参数方程为 ⎧⎪x =3cosα (α为参数),以坐标原点为极点,⎪⎩y = sinα以 x 轴的正半轴为极轴,,建立极坐标系,曲线 C 2 的极坐标方程为ρsin ⎛π ⎫ =2. 4 ⎪ ⎝ ⎭(1) 写出 C 1 的普通方程和 C 2 的直角坐标方程.(2) 设点 P 在 C 1 上,点 Q 在 C 2 上,求|PQ|的最小值及此时 P 的直角坐标.(2017 年 1 卷)在直角坐标系 xOy 中,曲线 C 的参数方程为 ⎧ x = 3 cos θ(θ 为参数),直线 l 的参数方程为⎩ ⎧ x = a + 4 t ( t 为参数 ) . ⎩ (1) 若 a = -1 ,求C 与l 的交点坐标;(2)(2)若C 上的点到l 的距离的最大值为,求 a .(2107 年 2 卷)在直角坐标系 xOy 中,以坐标原点为极点, x 轴的正半轴为极轴,建立极坐标系,曲线C 1 的极坐标方程为ρcos θ= 4 .(1)M 为曲线C 1 上的动点,点 P 在线段OM 上,且满足 OM ⋅ OP = 16 ,求点 P 的轨迹C 2 的直角坐标方程;(2) 设点 A 的极坐标为⎛ 2 , π ⎫ ,点 B 在曲线C 2 上,求△OAB 面积的最大值.3 ⎪ ⎝ ⎭(2017 年 3 卷)在平面直角坐标系 xOy 中,直线l 的参数方程为⎧ x = 2+t ( t 为参数),直线l 的参数方程为⎧ x = -2 + m1⎨y = kt2⎪ ⎨ y = m ⎩ k (m 为参数).设l 1 与l 2 的交点为 P ,当 k 变化时, P 的轨迹为曲线C . (1) 写出C 的普通方程;(2) 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+ sin θ) -= 0 , M 为l 3 与C 的交点,求 M 的极径.17 ⎪⎩ xOy ⊙O(2018年1卷)在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极 坐标方程为. ⑴求的直角坐标方程;⑵若与有且仅有三个公共点,求的方程.(2018年2卷)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1) 求和的直角坐标方程;(2) 若曲线截直线所得线段的中点坐标为,求的斜率.⎧ x = cos θ,(2018年3卷)在平面直角坐标系 中, 的参数方程为 ⎨ y = sin θ(θ为参数),过点(0 ,- 2 ) 且倾斜角为α的直线l 与⊙O 交于 A ,B 两点.(1) 求α的取值范围;(2) 求 AB 中点 P 的轨迹的参数方程.⎧ 1- t 2x = ,⎪ 1+ t 2 (2019 年 1 卷)在直角坐标系 xOy 中,曲线 C 的参数方程为 ⎨ ⎪ y = ⎩ 4t1+ t 2(t 为参数).以坐标原点 O 为极点,x 轴的正半轴为极轴建立极坐标系,直线 l 的极坐标方程为 2ρcos θ+3ρsin θ+11 = 0 .(1) 求 C 和 l 的直角坐标方程;(2) 求 C 上的点到 l 距离的最小值.(2019 年 2 卷)在极坐标系中,O 为极点,点 M (ρ0 ,θ0 )(ρ0 > 0) 在曲线C :ρ= 4 sin θ上,直线 l 过点 A (4, 0) 且与OM 垂直,垂足为 P .(1)当θ = π时,求ρ 及 l 的极坐标方程;3(2)当 M 在 C 上运动且 P 在线段 OM 上时,求 P 点轨迹的极坐标方程.3 552⎩y = s i n t ,(2019 年 3 卷)如图,在极坐标系 Ox 中,A (2, 0) ,B ( 2, π) ,C ( 2, 3π) , D (2, π) ,弧 AB ,B C , 44C D 所在圆的圆心分别是(1, 0) ,(1, π) ,(1, π) ,曲线 M 1 是弧 AB ,曲线 M 2 是弧 B C ,曲线 M 3 是弧C D . (1) 分别写出 M 1 , M 2 , M 3 的极坐标方程;(2) 曲线 M 由 M 1 , M 2 , M 3 构成,若点 P 在M 上,且| OP |= ,求P 的极坐标.【参考答案】(2014 年 1 卷)⎧ x = 2 cos θ.( I ) 曲线C 的参数方程为⎨ y = 3 sin θ. (θ为参数).直线l 的普通方程为2x + y - 6 = 0.( I I ) 曲 线 C 上 任 意 一 点 P ( 2 co s θ. 3 sin θ) 到 l 的 距 离 为d =4 co s θ + 3 sin θ - 6 .则 P A =d= sin 3 0 ︒ 5 sin (θ + α) - 6 , 其 中 α为 锐 角 , 且 tan α = 4.3当 sin (θ+α) = - 1 时 ,P A 取 得 最 大 值 , 最 大 值 为 2 2 5.5 当 sin (θ + α) = 1时 ,P A 取 得 最 小 值 , 最 小 值 为 2 5.5(2014 年 2 卷)解析:(I )C 的普通方程为(x -1)2 + y 2= 1(0 ≤ y ≤ 1) . 可得 C 的参数方程为⎧ x = 1 + c o s t ,⎨⎩ (t 为参数,0 ≤ t ≤ x ) (Ⅱ)设 D (1 + cos t , sin t ) .由(I )知 C 是以 G (1,0)为圆心,1 为半径的上半圆。
2014-2017新课标卷极坐标与参数方程选做题
