2023年高考数学微专题练习专练68高考大题专练八不等式选讲含解析理
高考数学复习热点08 数列与不等式(原卷版)-2021年高考数学专练(新高考)

热点08 数列与不等式【命题趋势】在新高考卷的考点中,数列主要以两小和一大为主的考查形式,在小题中主要以等差数列和等比数列为主,大题中新高考比以往的考察有了很大的改变,以前是三角和数列在17题交替考查,现在作为主干知识必考内容,考察位置是17或18题,题型可以是多条件选择的开放式的题型。
由于三角函数与数列均属于解答题第一题或第二题的位置,考查的内容相对比较简单,这一部分属于必得分,对于小题部分,一般分布为一题简单题一道中等难度题目。
对于不等式内容新教材删除了线性规划和不等式选讲,新高考主要考察不等式性质和基本不等式。
基本不等式考察往往都是已基本不等式作为切入点形式出现,题目难度中等。
专题针对高考中数列、不等式等高频知识点,预测并改编一些题型,通过本专题的学习,能够彻底掌握数列,不等式。
请学生务必注意题目答案后面的名师点睛部分,这是对于本类题目的一个总结。
【满分技巧】1、等差、等比数列如果记住基本的通项公式以及求和公式和性质,基本上所有的等差、等比数列问题都可以解决。
2、数列求通项主要方法有:公式法、利用前n项和求通项、累加、累乘、构造等方法;这里要注意各个方法中递推关系的模型结构特点。
3、数列求和问题主要包含裂项求和,分组求和,绝对值求和,错位相减求和,掌握固定的求和方式即可快速得到答案;这里要注意各个方法中数列通项的结构模型;本专题有相应的题目供参考。
4、对于基本不等式类的题目应注意等号成立地条件和基本不等式的模型结构,对“1”的活用。
【考查题型】选择题、填空、解答题【常考知识】数列的概念、等差等比数列的概念和公式和性质、数列求通项的方法、数列求和的方法、不等式的性质、基本不等式【限时检测】(建议用时:90分钟)一、单选题1.(2020·云南省个旧市第一高级中学高三其他模拟(理))设等差数列的前项和为,且{}n a n n S ,则的值为( )1144S =378a a a ++A .11B .12C .13D .142.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))设是等比数列,且,{}n a 1231a a a ++=,则( )234+2a a a +=678a a a ++=A .12B .24C .30D .323.(2018·陆川中学高三其他模拟(理))等差数列的前项和为,且,.设{}n a n n S 10a >500S =,则当数列的前项和取得最大值时, 的值为( )()*12n n n n b a a a n N ++=∈{}nb n nT n A .23B .25C .23或24D .23或254.(2020·广西高三一模(理))已知数列,,则( )21131322n n n a a a --=++12a =()25log 1a +=A .B .C .D .263log 331-231log 315-363log 231-331log 215-5.(2020年浙江省高考数学试卷)已知等差数列{a n }的前n 项和S n ,公差d ≠0,.记b 1=S 2,11a d≤b n+1=S 2n+2–S 2n ,,下列等式不可能成立的是( )n *∈N A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .D .2428a a a =2428b b b =6.(2020·江苏宝应中学高二期中)若a ,b 为正实数,且,则的最小值为( )1123a b +=3a b +A .2B .C .3D .4327.(2020·云南省个旧市第一高级中学高三其他模拟(理))已知数列的前项和为,且{}n a n n S ,,,则的通项公式为( )12n n S a n +=+-*n N ∈12a ={}n a A .B .C .D .121n n a -=-12n n a -=121n n a -=+2nn a =8.(2020·贵州高三其他模拟(理))已知是双曲线的半焦距,则的最c 2222:1(0,0)x y C a b a b -=>>a b c+大值是( )A BC D9.(2020·四川遂宁·高三零模(理))已知正项等比数列满足,,又为数{}n a 112a =2432a a a =+n S 列的前项和,则( ){}n a n 5S =A . 或B .312112312C .D .15610.(2020·河南焦作·高三一模(理))在等比数列中,,,则({}n a 11a =427a =352a a +=)A .45B .54C .99D .8111.(2020年全国统一高考数学试卷(理科)(新课标Ⅱ))数列中,,,若{}n a 12a =m n m n a a a +=,则( )155121022k k k a a a ++++++=- k =A .2B .3C .4D .512.(2020·江西高三二模(理))已知等比数列的首项,公比为,前项和为,则“{}n a 10a >q n n S”是“”的( )1q >3542S S S +>A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件13.(2020·浙江省东阳中学高三其他模拟)已知数列的前n 项和,则{}n a ()212,1n n S n a n a =≥=n a =( )A .B .C .D .()21n n +22(1)n +121n-121n -二、多选题14.(2020年新高考全国卷Ⅰ数学高考试题(山东))已知a >0,b >0,且a +b =1,则( )A .B .2212a b +≥122a b ->C .D 22log log 2a b +≥-+≤15.(2020·广东湛江·高三其他模拟)已知数列{a n }满足:0<a 1<1,.则下列说()14n n n a a ln a +-=-法正确的是( )A .数列{a n }先增后减B .数列{a n }为单调递增数列C .a n <3D .202052a >三、填空题16.(2020年浙江省高考数学试卷)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列就是二阶等差数列,数列的前3项和是________.(1)2n n +⎧⎫⎨⎬⎩⎭(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈17.(2020·广西高三一模(理))已知数列和满足,,,{}n a {}n b 12a =11b =1n n n a b b ++=.则=_______.114n n n a b a +++=20211008b a 18.(2020·山东济宁·高三其他模拟)已知,若不等式对140,0,1m n m n >>+=24m n x x a +≥-++已知的及任意实数恒成立,则实数最大值为_________.,m n x a 19.(2020·福建莆田·高三其他模拟)在△ABC 中,三边a ,b ,c 所对应的角分别是A ,B ,C ,已知a ,b ,c 成等比数列.若,数列满足,前n 项和为,sin sin sin B A C ={}n a 32|cos |2nn a nB =n S 2nS =__________.20.(2020·四川遂宁·高三零模(理))已知均为实数,函数在时取,a b 1()(2)2f x x x x =+>-x a =得最小值,曲线在点处的切线与直线_____2ln(1)y x =+()0,0y bx =a b +=四、解答题21.(2020·福建莆田·高三其他模拟)在①;②为等差数列,其中成131n n n a a a +=+1{}n a 236111,1,a a a +等比数列;③这三个条件中任选一个,补充到下面的问题中,然后解答2123111132n n na a a a -++++= 补充完整的题目.已知数列中,______.{}n a 11a =(1)求数列的通项公式;{}n a (2)设为数列的前项和,求证:.1,n n n n b a a T +={}n b n 13n T <注:如果选择多个条件分别解答,按第一个解答计分.22.(2020·安徽高三其他模拟(理))已知公比大于的等比数列满足,,1{}n a 2312a a +=416a =.2log n n b a =(1)求数列、的通项公式;{}n a {}n b (2)若数列的前项和为,求的前项和.{}n b n n S ()()*12n nnn a c n S -=∈N n n T 23.(2020年天津高考数学卷)已知为等差数列,为等比数列,{}n a {}n b .()()115435431,5,4a b a a a b b b ===-=-(Ⅰ)求和的通项公式;{}n a {}n b (Ⅱ)记的前项和为,求证:;{}n a n n S ()2*21n n n S S S n ++<∈N (Ⅲ)对任意的正整数,设求数列的前项和.n ()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数{}n c 2n 24.(2020年浙江省高考数学试卷)已知数列{a n },{b n },{c n }中,.1111121,,()nn n n n n n b a b c c a a c c n b +++====-=⋅∈*N (Ⅰ)若数列{b n }为等比数列,且公比,且,求q 与{a n }的通项公式;0q >1236b b b +=(Ⅱ)若数列{b n }为等差数列,且公差,证明:.0d >1211n c c c d +++<+*()n N ∈25.(2018·陆川中学高三其他模拟(理))已知数列为公差不为零的等差数列,且,{}n a 23a =1a 3a ,成等比数列.7a (1)求数列的通项公式;{}n a (2)若数列满足,记数列的前项和为,求证:.{}n b 110101n n n b a a +=+{}n b n n S 12n S <。
2019年高考数学(理)一轮复习精品资料专题68绝对值不等式(押题专练)含解析

2019年高考数学(理)一轮复习精品资料1.已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}。
(1)求实数a ,b 的值;(2)求at +12+bt 的最大值。
解析:(1)由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得a =-3,b =1。
(2)-3t +12+t =34-t +t ≤32+124-t2+t2]=24-t +t =4, 当且仅当4-t 3=t1,即t =1时等号成立, 故(-3t +12+t )max =4。
2.设函数f (x )=|x -3|+|2x -4|-a 。
(1)当a =6时,解不等式f (x )>0;(2)如果关于x 的不等式f (x )<0的解集不是空集,求实数a 的取值范围。