试卷第1页,总4页2014-2017新课标卷极坐标与参数方程选做题【试题】1.[2017新课标] 在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的轨迹为曲线C.①写出C 的普通方程;②以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:与C 的交点,求M 的极径.2.[2017年新课标1卷理科]在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x at y t =+⎧⎨=-⎩(t 为参数).①若a=-1,求C 与l 的交点坐标;②若C 上的点到l 求a.3.[2017新课标2卷理科] 在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.①M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;②设点A 的极坐标为(2,)3π,点B在曲线2C 上,求OAB ∆面积的最大值.4.【2016新课标2卷理科】 在直角坐标系xOy 中,圆C 的方程为(x+6)2+y 2=25.①以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;②直线l 的参数方程是cos ,sin ,x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A ,B 两点,∣AB ∣l的斜率.5.【2016新课标1卷理科】 在直角坐标系xOy 中,曲线C 1的参数方程为cos 1sin x a ty a t=⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.①说明C 1是哪种曲线,并将C 1的方程化为极坐标方程;②直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a. 6.【2016年新课标3卷理科】 在直角坐标系xOy 中,曲线1C 的参数方程为,()sin ,x y ααα⎧=⎪⎨=⎪⎩为参数,以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()4ρθπ+=①写出1C 的普通方程和2C 的直角坐标方程;②设点P 在1C 上,点Q 在2C 上,求|PQ|的最小值及此时P 的直角坐标.7.2015年新课标1卷文科 在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.①求12,C C 的极坐标方程.②若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积. 8.2015年新课标2卷理科 在直角坐标系x o y 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,0t ≠),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2:2sin C ρθ=,曲线试卷第2页,总4页3:C ρθ=.①求2C 与1C 交点的直角坐标; ②若2C 与1C 相交于点A ,3C 与1C 相交于点B ,求AB 的最大值.9.2014年新课标1卷理科 已知曲线221:149x yC +=,直线l :2,22,x t y t =+⎧⎨=-⎩(t 为参数). ①写出曲线C 的参数方程,直线l 的普通方程;②过曲线C 上任意一点P 作与l 夹角为30︒的直线,交l 于点A ,PA 的最大值与最小值.10.2014年新课标2卷理科 在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦. ①求C 的参数方程;②设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.2014-2017新课标卷极坐标与参数方程选做题【参考答案】1.①消去参数t 得l 1的普通方程16OP =试卷第3页,总4页标方程()cos =4>0ρθρ因此2C 的直角坐标方程为()()22240x yx -+=≠②设点B的极坐标为()(),>0BBραρ,由题设知cos =2,=4B ραOA ,于是△OAB面积1=s i 232sin 223B S OA AOB πρααπα⎛⎫∠=-=⎪⎝⎭⎛⎫--≤+ ⎪⎝⎭ 当=-12πα时,S 取得最大值所以△OAB 面积的最大值为4.①圆C 的极坐标方程212cos 110.ρρθ++=②在①中建立的极坐标系中,直线l 的极坐标方程为()θαρ=∈R .设,A B 所对应的极径分别为12,,ρρ将l的极坐标方程代入C的极坐标方程得212cos110.ρρα++=于是112c o ρραρ+=-=由||AB =得23cos ,tan 83αα==±,所以l 的斜率为3或3-. 5.①消去参数t 得到1C 的普通方程222)1(a y x =-+.1C 是以)1,0(为圆心,a 为半径的圆.θρθρsin ,cos ==y x 代入1C 的普通方程中,得到1C 的极坐标方程为01sin 222=-+-a θρρ.②曲线21,C C 的公共点的极坐标满足方程组 若0≠ρ,由方程组得1cos sin 8cos 1622=-+-a θθθ,由已知2tan =θ, 可得0cos sin 8cos162=-θθθ,从而012=-a ,解得1-=a (舍去),1=a .1=a 时,极点也为21,C C 的公共点,在3C 上.所以1=a .6.①1C 的普通方程为2213x y +=.2C 的直角坐标方程为40x y +-=.②由题意,可设点P的直角坐标为,sin )αα.因为2C 是直线,所以||PQ 的最小值即为P 到2C 的距离()d α的最小值,()sin(d αα==.当且仅当π2π()6k k α=+∈Z 时,()d α此时P 的直角坐标为31(,)22. 7.①因为,∴的极坐标方程为,的极坐标方程为.……5分 ②将代入,得,解得=,,|MN|=-=,因为的半径为1,则的cos ,sin x y ρθρθ==1C cos 2ρθ=-2C 22cos 4sin 40ρρθρθ--+==4πθ22cos 4sin 40ρρθρθ--+=240ρ-+=1ρ2ρ1ρ2ρ2C 2C MN试卷第4页,总4页面积=. 8.①曲线2C 的直角坐标方程为2220x y y +-=,曲线3C 的直角坐标方程为220x y +-=.联立222220,0,x y y x y ⎧+-=⎪⎨+-=⎪⎩解得0,0,x y =⎧⎨=⎩或,23,2x y ⎧=⎪⎪⎨⎪=⎪⎩所以2C 与1C 交点的直角坐标为(0,0)和3)2. ②曲线1C 的极坐标方程为(,0)R θαρρ=∈≠,其中0απ≤<.因此A 得到极坐标为(2sin ,)αα,B 的极坐标为,)αα.所以2s n 23co sAB αα=-4i n ()3sπα=-,当56πα=时,AB 取得最大值,最大值为4.9.①曲线C 的参数方程为2cos ,3sin ,x y θθ=⎧⎨=⎩(θ为参数).直线l 的普通方程为260x y +-=.②曲线C 上任意一点(2cos ,3sin )P θθ到l 的距离为c o s 3s i n 6d θθ=+-.则)6sin 30d PA θα==+-.其中α为锐角,且4tan 3α=. 当sin()1θα+=-时,PA 取到最当sin()1θα+=时,PA 取到最10.①设点M (,)x y 是C 上任意一点,则由2cos ρθ=可得C 的普通方程为:222x y x +=,即22(1)1(01)x y y -+=≤≤,所以C的参数方程为1cos ,(sin x y βββ=+⎧⎨=⎩是参数,0)βπ≤≤.②设D 点坐标为(1cos ,sin )ββ+,由(1)知C 是以G (1,0)为圆心,1为半径的上半圆,因为C 在点D 处的切线与l 垂直,所以直线GD 与l的斜率相同,tan β=3πβ=,故D点的直角坐标为(1cos,sin )33ππ+,即3(2.o 11sin 452⨯12。
(完整版)极坐标与参数方程高考习题练习含答案
欢迎阅读极坐标系与参数方程高考题练习2014年一.选择题1. (2014北京)曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( B ).A.C 2.ρ4=A.ρ=C.ρ= 0sin cos 2ρθθθ∴=≤≤ ⎪+⎝⎭ 所以选A 。
二.填空题1. (2014湖北)(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y t x ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为_______. 2. (2014湖南)直角坐标系中,倾斜角为4π的直线l 与曲线2cos 1sin x C y αα=+⎧⎨=+⎩:,(α为参数)交于A 、B 两点,且2AB =,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________.3 (2014重庆)已知直线l 的参数方程为⎩⎨⎧+=+=t y t x 32(t 为参数),以坐标原点为极点,x 正半轴为极轴建立极坐标系,曲线C 的极坐标方程为)20,0(0cos 4sin 2πθρθθρ<≤≥=-,则直线l 与曲线C 的公共点的极经=ρ____5____. .【答案】5 【解析】4 (2014上海)已知曲线C 的极坐标方程为1)sin 4cos 3(=-θθp ,则C 与极轴的交点到极点的距离是 。
【答案】 31【解析】.C (2014陕西)(坐标系与参数方程选做题)在极坐标系中,点(2,)6π到直线sin()16πρθ-=的距离是C5 (2014天津)在以O 为极点的极坐标系中,圆θρ4sin =和直线a =θρsin 相交于,A B 两点.若ΔAOB 是等边三角形,则a 的值为___________. 解:3 圆的方程为2224x y ,直线为y a .因为AOB 是等边三角形,所以其中一个交点坐标为,代入圆的方程可得3a .6. (2014广东)(坐标与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为2sin cos ρθθ=和sin ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2的交点的直角坐标为__三.解答题1. (2014新课标I)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩(t 为参数).(Ⅰ).直线ld =则||PA =当(sin θ当(sin θ2. (20142cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦. (Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y +垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.3. (2014辽宁)(本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程.