3.设函数f (x )=|2x +2|-|x -2|。
(1)求不等式f (x )>2的解集;(2)若对于∀x ∈R ,f (x )≥t 2-72t 恒成立,求实数t 的取值范围。
解析:(1)f (x )=⎩⎪⎨⎪⎧-x -4,x <-1,3x ,-1≤x <2,x +4,x ≥2。
当x <-1时,-x -4>2,x <-6,∴x <-6; 当-1≤x <2时,3x >2,x >23,∴23<x <2;当x ≥2时,x +4>2,x >-2,∴x ≥2。
综上所述,不等式f (x )>2的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >23或x <-6。
(2)由(1)可知f (x )min =f (-1)=-3, 若∀x ∈R ,f (x )≥t 2-72t 恒成立,则只需f (x )min =-3≥t 2-72t ⇒2t 2-7t +6≤0⇒32≤t ≤2,所以实数t 的取值范围为32≤t ≤2。
4.已知函数f (x )=x |x -a |(a ∈R )。
高考真题汇编——理科数学(解析版)8:不等式

2021(高|考)真题分类汇编:不等式1.【2021(高|考)真题重庆理2】不等式0121≤+-x x 的解集为 A.⎥⎦⎤ ⎝⎛-1,21 B.⎥⎦⎤⎢⎣⎡-1,21 C.[)+∞⋃⎪⎭⎫ ⎝⎛-∞-,121. D.[)+∞⋃⎥⎦⎤ ⎝⎛-∞-,121, 对【答案】A【解析】原不等式等价于0)12)(1(<+-x x 或01=-x ,即121<<-x 或1=x ,所以不等式的解为121≤<-x ,选A. 2.【2021(高|考)真题浙江理9】设a 大于0 ,b 大于0.2a +2a =2b 2a +2a =2b +3b ,那么a >b 2a -2a =2b -2a -2a =a b -3b ,那么a <b 【答案】A【解析】假设2223a b a b +=+ ,必有2222a b a b +>+.构造函数:()22x f x x =+ ,那么()2ln 220x f x '=⋅+>恒成立 ,故有函数()22x f x x =+在x >0上单调递增 ,即a >b 成立.其余选项用同样方法排除.应选A3.【2021(高|考)真题四川理9】某公司生产甲、乙两种桶装产品 .生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克 ,B 原料1千克 .每桶甲产品的利润是300元 ,每桶乙产品的利润是400元 .公司在生产这两种产品的方案中 ,要求每天消耗A 、B 原料都不超过12千克 .通过合理安排生产方案 ,从每天生产的甲、乙两种产品中 ,公司共可获得的最|大利润是 ( )A 、1800元B 、2400元C 、2800元D 、3100元【答案】C.【解析】设生产x 桶甲产品 ,y 桶乙产品 ,总利润为Z ,那么约束条件为⎪⎪⎩⎪⎪⎨⎧>>≤+≤+00122122y x y x y x ,目标函数为300400Z x y =+ ,可行域为 ,当目标函数直线经过点M 时z 有最|大值 ,联立方程组⎩⎨⎧=+=+122122y x y x 得)4,4(M ,代入目标函数得2800=z ,应选C.4.【2021(高|考)真题山东理5】变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,那么目标函数3z x y =-的取值范围是(A )3[,6]2- (B )3[,1]2-- (C )[1,6]- (D )3[6,]2-【答案】A【解析】做出不等式所表示的区域如图 ,由y x z -=3得z x y -=3 ,平移直线x y 3= ,由图象可知当直线经过点)0,2(E 时 ,直线z x y -=3的截距最|小 ,此时z 最|大为63=-=y x z ,当直线经过C 点时 ,直线截距最|大 ,此时z 最|小 ,由⎩⎨⎧=+-=-4214y x y x ,解得⎪⎩⎪⎨⎧==321y x ,此时233233-=-=-=y x z ,所以y x z -=3的取值范围是]6,23[-,选A. 5.【2021(高|考)真题辽宁理8】设变量x ,y 满足,15020010⎪⎩⎪⎨⎧≤≤≤+≤≤-y y x y x 那么y x 32+的最|大值为(A) 20 (B) 35 (C) 45 (D) 55 【答案】D【解析】画出可行域 ,根据图形可知当x =5,y =15时2x +3y 最|大 ,最|大值为55 ,应选D 【点评】此题主要考查简单线性规划问题 ,难度适中 .该类题通常可以先作图 ,找到最|优解求出最|值 ,也可以直接求出可行域的顶点坐标 ,代入目标函数进行验证确定出最|值 .6.【2021(高|考)真题广东理5】变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥+≤112y x y x y ,那么z =3x +y 的最|大值为A.12B.11C.3D. -1 【答案】B【解析】画约束区域如下图 ,令0=z 得x y 3-= ,化目标函数为斜截式方程z x y +-=3得 ,当2,3==y x 时 ,11max =z ,应选B .7.【2021(高|考)真题福建理5】以下不等式一定成立的是 A.B.C.D.【答案】C.【解析】此类题目多项选择用筛选法 ,对于A当41=x 时 ,两边相等 ,故A错误;对于B具有根本不等式的形式 ,但是x sin 不一定大于零 ,故B错误;对于C ,0)1(012||21222≥±⇔≥+±⇔≥+x x x x x ,显然成立;对于D任意x 都不成立.应选C.8.【2021(高|考)真题江西理8】某农户方案种植黄瓜和韭菜 ,种植面积不超过50计 ,投入资金不超过54万元 ,假设种植黄瓜和韭菜的产量、本钱和售价如下表 年产量/亩 年种植本钱/亩 每吨售价 黄瓜 4吨 韭菜 6吨为使一年的种植总利润 (总利润 =总销售收入减去总种植本钱 )最|大 ,那么黄瓜和韭菜的种植面积 (单位:亩 )分别为A .50 ,0B .30 ,20C .20 ,30D .0 ,50 【答案】B【命题立意】此题考查函数的简单应用 ,以及简单的线性规划问题 .【解析】设黄瓜的种植面积为x ,韭菜的种植面积为y ,那么有题意知⎪⎩⎪⎨⎧≥≤+≤+0,549.02.150y x y x y x ,即⎪⎩⎪⎨⎧≥≤+≤+0,1803450y x y x y x ,目标函数y x y x y x z 1099.02.163.0455.0+=--⨯+⨯= ,作出可行域如图,由图象可知当直线经过点E 时 ,直线z x y 910910+-=的解决最|大 ,此时z 取得最|大值 ,由⎩⎨⎧=+=+1803450y x y x ,解得⎩⎨⎧==2030y x ,选B.9.【2021(高|考)真题湖北理6】设,,,,,a b c x y z 是正数 ,且22210a b c ++= ,22240x y z ++= ,20ax by cz ++= ,那么a b cx y z++=++A .14B .13C .12D .34【答案】C【解析】由于222222)())((2cz by ax z y x c b a ++≥++++等号成立当且仅当,t zcy b x a ===那么a =t x b =t y c =t z ,10)(2222=++z y x t 所以由题知2/1=t ,又2/1,==++++++++===t zy x cb a z y xc b a z c y b x a 所以 ,答案选C. 10.【2021(高|考)真题福建理9】假设函数y =2x 图像上存在点 (x ,y )满足约束条件⎪⎩⎪⎨⎧≥≥--≤-+m x y x y x 03203 ,那么实数m 的最|大值为A .12 B.1 C. 32【答案】B.【解析】如图当直线m x =经过函数xy 2=的图像与直线03=-+y x 的交点时 ,函数x y 2=的图像仅有一个点在可行域内 ,有方程组⎩⎨⎧=-+=032y x y x得1=x ,所以1≤m ,应选B. 11.【2021(高|考)真题山东理13】假设不等式42kx -≤的解集为{}13x x ≤≤ ,那么实数k =__________. 【答案】2=k【解析】由2|4|≤-kx 可得62≤≤kx ,所以321≤≤x k ,所以12=k,故2=k . 12.【2021(高|考)真题安徽理11】假设,x y 满足约束条件:02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩;那么x y -的取值范围为_____. 【答案】[3,0]-【命题立意】此题考查线性规划知识 ,会求目标函数的范围 .【解析】约束条件对应ABC ∆边际及内的区域:3(0,3),(0,),(1,1)2A B C ,那么[3,0]t x y =-∈- .13.【2021(高|考)真题全国卷理13】假设x ,y 满足约束条件那么z =3x -y 的最|小值为_________.【答案】1-【解析】做出做出不等式所表示的区域如图,由y x z -=3得z x y -=3 ,平移直线x y 3= ,由图象可知当直线经过点)1,0(C 时 ,直线z x y -=3的截距最| 大 ,此时z 最|小,最|小值为1-3=-=y x z .14.【2021(高|考)江苏13】 (5分 )函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞, ,假设关于x 的不等式()f x c <的解集为(6)m m +, ,那么实数c 的值为 ▲ . 【答案】9 .【考点】函数的值域 ,不等式的解集 .【解析】由值域为[0)+∞, ,当2=0x ax b ++时有240a b =-= ,即24a b =, ∴2222()42a a f x x ax b x ax x ⎛⎫=++=++=+ ⎪⎝⎭. ∴2()2a f x x c ⎛⎫=+< ⎪⎝⎭解得2a c x c -<+< ,22a a c x c --<<- .∵不等式()f x c <的解集为(6)m m +, ,∴()()2622aa c c c ----== ,解得9c = .15.【2021(高|考)江苏14】 (5分 )正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,那么ba的取值范围是 ▲ . 【答案】[] 7e ,. 【考点】可行域 .【解析】条件4ln 53ln b c a a c c c a c b -+-≤≤≥,可化为:354a c a b c c a bc cb e c⎧⋅+≥⎪⎪⎪+≤⎨⎪⎪⎪≥⎩ . 设==a bx y c c, ,那么题目转化为: x y ,满足35400xx y x y y e x >y >+≥⎧⎪+≤⎪⎨≥⎪⎪⎩, ,求y x 的取值范围 . 作出 (x y , )所在平面区域 (如图 ) .求出=x y e 的切 线的斜率e ,设过切点()00P x y ,的切线为()=0y ex m m +≥ , 那么00000==y ex m me x x x ++,要使它最|小 ,须=0m . ∴yx的最|小值在()00P x y ,处 ,为e .