【答案】 (1) π∈[0,θθsin 2,θcos ,==y x (2) 03θsin ρ4-cos θ 2ρ=+ 【解析】(1)(2)4(2014 (I (II 解:圆C (2)故圆(2013)A . C .=()cos=12R πθρρ∈和 D .=0()cos=1R θρρ∈和(2013天津数学(理))已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫ ⎪⎝⎭,则|CP | =1(2013上海卷(理))在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为_____152+_____ 解析:2(2013北京卷(理))在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于____1_____. 3重庆数学(理))在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为cos 4ρθ=的直线与曲线23x ty t⎧=⎪⎨=⎪⎩(为参数)相交于,A B 两点,则______AB = 【答案】1642013广东(理))(坐标系与参数方程选讲选做题)已知曲线C 的参数方程为2cos 2sin x ty t ⎧=⎪⎨=⎪⎩(为参数),C 在点()1,1处的切线为 , 以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则切线的极坐标方程为 .【答案】x+y=2 ;sin 24πρθ⎛⎫+= ⎪⎝⎭5(2013陕西(理))C. (坐标系与参数方程选做题) 如图, 以过原点的直线的倾斜角θ为参数, 则圆220y x x +-=的参数方程为______ .【答案】R y x ∈⎩⎨⎧⋅==θθθθ,sin cos cos 26(2013江西(理))(坐标系与参数方程选做题)设曲线C 的参数方程为2x ty t=⎧⎨=⎩(为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线c 的极坐标方程为__________【答案】2cos sin 0ρθθ-=7(2013湖南卷(理))在平面直角坐标系xoy中,若,3cos, :(t)C:2sin x t xly t a yϕϕ==⎧⎧⎨⎨=-=⎩⎩为参数过椭圆()ϕ为参数的右顶点,则常数a的值为________.【答案】38(2013湖北(理))在直角坐标系xOy中,椭圆C的参数方程为cossinx ay bθθ=⎧⎨=⎩()0a bϕ>>为参数,.)中,(2013α与β=(Ⅰ(Ⅱ9(20132C(I)12(II)设P为1C的圆心,Q为1C与2C交点连线的中点.已知直线PQ的参数方程为()3312x t at Rby t⎧=+⎪∈⎨=+⎪⎩为参数,求,a b的值【答案】10(2013福建(理))坐标系与参数方程:在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为)4π,直线的极坐标方程为cos(4a πρθ-=,且点A 在直线上.(1)求a 的值及直线的直角坐标方程;(2)圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线与圆的位置关系.【答案】解:(Ⅰ)由点)4A π在直线cos(4a πρθ-=上,可得a =(Ⅱ)11(2013程为.【答案】0 ①12(2013新课标1(理))选修4—4:坐标系与参数方程已知曲线C 1的参数方程为45cos 55sin x ty t =+⎧⎨=+⎩(为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为2sin ρθ=. (Ⅰ)把C 1的参数方程化为极坐标方程;(Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).【答案】将45cos 55sin x ty t =+⎧⎨=+⎩消去参数,化为普通方程22(4)(5)25x y -+-=,即1C :22810160x y x y +--+=,将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得,28cos 10sin 160ρρθρθ--+=,∴1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=; (Ⅱ)2C 的普通方程为2220x y y +-=,由222281016020x y x y x y y ⎧+--+=⎪⎨+-=⎪⎩解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩,∴1C 与2C 的交点的极坐标分别为(2,4π),(2,)2π. 【2012新课标文23】已知曲线C 1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正三角形ABC 的顶点都在C 2上,且A 、B 、C 以逆时针次序排列,点A 的极坐标为(2,) (Ⅰ)求点A 、B 、C 的直角坐标;(Ⅱ)设P 为C 1上任意一点,求|PA|2+|PB|2+|PC|2的取值范围. 解析:【2012辽宁文23】在直角坐标xOy 中,圆221:4C x y +=,圆222:(2)4C x y -+=。
极坐标及参数方程高考题练习含答案