此时 ,点()00P x y ,在=x y e 上,A B 之间 . 当 (x y , )对应点C 时 , =45=205=7=7=534=2012y x y x yy x y x y xx --⎧⎧⇒⇒⇒⎨⎨--⎩⎩ , ∴yx的最|大值在C 处 ,为7 . ∴y x 的取值范围为[] 7e ,,即ba的取值范围是[] 7e , . 16.【2021(高|考)真题浙江理17】设a ∈R ,假设x >0时均有[(a -1)x -1]( x 2-ax -1)≥0 ,那么a =______________.【答案】a =【解析】此题按照一般思路 ,那么可分为一下两种情况: (A )2(1)1010a x x ax ≤⎧⎨≤⎩---- , 无解; (B )2(1)1010a x x ax ≥⎧⎨≥⎩---- , 无解. 因为受到经验的影响 ,会认为此题可能是错题或者解不出此题.其实在x >0的整个区间上 ,我们可以将其分成两个区间(为什么是两个 ?) ,在各自的区间内恒正或恒负.(如下答图)我们知道:函数y 1=(a -1)x -1 ,y 2=x 2-ax -1都过定点P (0 ,1). 考查函数y 1=(a -1)x -1:令y =0 ,得M (11a - ,0) ,还可分析得:a >1; 考查函数y 2=x 2-ax -1:显然过点M (11a - ,0) ,代入得:211011a a a ⎛⎫--= ⎪--⎝⎭ ,解之得:2a =± ,舍去2a =- ,得答案:2a =.17.【2021(高|考)真题新课标理14】 设,x y 满足约束条件:,013x y x y x y ≥⎧⎪-≥-⎨⎪+≤⎩;那么2z x y=-的取值范围为 【答案】]3,3[-【解析】做出不等式所表示的区域如图 ,由y x z 2-=得z x y 2121-=,平移直线x y 21= ,由图象可知当直线经过点)0,3(D 时 ,直线z x y 2121-=的截距最|小 ,此时z 最|大为32=-=y x z ,当直线经过B 点时 ,直线截距最|大 ,此时z 最|小 ,由⎩⎨⎧=+-=-31y x y x ,解得⎩⎨⎧==21y x ,即)2,1(B ,此时3412-=-=-=y x z ,所以33≤≤-z ,即z 的取值范围是]3,3[-.。
2023届高考数学复习:精选好题专项(不等式与逻辑用语多选题)练习(附答案)

2023届高考数学复习:精选好题专项(不等式与逻辑用语多选题)练习题型一 不等式的性质1、(2022年湖南磁力一中高三月考试卷)下列四个条件中,能成为x y >的充分不必要条件的是( ) A. 22xc yc >B. 22x y >C. x y >D. ln ln x y >2、(2022年江苏镇江市高三月考试卷)已知a ,b ,c ,d ∈R ,下列命题正确的是( ) A. 若a <b <0,则a 2<ab <b 2B. 若a >b ,则ac 2≥bc 2C. 不等式e e 2a a -+≥恒成立D. 若a b >,且c d >,则()()ln ln ac bd >3、(2022ꞏ江苏无锡ꞏ高三期末)已知e e 1b a <<,则下列结论正确的是( ) A .22a b < B .2b aa b+>C .2ab b >D .2lg lg()a ab <4、(2022ꞏ广东汕尾ꞏ高三期末)已知a ,b 都是不等于1的正实数,且a >b ,0<c <1,则下列不等式一定成立的是( ) A .a b c c > B .c c a b >C .log log c c a b >D .11()()4a b a b++>5、(2022ꞏ山东济南ꞏ高三期末)已知实数a ,b ,c 满足0a b c >>>,则下列说法正确的是( ) A .()()11a c abc a <--B .b bc a a c+<+ C .2ab c ac bc +>+D .()11a b a b ⎛⎫++ ⎪⎝⎭的最小值为46、(2022ꞏ山东泰安ꞏ高三期末)若,,0a b R a b ∈<<,则下列不等式中,一定成立的是( ) A .11a b a>- B .11a b > C .2a bb a+>D .a b >7、(华南师范大学附属中学高三期末试题)已知0a b >>,则下列说法正确的是( ) A.33b b a a +>+ B.3223a b aa b b+<+C. <D. lg lg lg 22a b a b++> 题型二 简单不等式1、(2022·江苏苏州期中)已知不等式x 2+2ax +b -1>0的解集是{x |x ≠d },则b 的值可能是A .-1B .3C .2D .02、(2022·江苏常州期中)已知关于x 的不等式a e x +bx +c >0的解集为(-1,2),则A .a >0B .b >0C .c >0D .a +b +c >03、(2022年湖南湘阴县知源高级中学高三月考试卷)已知关于x 的不等式20ax bx c ++>的解集为(,2)(3,)-∞-⋃+∞,则( )A. 0a >B. 不等式0bx c +>的解集是{}|6x x <-C. 0a b c ++>D. 不等式20cx bx a -+<的解集为11(,(,)32-∞-⋃+∞4、(2022年江苏盐城市高三月考试卷)若“2340x x +-<”是“222()330x k x k k -+++≥”的充分不必要条件,则实数k 可以是( )A. 8-B. 5-C. 1D. 45、(2022年重庆市北山中学高三月考试卷). 下列叙述不正确的是( ) A.12x<的解是12x >B. “04m ≤≤”是“210mx mx ++≥”的充要条件C. 已知x ∈R ,则“0x >”是“11x -<”的必要不充分条件D. 函数()2232f x x x =++的最小值是2- 题型三 基本不等式1、(2022年辽宁葫芦岛市中学高三月考试卷)已知0a >,0b >,4165log 2log 16a b +=,则下列结论正确的是( )A. 45a b +=B. 542a b +=C. ab 的最大值为2564D.11a b+的最小值为1852、 (2022年湖南邵阳市高三月考试卷)已知实数a ,b ,c 满足0a b c <<<,则下列说法正确的是( )A.()()11a c abc a >-- B.b bc a a c+>+ C. 2ab c ac bc +>+D. 11()()a b a b++的最小值为43、(2022ꞏ广东ꞏ铁一中学高三期末)若0,0a b >>.且4a b +=,则下列不等式恒成立的是( )A .1104ab <≤ B 2 C .111a b+≥D .22118a b ≤+ 4、(2022ꞏ重庆ꞏ模拟预测)(多选题)已知正数a ,b 满足22a b ab +=,则下列说法一定正确的是( ) A .24a b +≥ B .4a b +≥ C .8ab ≥D .2248a b +≥5、(2022ꞏ湖南常德ꞏ高三期末)若0a >,0b >,111a b+=,则( )A .4ab ≤B .4a b +≥C .228a b +≤D .22log log 2a b +≥6、(2022ꞏ湖北襄阳ꞏ高三期末)已知()lg f x x =,当a b <时,()()f a f b =,则( ) A .01a <<,1b >B .10ab =C .2114b a -<D .224a b +>7、(2022ꞏ山东德州ꞏ高三期末)已知0a >,0b >,2a b ab +=,则下列结论正确的是( )A .a b +的最小值为3+B .22a b +的最小值为16CD .lg lg a b +的最小值为3lg 28、(2022ꞏ山东烟台ꞏ高三期末)已知0a >,0b >,则下列命题成立的有( ) A .若1ab =,则222a b +≥ B .若1ab =,则112a b +≥C .若1a b +=,则2212a b +≤D .若1a b +=,则114a b+≥9、(2022ꞏ湖北ꞏ蕲春县第一高级中学模拟预测)(多选题)若0,0a b >>,且4a b +=,则下列不等式恒成立的是( )A .1104ab <≤ B .111a b+≥C .22log log 2a b +<D .22118a b ≤+10、(2022ꞏ辽宁辽阳ꞏ二模)(多选题)已知0a >,0b >,且24a b +=,则( ) A .124a b ->B .22log log 1a b +≤C ≥D .412528a b +≥11、(2022ꞏ福建莆田ꞏ模拟预测)(多选题)已知直线l :()100,0ax by a b ++=>>与圆C :221x y +=相切,则下列说法正确的是( )A .12ab ≥B .22114a b+≥C .2122a b +⎛⎫≤ ⎪⎝⎭D .11a b+≤12、(2022ꞏ江苏ꞏ扬中市第二高级中学模拟预测)(多选题)已知0a >,0b >,且2a b ab +=,则( )A .8ab ≥B .3a b +≤+C .24b >D .()()221log 1log 24a b -⋅-≤13、(2022ꞏ湖南衡阳ꞏ三模)(多选题)已知实数0a >,0b >,1a b +=.则下列不等式正确的是( )A .22a b +≥ BC .112216a b ⎛⎫⎛⎫++≤ ⎪⎪⎝⎭⎝⎭D .222a b a b b a +≤++14、(2022ꞏ辽宁葫芦岛ꞏ二模)(多选题)已知0a b >>,115a b a b+++=,则下列不等式成立的是( )A .14a b <+<B .114b a a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭C .2211b a a b ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭D .2211a b a b ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭15、(2022ꞏ河北ꞏ模拟预测)(多选题)已知220,0,2a b a b >>+=,则以下不等式成立的是( ) A .2a b +>B .332a b +≥C .114a b b a ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭ D .112a b +≥参考答案题型一 不等式的性质1、(2022年湖南磁力一中高三月考试卷)下列四个条件中,能成为x y >的充分不必要条件的是( ) A. 22xc yc > B. 22x y >C. x y >D. ln ln x y >【答案】AD 【答案解析】【要点分析】由充分必要条件的概念与不等式性质对选项逐一判断, 【过程详解】对于A ,若22xc yc >,则20c >,x y >,而当0c =,x y >时,22xc yc =,故22xc yc >是x y >的充分不必要条件,故A 正确, 对于B ,若22x y >,则x y >,若x y >,则22x y >, 故22x y >是x y >的充要条件,故B 错误,对于C ,当2,1x y =-=时,x y >,而x y <,故C 错误,对于D ,若ln ln x y >,则0x y >>,当x y >,0y <时,ln y 无意义, 故ln ln x y >是x y >的充分不必要条件,故D 正确, 故选:AD2、(2022年江苏镇江市高三月考试卷)已知a ,b ,c ,d ∈R ,下列命题正确的是( ) A. 