极坐标系与参数方程高考题练习2014年一.选择题1. (2014)曲线1cos 2sin x y θθ=-+⎧⎨=+⎩〔θ为参数〕的对称中心〔 B 〕.A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上2.(2014)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取一样的长度单位。
直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为〔 D 〕〔A 〕14 〔B 〕214 〔C 〕2 〔D 〕223(2014) (2).〔坐标系与参数方程选做题〕假设以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段()101y x x =-≤≤的极坐标为〔 〕 A.1,0cos sin 2πρθθθ=≤≤+ B.1,0cos sin 4πρθθθ=≤≤+C.cos sin ,02πρθθθ=+≤≤ D.cos sin ,04πρθθθ=+≤≤【答案】A 【解析】1y x =-()01x ≤≤10sin cos 2πρθθθ⎛⎫∴=≤≤ ⎪+⎝⎭所以选A 。
二.填空题1. (2014)〔选修4-4:坐标系与参数方程〕曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y tx ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为_______.2. (2014)直角坐标系中,倾斜角为4π的直线l 与曲线2cos 1sin x C y αα=+⎧⎨=+⎩:,〔α为参数〕交于A 、B 两点,且2AB =,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________. 3 (2014)直线l 的参数方程为⎩⎨⎧+=+=t y t x 32〔t 为参数〕,以坐标原点为极点,x 正半轴为极轴建立极坐标系,曲线C的极坐标方程为)20,0(0cos 4sin 2πθρθθρ<≤≥=-,则直线l 与曲线C 的公共点的极经=ρ____5____. .【答案】5 【解析】4 (2014)曲线C 的极坐标方程为1)sin 4cos 3(=-θθp ,则C 与极轴的交点到极点的距离是。
2014~2017年极坐标与参数方程全国高考题汇总(精编完美版)
2014~2017年极坐标与参数方程全国高考题汇总(精编完美版)1.【2014·全国Ⅱ】在直角坐标系xoy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈(0,π)。
⑴求C的参数方程;⑵设点D在C上,C在D处的切线与直线l:y=3x+2垂直,根据⑴中你得到的参数方程,确定D的坐标。
解:⑴C的普通方程为(x-1)²+y²=1(0≤y≤1),可得C的参数方程为x=1+cost。
y=sint} (t为参数,0≤t≤π)。
⑵设D(1+cost。
sint)。
由⑴知C是以G(1,0)为圆心,1为半径的上半圆。
因为C在点D处的切线与t垂直,所以直线GD与t的斜率相同,tant=3,t=π/3.故D的直角坐标为(1+cosπ/3.sinπ/3),即(2.3√3)。
2.【2014·全国Ⅰ】已知曲线C:x²/4+y²/9=1,直线l:y=2-2t。
⑴写出曲线C的参数方程,直线l的普通方程;⑵过曲线C上任意一点P作与l夹角为30°的直线,交l 于点A,求|PA|的最大值与最小值。
解析:⑴曲线C的参数方程为:{x=2cost。
y=3sint} (θ为参数)。
直线l的普通方程为:2x+y-6=0.⑵在曲线C上任意取一点P(2cost。
3sint),到l的距离为d=|2cost+3sint-6|/√(4+9),则|PA|=d/sin(30°)=2d。
设α为PA与x轴正半轴的夹角,则tanα=(2sint-3cost+3)/2cosθ,令其等于tan(30°)=√3/3,解得sinθ=5/√58,cosθ=7/√58.代入d的式子可得d=5/√58,故|PA|max=10/√58,|PA|min=2d=10/√58.3.【2015·全国Ⅰ】在直角坐标系xOy中。
直线⑴求C1,C2的极坐标方程;⑵若直线C3的极坐标方程为θ=π/4(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2017新课标卷极坐标与参数方程选做题【试题】1.[2017新课标3卷理科](10分)在直角坐标系xOy中,直线l1的参数方程为2+,,x ty kt=⎧⎨=⎩(t为参数),直线l2的参数2.[2017年新课标1卷理科](10分)在直角坐标系xOy中,曲线C的参数方程为3cos,sin,xyθθ=⎧⎨=⎩(θ为参数),直线l的参数方程为4,1,x a ty t=+⎧⎨=-⎩(t为参数).(1)若a=-1,求C与l的交点坐标;(2)若C上的点到l a.3.[2017新课标2卷理科](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程; (2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.4.【2016新课标2卷理科】(10分)在直角坐标系xOy 中,圆C 的方程为(x+6)2+y 2=25.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (Ⅱ)直线l 的参数方程是cos ,sin ,x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A ,B 两点,∣AB∣l 的斜率.