若a <b <0,则a 2<ab <b 2B. 若a >b ,则ac 2≥bc 2C. 不等式e e 2a a -+≥恒成立D. 若a b >,且c d >,则()()ln ln ac bd >【答案】BC 【答案解析】【要点分析】对于AD ,举反例即可排除; 对于B ,利用不等式的性质即可判断; 对于C ,利用基本不等式即可判断.【过程详解】对于A ,令2,1a b =-=-,则0a b <<,但2222(2)(1)a b =->-=,故A 错误; 对于B ,因为a b >,2c ≥0,所以22ac bc ≥,当0c =时取“"=,故B 正确;对于C ,因为e e 2a a -+≥=,当且仅当e e a a -=,即0a =时,等号成立,所以e e 2a a -+≥恒成立,故C 正确;对于D ,令1,2,3,4a b c d =-=-=-=-,则a b >,c d >,且3,8ac bd ==,所以由ln y x =的单调性可知()()ln ln ac bd <,故D 错误. 故选:BC.3、(2022ꞏ江苏无锡ꞏ高三期末)已知e e 1b a <<,则下列结论正确的是( ) A .22a b < B .2b aa b+>C .2ab b >D .2lg lg()a ab <【答案】ABD 【要点分析】先根据函数单调性,得到0b a <<,AC 选项用作差法比较大小;B 选项用基本不等式求取值范围;D 选项,先用作差法,再结合函数单调性比大小. 【过程详解】e e 1b a <<,则0b a <<,因为22()()0a b a b a b -=-+<,所以22a b <,A 选项正确;因为0b a <<,所以0,0b a a b >>,由基本不等式得:2a b b a +>=,B 选项正确;2()0ab b b a b -=-<,2ab b ∴<,C 选项错误;2()0a ab a a b -=-<,2a ab ∴<,2lg lg a ab ∴<,D 选项正确,故选:ABD4、(2022ꞏ广东汕尾ꞏ高三期末)已知a ,b 都是不等于1的正实数,且a >b ,0<c <1,则下列不等式一定成立的是( )A .a b c c >B .c c a b >C .log log c c a b >D .11()()4a b ab++>【答案】BD 【要点分析】根据指数函数,对数函数,幂函数的单调性,结合题意,可判断A 、B 、C 的正误,根据基本不等式,可判断D 的正误,即可得答案.【过程详解】函数x y c =,因为01c <<,所以x y c =是减函数, 因为a >b ,所以a b c c <,故A 错.函数c y x =,因为01c <<,所以c y x =在(0,)+∞是增函数, 因为a >b ,所以c c a b >,故B 正确.函数log c y x =,因为01c <<,所以log c y x =在(0,)+∞是减函数, 因为a >b ,所以log log c c a b <,故C 错.11()1124a b a b a b b a ⎛⎫++=+++≥+= ⎪⎝⎭,当且仅当a b =时取等号, 又a b >,所以11()4a b a b ⎛⎫++> ⎪⎝⎭,故D 正确.故选:BD5、(2022ꞏ山东济南ꞏ高三期末)已知实数a ,b ,c 满足0a b c >>>,则下列说法正确的是( )A .()()11a c abc a <--B .b bc a a c+<+ C .2ab c ac bc +>+ D .()11a b a b ⎛⎫++ ⎪⎝⎭的最小值为4【答案】BC 【要点分析】对于A ,利用不等式的性质判断,对于BC ,作差判断即可,对于D ,利用基本不等式判断 【过程详解】对于A ,因为0a b c >>>,所以11a b <,10c a<-,所以()()11a c a b c a >--,所以A 错误, 对于B ,因为0a b c >>>,所以()0,()0c a b a a c ->+>, 所以()()()0()()()b c b a b c b a c ab ac ab bc c a b a c a a a c a a c a a c ++-++----===>++++,所以b b ca a c+<+,所以B 正确, 对于C ,因为0a b c >>>,所以0,0a c b c ->->,所以2()()()()()0ab c ac bc a b c c b c a c b c +-+=---=-->,所以2ab c ac bc +>+,所以C 正确,对于D ,因为0,0a b >>,所以()11224b a a b a b a b ⎛⎫++=++≥+= ⎪⎝⎭,当且仅当b a a b =即a b =时取等号,因为a b >,所以取不到等号,所以()11a b a b ⎛⎫++ ⎪⎝⎭的最小值不为4,所以D 错误,故选:BC6、(2022ꞏ山东泰安ꞏ高三期末)若,,0a b R a b ∈<<,则下列不等式中,一定成立的是( )A .11a b a>- B .11a b > C .2a bb a+>D .a b >【答案】BCD 【要点分析】以求差法判断选项AB ;以均值定理判断选项C ;以绝对值的几何意义判断选项D. 【过程详解】 选项A :()()11()a a b b a b a a b a a b a---==---,由0a b <<,可知0a <,0b <,0a b -<, 则()0ba b a <-,即11a b a<-.选项A 判断错误;选项B :11b aa b ab --=,由0a b <<,可知0a <,0b <,0b a ->,则0b a ab ->,即11a b>.选项B 判断正确; 选项C :当0a b <<时,2a b b a +>=.选项C 判断正确; 选项D :当0a b <<时,a b >.选项D 判断正确. 故选:BCD7、(华南师范大学附属中学高三期末试题)已知0a b >>,则下列说法正确的是( ) A.33b b a a +>+ B.3223a b aa b b+<+C. <D. lg lg lg 22a b a b++> 【答案】BD 【答案解析】【过程详解】对于A ,因为()()330,033b a b b a b a a a a -+>>-=<++,所以33b b a a +<+,故A 错误; 对于B ,因为0a b >>,所以22a b >,所以()()()()()2223223320232323b aa b b a a b a b a a b b a b b a b b-+-++-==<+++,即3223a b a a b b +<+,故B 正确; 对于C ,因为0a b >>>>,所以>,故C 错误;对于D ,因为0a b >>,所以lg lg lg 22a b a b++>=,故D 正确. 故选:BD.题型二 简单不等式1、(2022·江苏苏州期中)已知不等式x 2+2ax +b -1>0的解集是{x |x ≠d },则b 的值可能是A .-1B .3C .2D .0 【答案】BC【答案解析】由题意可知,方程x 2+2ax +b -1=0的根为d ,则∆=4a 2-4(b -1)=0,则b -1=a 2≥0,所以b ≥1,则选项B 、C 正确;选项A 、D 错误;综上,答案选BC .2、(2022·江苏常州期中)已知关于x 的不等式a e x +bx +c >0的解集为(-1,2),则A .a >0B .b >0C .c >0D .a +b +c >0 【答案】BCD【答案解析】由题意可知,当a =0时,不等式不成立;当a ≠0时,-1,2是方程a e x +bx +c =0的两个根,则有⎩⎪⎨⎪⎧a e -1-b +c =0a e 2+2b +c =0,所以⎩⎨⎧b =-a3()e 2-e -1>0c =-a 3()e 2+2e -1>0,故选项B 正确;选项C 正确;对于选项D ,a +b +c =a -a 3(e 2-e -1)-a 3(e 2-2e -1)=a [1-13(e 2-e -1)-13(e 2-2e -1)]=a (1-e 23+13e -e 23-23e )=a (1-2e 23-13e )>0,故选项D 正确;综上,答案选BCD .3、(2022年湖南湘阴县知源高级中学高三月考试卷)已知关于x 的不等式20ax bx c ++>的解集为(,2)(3,)-∞-⋃+∞,则( )A. 0a >B. 不等式0bx c +>的解集是{}|6x x <-C. 0a b c ++>D. 不等式20cx bx a -+<的解集为11(,(,)32-∞-⋃+∞ 【答案】ABD 【答案解析】【过程详解】关于x 的不等式20ax bx c ++>的解集为()(),23,,0,A a ∞∞--⋃+∴>选项正确;且-2和3是关于x 的方程20ax bx c ++=的两根,由韦达定理得2323b a c a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,则,6b a c a =-=-,则60a b c a ++=-<,C 选项错误;不等式0bx c +>即为60ax a -->,解得6,B x <-选项正确;不等式20cx bx a -+<即为260ax ax a -++<,即2610x x -->,解得13x <-或1,D 2x >选项正确.故选:ABD .4、(2022年江苏盐城市高三月考试卷)若“2340x x +-<”是“222()330x k x k k -+++≥”的充分不必要条件,则实数k 可以是( )A. 8-B. 5-C. 1D. 4【答案】ACD 【答案解析】【过程详解】2340x x +-<,解得41x -<<,222()330x k x k k -+++≥即[]()(3)0x k x k --+≥,解得x k ≤或3x k ≥+,由题意知(4,1)-是(][),3,k k -∞⋃++∞的真子集, 所以1k ≥或34k +≤-, 所以1k ≥或7k ≤-,即(,7][1,)k ∈-∞-⋃+∞. 故选:ACD5、(2022年重庆市北山中学高三月考试卷). 下列叙述不正确的是( ) A.12x<的解是12x >B. “04m ≤≤”是“210mx mx ++≥”的充要条件C. 已知x ∈R ,则“0x >”是“11x -<”的必要不充分条件D. 函数()2232f x x x =++的最小值是2- 【答案】AD 【答案解析】 【过程详解】选项A :12x<的解是12x >或0x <,故A 不正确;选项B :由21y mx mx =++得24m m ∆=-,210mx mx ++≥恒成立则240m m m >⎧⎨-≤⎩或0m =,解得 04m ≤≤,所以“04m ≤≤”是“210mx mx ++≥”的充要条件,故B 正确;选项C :由11x -<得111x -<-<,解得02x <<,所以“0x >”是“11x -<”的必要不充分条件,故C 正确;选项D :由均值不等式得22322x x ++≥=+,当且仅当22322x x +=+时等号成立,此时x 无实数解,所以()2232f x x x =++的最小值大于2-,故D 不正确; 故选:AD题型三 基本不等式1、(2022年辽宁葫芦岛市中学高三月考试卷)已知0a >,0b >,4165log 2log 16a b +=,则下列结论正确的是( )A. 45a b +=B. 542a b +=C. ab 的最大值为2564D.11a b+的最小值为185【答案】BCD【答案解析】【过程详解】由4165log 2log 16a b +=可得,52816a b +=,即542a b +=.所以A 错误,B 正确;因为5254264a b ab =+≥⇒≤,当且仅当55,164a b ==时取等号,所以ab 的最大值为2564,C 正确;因为()11211244555b a a b a b a b a b ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭(218555≥+=,当且仅当55,126a b ==时取等号,所以11a b+的最小值为185,D 正确.故选:BCD .2、 (2022年湖南邵阳市高三月考试卷)已知实数a ,b ,c 满足0a b c <<<,则下列说法正确的是( )A.()()11a c abc a >--B.b bc a a c+>+ C. 2ab c ac bc +>+ D. 11()()a b a b++的最小值为4 【答案】ABC 【答案解析】【过程详解】由题0a b c <<<,所以有()()1111b a ac a b c a a b>⇒>⇒>--,故A 正确;()()b b c b a c a b c bc ac b a a a c+>⇒+>+⇒>⇒>+,故B 正确; ()()()()200ab c ac bc c c b a c b c a c b +>+⇒--->⇒-->,故C 正确;11()(224b a a b a b a b ++=++≥+=,当且仅当a b b a =即a b =时取等,又因为0a b <<,所以11()(4a b a b++>,即11()(a b a b++无最小值,故D 错误. 故选:ABC.3、(2022ꞏ广东ꞏ铁一中学高三期末)若0,0a b >>.且4a b +=,则下列不等式恒成立的是( )A .1104ab <≤ B 2C .111a b+≥D .22118a b ≤+ 【答案】CD 【要点分析】结合基本不等式对选项进行要点分析,由此确定正确选项. 【过程详解】22222a b a b ab ++⎛⎫≤≤⎪⎝⎭,当且仅当2a b ==时等号成立, 则2442ab ⎛⎫≤= ⎪⎝⎭或222422a b +⎛⎫≤ ⎪⎝⎭,则222211112,8,48a b ab a b ≥≤+≥≤+, 即AB 错误,D 正确.对于C 选项,1141414a b a ab ab b ++==≥⨯=,C 选项正确. 故选:CD4、(2022ꞏ重庆ꞏ模拟预测)(多选题)已知正数a ,b 满足22a b ab +=,则下列说法一定正确的是( ) A .24a b +≥ B .4a b +≥ C .8ab ≥ D .2248a b +≥【答案】AD 【要点分析】由基本不等式判断AD ,取1,2b a ==判断BC. 【过程详解】 由题意可知1112b a +=,1122(2)2422a b a b a b b a b a ⎛⎫+=++=++ ⎪⎝⎭…(当且仅当22a b ==时取等号),故A 正确;取1,2b a ==,则3,2a b ab +==,故BC 错误;因为22a b ab +=≥所以2ab …(当且仅当22a b ==时取等号),则22448a b ab +厖(当且仅当22a b ==时取等号),故D 正确; 故选:AD5、(2022ꞏ湖南常德ꞏ高三期末)若0a >,0b >,111a b+=,则( )A .4ab ≤B .4a b +≥C .228a b +≤D .22log log 2a b +≥【答案】BD 【要点分析】利用基本不等式及指对数函数的性质逐项要点分析即得. 【过程详解】∵0a >,0b >,111a b +=≥ ∴4ab ≥,当且仅当2a b ==时取等号,故A 错误;由()1124b a a b a b a b a b ⎛⎫+=++=++≥ ⎪⎝⎭,当且仅当b a a b =,即2a b ==时取等号,故B 正确;因为228a b ≥≥=+,当且仅当2a b ==时取等号,故C 错误; 因为()2222log log log log 42a b ab +=≥=,当且仅当2a b ==时取等号,故D 正确.故选:BD.6、(2022ꞏ湖北襄阳ꞏ高三期末)已知()lg f x x =,当a b <时,()()f a f b =,则( ) A .01a <<,1b >B .10ab =C .2114b a -<D .224a b +>【答案】ACD 【要点分析】利用()()f a f b =,可得lg lg a b -=,从而得到1ab =,再对每一个选项进行要点分析即可. 【过程详解】因为()()f a f b =,且a b <,可得lg lg lg lg 0a b a b -=⇒+=,从而得到1ab =, 因为0a b <<,所以01a b <<<,所以2221111()244b b b b a -=-+=--+<,而12a b b b +=+>=,(1b >,等号不成立)所以422ab>==>=+.从而可知选项ACD 正确. 故选:ACD7、(2022ꞏ山东德州ꞏ高三期末)已知0a >,0b >,2a b ab +=,则下列结论正确的是( )A .a b +的最小值为3+B .22a b +的最小值为16CD .lg lg a b +的最小值为3lg 2【答案】ACD 【要点分析】利用“1”的代换结合基本不等式判断AD +C ,由对数的运算结合基本不等式判断B. 【过程详解】由2a b ab +=可得,211b a +=,212()33a b a b a b b a b a ⎛⎫+=++=+++ ⎪⎝⎭…2b ==等号),故A 正确;214(2)448a b ab a b b a b a ⎛⎫=++=+++= ⎪⎝⎭…(当且仅当24b a ==时,取等号),即lg lg lg lg83lg 2a b ab +=≥=,故D 正确;222a b ab +≥(当且仅当3b a ==时,取等号),8ab …(当且仅当24b a ==时,取等号),即2216a b +>,故B 错误;212112a b =+++=≤(当且仅当1212a b ==时,取等号),故C 正确; 故选:ACD8、(2022ꞏ山东烟台ꞏ高三期末)已知0a >,0b >,则下列命题成立的有( ) A .若1ab =,则222a b +≥ B .若1ab =,则112a b +≥C .若1a b +=,则2212a b +≤ D .若1a b +=,则114a b+≥【答案】ABD 【要点分析】利用基本不等式逐项判断. 【过程详解】A.若1ab =,则2222a b ab +≥=,当且仅当1a b ==时,等号成立,故正确;B.若1ab =,则112a b +≥=当且仅当1a b ==时,等号成立,故正确;C.若1a b +=,则()2221122=+≥+a b a b ,当且仅当1a b ==时,等号成立,故错误; D.若1a b +=,则2111421a b ab a b ab a b +==≥++⎛⎫ ⎪⎝⎭=,当且仅当1a b ==时,等号成立,故正确;故选:ABD9、(2022ꞏ湖北ꞏ蕲春县第一高级中学模拟预测)(多选题)若0,0a b >>,且4a b +=,则下列不等式恒成立的是( )A .1104ab <≤ B .111a b +≥C .22log log 2a b +<D .22118a b ≤+【答案】BD 【要点分析】由基本不等式对选项逐一判断【过程详解】因为0,0a b >>,22222a b a b ab ++⎛⎫≤≤⎪⎝⎭,当且仅当2a b ==时等号成立, 则2442ab ⎛⎫≤= ⎪⎝⎭或222422a b +⎛⎫≤ ⎪⎝⎭,当且仅当2a b ==时等号成立,则222211112,8,48a b ab a b ≥≤+≥≤+, 当且仅当2a b ==时等号成立,则22222log log log log 22a b ab +=≤≤,当且仅当2a b ==时等号成立,故AC 错误,D 正确. 对于B 选项,1141414a b a ab ab b ++==≥⨯=, 当且仅当2a b ==时等号成立,故B 正确. 故选:BD10、(2022ꞏ辽宁辽阳ꞏ二模)(多选题)已知0a >,0b >,且24a b +=,则( ) A .124a b ->B .22log log 1a b +≤C ≥D .412528a b +≥ 【答案】BD【要点分析】由不等式的性质与基本不等式对选项逐一判断 【过程详解】对于A ,02a <<,()()42344,2a b a a a -=--=-∈-,所以12416a b -<<,故A 错误,对于B ,420a b =+≥>,即0<≤02ab <?,()222log log log 1a b ab +=≤,故B 正确,对于C ,228a b =++≤≤C 错误,对于D ,4122171725288488a b a b b a a b a b a b ++⎛⎫+=+=++≥+= ⎪⎝⎭,当且仅当825a b ==时,等号成立,故D 正确. 故选:BD11、(2022ꞏ福建莆田ꞏ模拟预测)(多选题)已知直线l :()100,0ax by a b ++=>>与圆C :221x y +=相切,则下列说法正确的是( )A .12ab ≥B .22114a b+≥C .2122a b +⎛⎫≤ ⎪⎝⎭D .11a b+≤【答案】BC 【要点分析】先根据直线和圆相切得到221a b +=,再利用基本不等式判定选项A 错误、选项B 、C 正确,利用反例得到选项D 错误. 【过程详解】因为直线l :10ax by ++=与圆C :221x y +=相切, 所以圆心(0,0)C 到直线l 的距离等于1,1=,即221a b +=,且0a >,0b >;对于A :因为222a b ab +≥且221a b +=,所以22122a b ab +=≤,即选项A 错误;对于B :因为221a b +=,所以222222222222112a b a b b a a b a b a b+++=+=++24≥+=(当且仅当2222b a a b =,即a b =时取等号), 即选项B 正确;对于C :因为222a b ab +≥且221a b +=, 所以222222224412()a b ab a a b b +++⎛⎫+⎭≤ ⎝=⎪=(当且仅当a b =时取等号), 即选项C 正确;对于D :当219a =且289b =时,1134a b +=+>即选项D 错误. 