在直角坐标系xOy中,曲线C1的参数方程为cos1sinx a ty a t=⎧⎨=+⎩(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C1与C2的公共点都在C3上,求a.在直角坐标系xOy中,曲线1C的参数方程为,()sin,xyααα⎧=⎪⎨=⎪⎩为参数,以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线2C的极坐标方程为sin()4ρθπ+=(Ⅰ)写出1C的普通方程和2C的直角坐标方程;(Ⅱ)设点P在1C上,点Q在2C上,求|PQ|的最小值及此时P的直角坐标.在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (Ⅰ)求12,C C 的极坐标方程. (Ⅱ)若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积.在直角坐标系xoy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,0t ≠),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2:2sin C ρθ=,曲线3:C ρθ=.(Ⅰ).求2C 与1C 交点的直角坐标;(Ⅱ).若2C 与1C 相交于点A ,3C 与1C 相交于点B ,求AB 的最大值.已知曲线221:149x yC+=,直线l:2,22,x ty t=+⎧⎨=-⎩(t为参数).(I)写出曲线C的参数方程,直线l的普通方程;(II)过曲线C上任意一点P作与l夹角为30︒的直线,交l于点A,PA的最大值与最小值.在直角坐标系xoy中,以坐标原点为极点,x轴为极轴建立极坐标系,半圆C的极坐标方程为2cosρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(1)求C的参数方程;(2)设点D在C上,C在D处的切线与直线:2l y=+垂直,根据(1)中你得到的参数方程,确定D的坐标.2014-2017新课标卷极坐标与参数方程选做题【参考答案】1.[2017新课标3卷理科](10分)在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数【来源】2017年全国普通高等学校招生统一考试理科数学(全国卷3正式版)【答案】(1)C 的普通方程为224x y -=.【解析】(1)消去参数t得l 1的普通方程()12l :y k x =-;消去参数m 得l 2的普所以C 的普通方程为()2240xy y -=≠(2)C 的极坐标方程为()()22240<<2cos sin ,rqq q p q p-=≠2.[2017年新课标1卷理科](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t y t =+⎧⎨=-⎩(t 为参数).(1)若a=-1,求C 与l 的交点坐标;(2)若C 上的点到l a.【来源】2017年全国普通高等学校招生统一考试理科数学(全国卷1正式版) 【答案】(1)(3,0)或2124(,)2525-.(2)8a =或16a =-. 【解析】(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线l 的普通方程为430x y +-=.由2243019x y x y +-=⎧⎪⎨+=⎪⎩解得30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩.从而C 与l 的交点坐标为(3,0),2124(,)2525-. (2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为d =.当4a ≥-时,d=8a =; 当4a <-时,d.由题设得=16a =-. 综上,8a =或16a =-.3.[2017新课标2卷理科](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程; (2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.【来源】2017年全国普通高等学校招生统一考试理科数学(全国卷2正式版)【答案】⑴C 的直角坐标方程为()()22240x y x -+=≠⑵△OAB面积的最大值为 【解析】(1)设P 的极坐标为()(),>0ρθρ,M 的极坐标为()()11,>0ρθρ,由题设知cos 14=,=ρρθOP OM = 由16OM OP =g 得2C 的极坐标方程()cos =4>0ρθρ因此2C 的直角坐标方程为()()22240x y x -+=≠(2)设点B 的极坐标为()(),>0B Bραρ,由题设知cos =2,=4B ραOA ,于是△OAB 面积1=sin 24cos sin 32sin 232B S OA AOB ρπααπα∠⎛⎫=- ⎪⎝⎭⎛⎫=--⎪⎝⎭≤+g g g当=-12πα时,S取得最大值所以△OAB面积的最大值为4.2016新课标2卷理科在直角坐标系xOy 中,圆C 的方程为(x+6)2+y 2=25.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是cos ,sin ,x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A ,B 两点,∣AB∣l 的斜率.【来源】2016年全国普通高等学校招生统一考试理科数学(新课标2卷精编版) 【答案】(Ⅰ)212cos 110ρρθ++=;(Ⅱ)3±. 