故选:BC.12、(2022ꞏ江苏ꞏ扬中市第二高级中学模拟预测)(多选题)已知0a >,0b >,且2a b ab +=,则( ) A.8ab ≥B .3a b +≤+C .24b >D .()()221log 1log 24a b -⋅-≤【答案】ACD 【要点分析】利用基本不等式判断AB ,由不等式性质和指数函数性质判断C .由基本不等式结合对数运算法则判断D . 【过程详解】对于A,2a b ab +=≥8ab ≥,当且仅当2a =,4b =时,等号成立.对于B ,2a b ab +=变形得211b a +=,所以()212213ab a b a b b a b a ⎛⎫+=++=+++≥+ ⎪⎝⎭当且仅当2a b b a =,即2b ==时,等号成立,故B 错误. 对于C ,因为211ba+=,所以201b<<,即2b >,则24b >. 对于D ,由2a b ab +=可得()()122a b --=,()()222log [(1)(2)]1log 1log 2a a b b -+---==,()()()()22222log 1log 2log 1log 22a b a b -+-⎡⎤-⋅-≤⎢⎥⎣⎦14=,当且仅当12a b -=-,即1a =,2b =+时等号成立. 故选:ACD .13、(2022ꞏ湖南衡阳ꞏ三模)(多选题)已知实数0a >,0b >,1a b +=.则下列不等式正确的是( ) A.22a b +≥ BC .112216a b ⎛⎫⎛⎫++≤ ⎪⎪⎝⎭⎝⎭D.222a b a b b a+≤++【答案】ABD 【要点分析】对于A 、D 利用1b a =-换元整理,22222abaa +=+,222211313a b a a b b a a a t t++==++-++-,再结合基本不等式;对于B 根据()2222a b a b ++≥,代入整理;对于C 113224a b ab ⎛⎫⎛⎫++=+ ⎪⎪⎝⎭⎝⎭,结合()24a b ab +≤计算处理. 【过程详解】∵1a b +=,则1b a =-∴12222222a b a a a a-+=+≥=+222aa =即12ab ==时等号成立A 正确;()222222211111a b a a a a b b a a a a a a a -++=+=+++--+-+令()11,2t a =+∈,则1a t =-221131333a t a a t t t t +==≤-+-++-3t t=即t 时等号成立 D 正确;∵22a b +≥,即212≥≤,当且仅当12a b ==时等号成立,B 正确; ∵()2144a b ab +≤=,当且仅当12a b ==时等号成立 ()421112121322416ab a b a b a b a b ab ab +++++⎛⎫⎛⎫++=⨯==+≥ ⎪⎪⎝⎭⎝⎭,C 不正确; 故选:ABD .14、(2022ꞏ辽宁葫芦岛ꞏ二模)(多选题)已知0a b >>,115a b a b+++=,则下列不等式成立的是( ) A .14a b <+<B .114b a a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭C .2211b a a b ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭D .2211a b a b ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭【答案】AB 【要点分析】AB 选项,利用基本不等式进行求解;CD 选项,利用作差法比较大小. 【过程详解】 115a b a b +++=,即5a b a b ab+++=,所以()5a b ab a b +=-+,因为0a b >>,所以由基本不等式得:()24a b ab +<,所以()()254a b a ba b ++<-+,解得:14a b <+<,A 正确;111224b a ab a b ab ⎛⎫⎛⎫++=++≥≥ ⎪⎪⎝⎭⎝⎭,当且仅当1ab ab =时等号成立,故B 正确; ()221111111111b a b a b a b a b a a b a b a b a b ab ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+=++++--=++++- ⎪ ⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,因为0a b >>,所以()11110b a b a a b ab ⎛⎫⎛⎫++++-< ⎪⎪⎝⎭⎝⎭,所以2211b a a b ⎛⎫⎛⎫+<+ ⎪ ⎪⎝⎭⎝⎭,C 错误;()221111111111a b a b a b a b b a a b a b a b a b ab ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+=++++--=+++-- ⎪ ⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,因为0a b >>,而1ab 可能比1大,可能比1小,所以()1111a b b a a b ab ⎛⎫⎛⎫+++-- ⎪⎪⎝⎭⎝⎭符号不确定,所以D 错误, 故选:AB15、(2022ꞏ河北ꞏ模拟预测)(多选题)已知220,0,2a b a b >>+=,则以下不等式成立的是( ) A .2a b +> B .332a b +≥C .114a b b a ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭ D .112a b +≥【答案】BCD 【要点分析】直接利用基本不等式即可判断ACD ,由2a b +≤,可得()()()33332a b a b a b +≥++,整理即可判断B.【过程详解】解:对于A ,因为220,0,2a b a b >>+=,所以()()22224a b a b +≤+=,所以2a b +≤,当且仅当1a b ==时取等号,故A 错误;对于B ,()()()33332a b a b a b +≥++4334a ab a b b =+++()()22222222=+-++a b a b ab a b ()()222222a b ab a b ab ab =+++-⋅ ()()222222a b ab a b ab =+++- ()()22224a b ab a b =++-≥,当且仅当1a b ==时取等号,所以()3324a b +≥,即332a b +≥,故B 正确;对于C ,111224a b ab b a ab ⎛⎫⎛⎫++=++= ⎪⎪⎝⎭⎝⎭≥,当且仅当1abab=,即1ab=时取等号,故C正确;对于D,112a b+≥≥=,当且仅当11a b=且a b=,即1a b==时取等号,故D正确.故选:BCD.。
2023年新高考数学创新题型微专题08 数列专题(新定义)(解析版)

专题08 数列专题(新定义)一、单选题1.(2023春·甘肃张掖·高二高台县第一中学校考阶段练习)对于正项数列{}n a 中,定义:12323nn a a a na G n+++⋅⋅⋅+=为数列{}n a 的“匀称值”已知数列{}n a 的“匀称值”为2n G n =+,则该数列中的10a =( ) A .83B .125 C .94D .2110【答案】D【分析】确定()123223n n nG n n a a a na =+=+++⋅⋅⋅+,取10n =和9n =带入式子,相减得到答案. 【详解】123232nn a a a na G n n+++⋅⋅⋅+==+,即()123223n n nG n n a a a na =+=+++⋅⋅⋅+,故()12310231010102a a a a +++⋅⋅⋅+=⨯+;()1239239992a a a a +++⋅⋅⋅+=⨯+; 两式相减得101021a =,所以102110a =. 故选:D2.(2023春·浙江·高三开学考试)对任意正整数对(,)h k ,定义函数(,)f h k 如下:(1,)1f j =,()()()()11,,,i f i j j i f i j i ++=−≤,则( )A .(1,)1f j j +=B .1(,)2C i j f i j −=C .()21(,)21jji j f i j j =⎡⎤⋅=⋅−⎣⎦∑D .[]11(,)22jn nj i j f i j n ==⋅=+−∑∑【答案】C【分析】根据新定义得(1,)(,)1f i j j if i j i +−=+,令i j =即可判断A ,根据()()()()()()2,3,4,123,,,1,22,33,4f j f j f j j j j f j f j f j −−−===累乘可判断B ,利用二项式定理求得12C C C 21nnnnn+++=−,结合()211(,)21jji jji i j f i j j C j ==⎡⎤⋅==−⎣⎦∑∑判断C ,[]()111(,)21j n nj j i j j f i j ===⋅=−∑∑∑,结合等比数列的前n 项和公式判断D. 【详解】()()()()()()1,11,,,,1f i j j ii f i j j i f i j f i j i +−++=−∴=+,令i j =,则(1,)0(,)f j j f j j +=,(1,)0f j j ∴+=,A 错误;(2,)1(3,)2(4,)3,,,(1,)2(2,)3(3,)4f j j f j j f j j f j f j f j −−−===,(,)1,(1,)f i j j i f j i−+= 累乘得:(,)(1)(2)(3)(1)1C (1,)2345ij f i j j j j j i f j i j−−−−+==⨯⨯⨯⨯⨯,1(1,)1,(,)C ,()ij f j f i j i j j=∴=≤,令1i =,则B 错误; 因为()01211C C C C nnn n n n +=++++,所以12C C C 21n nn n n +++=−,()211(,)C 21jji jj i i jf i j j j ==⎡⎤⋅==−⎣⎦∑∑,则C 正确;[]()11112(12)(,)212212n jnnjn j i j j f i j n n +===−⋅=−=−=−−−∑∑∑,则D 错误. 故选:C .3.(2023春·安徽·高二合肥市第八中学校联考开学考试)定义:对于数列{}n a ,如果存在一个常数()*N T T ∈,使得对任意的正整数0n n ≥恒有n T n a a +=,则称数列{}n a 是从第0n 项起的周期为T 的周期数列.已知周期数列{}n b 满足:11b =,23b =,12n n n b b b −−=−(3n ≥),则2023b =( ) A .1− B .3− C .2− D .1【答案】D【分析】写出周期数列{}n b 的前几项,发现周期为6,进而求得2023b 的值. 【详解】写出周期数列{}n b 的前几项:1,3,2,1−,3−,2−,1,3,2,1−,3−,2−,1,…, 发现周期数列{}n b 是周期为6的周期数列, ∴20233376111b b b ⨯+===. 故选:D .4.(2023秋·福建南平·高二统考期末)若数列{}n a 的前n 项和为n S ,nn S b n=,则称数列{}n b 是数列{}n a 的“均值数列”.已知数列{}n b 是数列{}n a 的“均值数列”且n bn =,设数列⎧⎫的前n 项和为n T ,若()2132n m m T −<对*n ∈N 恒成立,则实数m 的取值范围为( ) A .[]1,2−B .()1,2-C .()(),12,−∞−⋃+∞D .(][),12,−∞−⋃+∞【答案】B【分析】由新定义求得n S ,然后由1n n n a S S −=−求得n a ,从而可求得n T (裂项相消法)后得n T 的最小值,解相应不等式可得结论. 【详解】由题意nS n n=,即2n S n =, ∴2n ≥时,221(1)21n n n a S S n n n −=−=−−=−,又111a S ==,∴*n ∈N 时,21n a n =−,==2n n T +=+=, 易知1{}2是递增数列,∴1{}2的最小值是12(1n =时取得), 由题意21(3)2m m −<,解得12m −<<.故选:B .5.(2023秋·山西长治·高三校联考阶段练习)对于一个n 项数列()*1212:,,,,1,n k k A a a a S a a a k n k =+++≤≤∈N ,记A 的“Cesaro 平均值”为()121+++n S S S n,若数列121010,,,a a a 的“Cesaro 平均值”为2022,数列121010,,,,x a a a 的“Cesaro 平均值”为2046,则x =( )A .24B .26C .1036D .1541【答案】B【分析】先求出121010S S S +++的值,再根据Cesaro 平均值的求法列出等式,即可求出x 的值.【详解】因为数列121010,,,a a a 的“Cesaro 平均值”为12101020221010S S S +++=,所以12101020221010S S S +++=⨯. 因为121010,,,,x a a a 的“Cesaro 平均值”为()()()12101020461011x x S x S x S +++++++=,所以10112022101020461011x +⨯=,所以20202046x +=,解得26x =,故选:B.6.(2023春·湖北咸宁·高二校考开学考试)等比数列{}n a 中1512a =,公比12q =−,用12Π⋅⋅⋅⋅⋅⋅=n n a a a 表示它的前n 项之积,则1Π,2Π,…,n ∏中最大的是( ) A .11Π B .10Π C .9Π D .8Π【答案】C【分析】根据题意分析,n n a ∏的符号,结合前n 项之积的性质运算求解.【详解】∵110,02a q >=−<,则当n 为奇数时,0n a >,当n 为偶数时,0n a <,∴当()43N n k k *=−∈或()4N n k k *=∈时,0n ∏>,当()42N n k k *=−∈或()41N n k k *=−∈时,0n ∏<,由题意可得:115122n n a −⎛⎫=− ⎪⎝⎭,令1151212n n a −⎛⎫=≥ ⎪⎝⎭,解得10n ≤,若n ∏取到最大,则3k =,9n =,即{}n ∏中最大的是9Π. 故选:C.7.(2022秋·北京·高二北京二中校考期末)如果数列{}n a 满足211n n n na a k a a +++−=(k 为常数),那么数列{}n a 叫做等比差数列,k 叫做公比差.下列四个结论中所有正确结论的序号是( ) ①若数列{}n a 满足12n na n a +=,则该数列是等比差数列;②数列{}2nn ⋅是等比差数列;③所有的等比数列都是等比差数列; ④存在等差数列是等比差数列. A .①②③ B .①③④ C .①②④ D .②③④【答案】B【分析】根据比等差数列的定义211n n n na a k a a +++−=(k 为常数),逐一判断①②③④是否是等比差数列即可可得到答案.【详解】①数列{}n a 满足12n na n a +=,则2112(1)22n n n na a n n a a +++−=+−=,满足等比差数列的定义,故①正确; ②数列{2}n n ⋅,+212111(2)2(1)2(1)22n n n n n nn n a a a a n n n n +++++−=+⋅+⋅−+⋅⋅ 2(2)2(1)22(1)(1)n n n n n n n ⋅+⋅−+⋅==−⋅+⋅+,不满足等比差数列的定义,故②错误; ③设等比数列的公比为q ,则2110n n n na a a a q q +++−==−,满足等比差数列,故③正确; ④设等差数列的公差为d , 则22112()n n n n n n n n n n a a a a a d a d d a d a a a d +++−++−=−=++, 故当0d=时,满足2110n n n na a a a +++−=,故存在等差数列是等比差数列,即④正确;故答案为:①③④ 故选:B.8.(2019秋·北京·高三101中学校考阶段练习)定义在()(),00,∞−+∞U 上的函数()f x ,如果对于任意给定的等比数列{}n a ,(){}n f a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,∞−+∞U 上的如下函数:①()2f x x =;②()2xf x =;③()1f x x=;④()ln f x x =,其中是“保等比数列函数”的序号为( ) A .①② B .③④ C .①③ D .②④【答案】C【分析】根据新定义,结合等比数列性质221n n n a a a ++=,一一加以判断,即可得到结论.通过积的乘方,即可判断①;通过指数的幂的运算,即可判断②;通过积的运算即可判断③;由对数的运算法则,即可判断④.【详解】设{}n a 是等比数列,由等比数列性质知221n n n a a a ++=,对于①,()()()()222222211n n n n n n a a f a f a a f a ++++===,即(){}n f a 仍是等比数列,故正确;对于②,()()()22122212222n n n n n a a a a a n n n f a f a f a ++++++==≠=,即(){}n f a 不是等比数列,故不正确; 对于③,()()()221221111n n n n n n f a f a f a a a a ++++=⋅==,即(){}n f a 是等比数列,故正确;对于④,()()()()222211ln ln ln n n n n n n f a f a a a a f a ++++=≠=, 即(){}n f a 不是等比数列,故不正确; 故选:C .9.(2023秋·吉林·高二吉林一中校考期末)若数列{}n a 满足1120n na a +−=,则称{}n a 为“必会数列”,已知正项数列{}n a 为“必会数列”,若453a a +=,则23a a +=( ). A .19B .1C .6D .12【答案】D【分析】根据数列新定义可得数列{}n a 是以12q =为公比的等比数列,利用等比数列通项公式,即可求得答案.【详解】由题意数列{}n a 满足1120n n a a +−=,可得112n n a a +=, 故正项数列{}n a 是以12q =为公比的等比数列, 则2322532341()()3,124a a a a a a a a q +===+∴=++,故选:D10.(2022秋·陕西渭南·高二统考期末)设{}n a 是无穷数列,若存在正整数k ,使得对任意的n *∈N ,均有n k n a a +>,则称{}n a 是间隔递增数列,k 是{}n a 的间隔数.若{}n b 是间隔递增数列,则数列{}n b 的通项不可能...是( )A .92n b n n=−B .31n n b =+C .113n nb =−D .()2nn b n =−−【答案】D【分析】根据间隔递增数列的定义求解即可. 【详解】对于A :()()9922n k n b n k n b n k n ++−=−++−,化简得:()920n n kb k n b n k +⎡⎤=+>⎢⎥+−⎢⎥⎣⎦,存在正整数k ,使得对任意的n *∈N ,0n n k b b +>−恒成立,所以{}n b 是间隔递增数列;对于B :()3131313n k n k nk n n b b ++=+−−−−=, 因为k 为正整数且n *∈N ,所以()3130k n−>,所以0n n k b b +>−,所以{}n b 是间隔递增数列; 对于C :11111113333n k n k n nn k b b ++⎪−⎛⎫=−−+=− ⎝⎭, 因为k 为正整数且n *∈N ,所以111033n k ⎛⎫−> ⎪⎝⎭,所以0n n k b b +>−,所以{}n b 是间隔递增数列; 对于D :()()()22n knn k n b n k n b ++−=−+−+−()()()22n kn n k ⎡⎤=−−+−⎣⎦,当k ∈正奇数,n *∈N 时,()()20kn n k −+−>,()2n−的正负由n 的奇偶性决定,此时0n n k b b +>−不恒成立,不符合间隔递增数列的定义;当k ∈正偶数,n *∈N 时,()()20kn n k −+−<,()2n−的正负由n 的奇偶性决定,此时0n n k b b +>−不恒成立,不符合间隔递增数列的定义; 故选:D.11.(2023·全国·高三专题练习)对于数列{}n a ,若存在正整数()2k k ≥,使得1k k a a −<,1k k a a +<,则称k a 是数列{}n a 的“谷值”,k 是数列{}n a 的“谷值点”.在数列{}n a 中,若98n a n n=+−,则数列{}n a 的“谷值点”为( ) A .2 B .7C .2,7D .2,5,7【答案】C【分析】先求出12a =,232a =,32a =,474a =,565a =,612a =,727a =,898a =,再得到7n ≥,N n ∈,980n n+−>,结合数列的单调性以及谷值点的定义即可得求解.【详解】因为98n a n n=+−, 所以12a =,232a =,32a =,474a =,565a =,612a =,727a =,898a =,当7n ≥,N n ∈,980n n+−>,所以9988n a n n n n =+−=+−,因为函数98y x x=+−在[)7,+∞上单调递增, 所以7n ≥时,数列98n a n n=+−为单调递增数列, 所以21a a <,23a a <,76a a <,78a a <, 所以数列{}n a 的“谷值点”为2,7. 故选:C.12.(2023·全国·高二专题练习)若数列{}n a 满足121n n a a +=−,则称{}n a 为“对奇数列”.