【解析】试题分析:(Ⅰ)利用222x y ρ=+,cos x ρθ=可得C 的极坐标方程;(Ⅱ)先将直线l 的参数方程化为极坐标方程,再利用弦长公式可得l 的斜率.试题解析:(Ⅰ)由cos ,sin x y ρθρθ==可得圆C 的极坐标方程212cos 110.ρρθ++=(Ⅱ)在(Ⅰ)中建立的极坐标系中,直线l 的极坐标方程为()θαρ=∈R . 设,A B 所对应的极径分别为12,,ρρ将l 的极坐标方程代入C 的极坐标方程得212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-=12||||AB ρρ=-==由||AB =得23cos ,tan 8αα==, 所以l的斜率为3或3-.【考点】圆的极坐标方程与普通方程互化, 直线的参数方程,弦长公式【名师点睛】极坐标方程与直角坐标方程互化时注意:在将点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一;在将曲线的方程进行互化时,一定要注意变量的范围,注意转化的等价性. 5.2016新课标1卷理科在直角坐标系xOy 中,曲线C 1的参数方程为cos 1sin x a ty a t=⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (Ⅰ)说明C 1是哪种曲线,并将C 1的方程化为极坐标方程;(Ⅱ)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a.【来源】2016年全国普通高等学校招生统一考试理科数学(新课标1卷精编版) 【答案】(Ⅰ)圆,222sin 10a ρρθ-+-=;(Ⅱ)1 【解析】试题分析:(Ⅰ)把cos 1sin x a t y a t =⎧⎨=+⎩化为直角坐标方程,再化为极坐标方程;(Ⅱ)联立极坐标方程进行求解.试题解析:解:(Ⅰ)消去参数t 得到1C 的普通方程222)1(a y x =-+.1C 是以)1,0(为圆心,a 为半径的圆.将θρθρsin ,cos ==y x 代入1C 的普通方程中,得到1C 的极坐标方程为01sin 222=-+-a θρρ.(Ⅱ)曲线21,C C 的公共点的极坐标满足方程组⎩⎨⎧==-+-,cos 4,01sin 222θρθρρa若0≠ρ,由方程组得01cos sin 8cos 1622=-+-a θθθ,由已知2tan =θ,可得0cos sin 8cos162=-θθθ,从而012=-a ,解得1-=a (舍去),1=a .1=a 时,极点也为21,C C 的公共点,在3C 上.所以1=a .【考点】参数方程、极坐标方程与直角坐标方程的互化及应用【名师点睛】“互化思想”是解决极坐标方程与参数方程问题的重要思想,解题时应熟记极坐标方程与参数方程的互化公式及应用. 6.2016年新课标3卷理科在直角坐标系xOy 中,曲线1C的参数方程为,()sin ,x y ααα⎧=⎪⎨=⎪⎩为参数,以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C的极坐标方程为sin()4ρθπ+= .(Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求|PQ|的最小值及此时P 的直角坐标. 【来源】2016年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)【答案】(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=;(Ⅱ)31(,)22.【解析】 试题分析:(Ⅰ)利用同角三角函数基本关系中的平方关系化曲线C 1的参数方程为普通方程,利用公式cos x ρθ=与sin y ρθ=将曲线C 2的极坐标方程化为直角坐标方程;(Ⅱ)利用参数方程表示出点P 的坐标,然后利用点到直线的距离公式建立||()PQ d α=的三角函数表达式,最后求出最值与相应点P 的坐标即可.试题解析:(Ⅰ)1C 的普通方程为2213x y +=.2C 的直角坐标方程为40x y +-=. (Ⅱ)由题意,可设点P的直角坐标为,sin )αα.因为2C 是直线,所以||PQ 的最小值即为P 到2C 的距离()d α的最小值,π()sin()2|3d αα==+-.当且仅当π2π()6k k α=+∈Z 时,()d α,此时P 的直角坐标为31(,)22.【考点】椭圆的参数方程,直线的极坐标方程.【技巧点拨】一般地,涉及椭圆上的点的最值问题、定值问题、轨迹问题等,当直接处理不好下手时,可考虑利用椭圆的参数方程进行处理,设点的坐标为(cos ,cos )a b αα,将其转化为三角问题进行求解.7.2015年新课标1卷文科在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (Ⅰ)求12,C C 的极坐标方程. (Ⅱ)若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积.【来源】2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ带解析)【答案】(Ⅰ)cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=(Ⅱ)12【解析】试题分析:(Ⅰ)用直角坐标方程与极坐标互化公式即可求得1C ,2C 的极坐标方程;(Ⅱ)将将=4πθ代入22cos 4sin 40ρρθρθ--+=即可求出|MN|,利用三角形面积公式即可求出2C MN V的面积. 试题解析:(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.……5分(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=,2ρ,|MN|=1ρ-2ρ,因为2C 的半径为1,则2C MN V的面积o 11sin 452⨯=12. 考点:直角坐标方程与极坐标互化;直线与圆的位置关系8.2015年新课标2卷理科在直角坐标系xoy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,0t ≠),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2:2sin C ρθ=,曲线3:C ρθ=.(Ⅰ).求2C 与1C 交点的直角坐标;(Ⅱ).若2C 与1C 相交于点A ,3C 与1C 相交于点B ,求AB 的最大值. 【来源】2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ带解析) 【答案】(Ⅰ)(0,0)和3)22;(Ⅱ)4. 【解析】(Ⅰ)曲线2C 的直角坐标方程为2220x y y +-=,曲线3C 的直角坐标方程为220x y +-=.联立222220,0,x y y x y ⎧+-=⎪⎨+-=⎪⎩解得0,0,x y =⎧⎨=⎩或3,2x y ⎧=⎪⎪⎨⎪=⎪⎩所以2C 与1C 交点的直角坐标为(0,0)和3)22. (Ⅱ)曲线1C 的极坐标方程为(,0)R θαρρ=∈≠,其中0απ≤<.因此A 得到极坐标为(2sin ,)αα,B 的极坐标为,)αα.所以2sin AB αα=-4in()3s πα=-,当56πα=时,AB 取得最大值,最大值为4.考点:1、极坐标方程和直角坐标方程的转化;2、三角函数的最大值. 9.2014年新课标1卷理科已知曲线221:149x y C +=,直线l :2,22,x t y t =+⎧⎨=-⎩(t 为参数). (I )写出曲线C 的参数方程,直线l 的普通方程;(II )过曲线C 上任意一点P 作与l 夹角为30︒的直线,交l 于点A ,PA 的最大【来源】2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ带解析) 【答案】(I )2cos ,3sin ,x y θθ=⎧⎨=⎩260x y +-=;(II )最大值为5,最小值为5. 【解析】试题分析:(I )由椭圆的标准方程设cos ,sin 22x yθθ==,得椭圆的参数方程为2cos ,3sin ,x y θθ=⎧⎨=⎩,消去参数t 即得直线的普通方程为260x y +-=;(II )关键是处理好PA 与角30︒的关系.过点P 作与l 垂直的直线,垂足为H ,则在PHA ∆中,12PH d PA ==,故将PA 的最大值与最小值问题转化为椭圆上的点(2cos P θ,3sin )θ到定直线260x y +-=的最大值与最小值问题处理.试题解析:(I )曲线C 的参数方程为2cos ,3sin ,x y θθ=⎧⎨=⎩(θ为参数).直线l 的普通方程为260x y +-=. (II )曲线C上任意一点(2cos ,3sin )P θθ到l 的距离为3sin 6d θθ=+-.则0)6sin 30d PA θα==+-.其中α为锐角,且4tan 3α=. 当sin()1θα+=-时,PA当sin()1θα+=时,PA. 【考点定位】1、椭圆和直线的参数方程;2、点到直线的距离公式;3、解直角三角形.10.2014年新课标2卷理科在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦. (1)求C 的参数方程;(2)设点D 在C 上,C 在D处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.【来源】2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷带解析)【答案】(1)1cos ,(sin x y βββ=+⎧⎨=⎩是参数,0)βπ≤≤;(2)3(,22 【解析】试题分析:本题第(1)问,由极坐标与普通方程的互化关系可得出C 的普通方程为:222x y x +=,从而写出C 的参数方程为1cos ,(sin x y βββ=+⎧⎨=⎩是参数,0)βπ≤≤.;对第(2)问,可先设D 点坐标为(1cos ,sin )ββ+,然后由C 在点D 处的切线与l垂直,得出tan β=3πβ=,写出D 点坐标.试题解析:(1)设点M (,)x y 是C 上任意一点,则由2cos ρθ=可得C 的普通方程为:222x y x +=,即22(1)1(01)x y y -+=≤≤,所以C 的参数方程为1cos ,(sin x y βββ=+⎧⎨=⎩是参数,0)βπ≤≤.(2)设D 点坐标为(1cos ,sin )ββ+,由(1)知C 是以G (1,0)为圆心,1为半径的上半圆,因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan β=3πβ=,故D 点的直角坐标为(1cos,sin )33ππ+,即3(,22.【易错点】对第(1)问,极坐标与普通方程、参数方程之间的互化,有一部分学生不熟练而出错;对第(2)问,不理解题意而出错.考点:本小题主要考查坐标系与参数方程的基础知识,熟练这部分的基础知识是解答好本类题目的关键.。