已知正项数列{}1n b +为“对奇数列”,且12b =,则n b =( ) A .123n −⨯ B .12n − C .12n + D .2n【答案】D【分析】根据题意可得()11211n n b b ++=+−,进而可得{}n b 为等比数列,再求得通项公式即可.【详解】由题意得()11211n n b b ++=+−,所以12n n b b +=,又12b =,所以{}n b 是首项为2,公比为2的等比数列,所以1222n nn b −=⨯=.故选:D .13.(2022春·辽宁葫芦岛·高二校联考阶段练习)设()n a Ω表示落在区间[],n n a 内的偶数个数.在等比数列{}n a n −中,14a=,211a =,则()4a Ω=( )A .21B .20C .41D .40【答案】C【分析】设{}n a n −的公比为q ,根据1a 和2a 求出q ,从而得n a 和4a ,再根据()n a Ω的定义可求出结果. 【详解】设{}n a n −的公比为q ,则2121123141a q a −−===−−, 所以111(1)(41)33n n n n a n a q−−−=−⋅=−⋅=,则3n n a n =+,所以445438a =+=.所以落在区间[]4,85内的偶数共有41个,故()441a Ω=. 故选:C14.(2023春·湖北·高三黄冈中学校联考开学考试)对于数列{}n a ,定义11222−=+++n n n A a a a 为数列{}n a 的“加权和”,已知某数列{}n a 的“加权和”12n n A n +=⋅,记数列{}+n a pn 的前n 项和为n T ,若5≤n T T 对任意的N n *∈恒成立,则实数p 的取值范围为( )A .127,53⎡⎤−−⎢⎥⎣⎦B .167,73⎡⎤−−⎢⎥⎣⎦C .512,25⎡⎤−−⎢⎥⎣⎦D .169,74⎡⎤−−⎢⎥⎣⎦【答案】A【分析】根据n A 与n a 的关系求出n a ,再根据等差数列的求和公式求出n T ,将5≤n T T 化为216(5)06+⎛⎫−+≤ ⎪+⎝⎭n n p n 对任意的n N *∈恒成立,分类讨论n 可求出结果.【详解】由1112222n n n n A a a a n −+=+++=⋅,∴2n ≥时,212122(1)2n n n a a a n −−+++=−⋅,∴1122(1)2−+⋅=⋅−−⋅n n n n a n n ,∴22n a n =+,1n =时,14a =也成立,∴22n a n =+,∴数列{}+n a pn 的前n 项和为:12(12)n n T a a a p n =+++++++2(422)(1)(1)3222++++=+⋅=++⋅n n n n n n p n n p ,∵5≤n T T 对任意的n N *∈恒成立,∴225(1)56353522+⨯++⋅≤=+⨯+⨯n n n n p T p , 即225335(1)5(51)022p pn n n n −+−⨯++−⨯⨯+≤, 即22225335(5)(5)022p pn n n n −+−⨯+−+−≤, 即5(5)(53)0222pn p p n n −+++++≤, 即(6)(5)(8)02p n n n +−++≤, 即216(5)06+⎛⎫−+≤ ⎪+⎝⎭n n p n 对任意的n N *∈恒成立,当14n ≤≤时,2164266+−≤=+++n p n n 对任意的n N *∈恒成立, 因为4412226465n +≥+=++,∴125−≤p ,所以125p ≥−,当5n =时,216(5)06n n p n +⎛⎫−+= ⎪+⎝⎭恒成立,R p ∈,当6n ≥时,2164266+−≥=+++n p n n 对任意的n N *∈恒成立, 因为447226663n +≤+=++,∴73−≥p ,所以73p ≤−,综上可得:实数p 的取值范围为127,53⎡⎤−−⎢⎥⎣⎦.故选:A .15.(2023·全国·高三专题练习)若数列{}n b 满足:若()*,m n b b m n ∈=N ,则11m n b b ++=,则称数列{}n b 为“等同数列”.已知数列{}n a 满足55a =,且()1+=−n n n a n a a ,若“等同数列”{}n b 的前n 项和为n S ,且114b a b ==,22b a =,510S a =,则2022S =( )A .4711B .4712C .4714D .4718【答案】D【分析】先对已知关系式变形,求出数列{}n a 的通项公式,再利用“等同数列”的定义与已知条件得{}n b 是周期数列,即可得2022S . 【详解】由()1+=−n n n a n a a 得11n n a a n n+=+,则1251125n n n a a aa n n n −−=====−−, 故n a n =,所以111b a ==,222b a ==,411b a ==, 所以41b b =,所以522b b ==1010S a ==,所以3121210b ++++=,解得34b =,同理得634b b ==, 741b b ==,852b b ==,…,故数列{}n b 是以3为周期的数列,所以()202267431246744718S S ⨯==++⨯=, 故选:D .16.(2022·全国·高三专题练习)设数列{}n a ,若存在常数t ,对任意小的正数s ,总存在正整数0n ,当0n n ≥时,n a t s −<,则数列{}n a 为收敛数列.下列关于收敛数列说法正确的是( ) A .若等比数列{}n a 是收敛数列,则公比()0,1q ∈ B .等差数列不可能是收敛数列C .设公差不为0的等差数列{}n a 的前n 项和为()0n n S S ≠,则数列1n S ⎧⎫⎨⎬⎩⎭一定是收敛数列D .设数列{}n a 的前n 项和为n S ,满足11a =,11n n S a +=+,则数列{}n a 是收敛数列 【答案】C【分析】根据题中定义,结合特殊的等差数列和等比数列、数列的周期性、等差数列前n 项和公式逐一判断即可.【详解】当数列为常数列(不为零),因此该数列是等差数列又是等比数列,显然该数列是收敛数列,因此选项AB 不正确;选项C :设等差数列{}n a 的公差为()d d ≠0,所以1111(1)2n S na n n d =+−,当0d ≠时,当n →+∞时,10nS →, 所以数列1n S ⎧⎫⎨⎬⎩⎭一定是收敛数列,因此本选项正确;选项D :因为11a =,11n n S a +=+,所以可得21a =,当2,N n n *≥∈时,由1111n n n n S a S a +−=+⇒=+,两式相减,得11n n n a a a +−=−,所以345670,1,1,0,1a a a a a ==−=−==,所以该数列的周期为6,该数列不可能是收敛数列,因此本选项说法不正确, 故选:C【点睛】关键点睛:利用数列的周期性、常数列的性质是解题的关键.17.(2022春·安徽亳州·高三蒙城县第六中学校联考开学考试)设数列{}m A :1a ,2a ,…,()2m a m ≥,若存在公比为q 的等比数列{}1m B +:1b ,2b ,…,1m b +,使得1k k k b a b +<<,其中1k =,2,…,m ,则称数列{}1m B +为数列{}m A 的“等比分割数列”.若数列{}10A 的通项公式为()21,2,,10nn a n ==,其“等比分割数列”{}11B 的首项为1,则数列{}11B 的公比q 的取值范围是( ) A .()9102,2 B .()10112,2C .()1092,2D .()11102,2【答案】C【分析】由题意可得,()121,2,3,,10n n n qq n −<<=L ,从而可得2q >且()121,2,3,,10n n q n −<=L ,可得122nn q −<<,再根据指数函数的单调性求出12nn −的最小值即可【详解】由题意可得,()121,2,3,,10n n n qq n −<<=L ,所以2q >,且()121,2,3,,10n n qn −<=L ,当1n =时,12<成立;当2n =,3,…,10时,应有12nn q −<成立, 因为2x y =在R 上单调递增,所以111122nn n −−+=随着n 的增大而减小,故1092q <,综上,q 的取值范围是()1092,2. 故选:C.18.(2022春·江苏无锡·高二江苏省江阴市第一中学校考开学考试)若数列{an }满足21321111222n n a a a a a a −−<−<<−<……,则称数列{an }为“半差递增”数列.已知“半差递增”数列{cn }的前n项和Sn 满足*221()n n S c t n N +=−∈,则实数t 的取值范围是( )A .1(,)2−∞B .(-∞,1)C .1(,)2+∞D .(1, +∞)【答案】A【分析】根据*221()n n S c t n N +=−∈,利用递推公式求得数列{}n c 的通项公式.再根据新定义的意义,代入解不等式即可求得实数t 的取值范围.【详解】因为*221()n n S c t n N +=−∈所以当2n ≥时, 11221n n S c t −−+=−两式相减可得1220n n n c c c −+−=,即123n n c c −=,所以数列{}n c 是以公比23q =的等比数列 当1n =时,1213t c −=所以121233n n t c −−⎛⎫=⋅ ⎪⎝⎭,则1221121221221223363183n n n n n t t t c c −−−−−−−⎛⎫⎛⎫⎛⎫−=⋅−⋅=⋅ ⎪⎪⎪⎝⎭⎝⎭⎝⎭11112121212212233233183nn n n n t t t c c −−+−−−⎛⎫⎛⎫⎛⎫−=⋅−⋅=⋅ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭由“差半递增”数列的定义可知21212212183183n n t t −−−−⎛⎫⎛⎫⋅<⋅ ⎪ ⎪⎝⎭⎝⎭化简可得()221213t t −<−⨯解不等式可得12t <即实数t 的取值范围为1,2⎛⎫−∞ ⎪⎝⎭故选:A.19.(2022·浙江·高二学业考试)通过以下操作得到一系列数列:第1次,在2,3之间插入2与3的积6,得到数列2,6,3;第2次,在2,6,3每两个相邻数之间插入它们的积,得到数列2,12,6,18,3;类似地,第3次操作后,得到数列:2,24,12,72,6,108,18,54,3.按上述这样操作11次后,得到的数列记为{}n a ,则1025a 的值是( ) A .6 B .12 C .18 D .108【答案】A【分析】设数列经过第n 次拓展后的项数为n b ,因为数列每一次拓展是在原数列的相邻两项中增加一项,则经过第1n +次拓展后增加的项数为1n b −,从而可得1121n n n n b b b b +=+−=−,从而可求出21nn b =+,从而可知经过11次拓展后在2与6之间增加的数为1021−,由此可得出经过11次拓展后6所在的位置,即可得出答案.【详解】解:设数列经过第n 次拓展后的项数为n b ,因为数列每一次拓展是在原数列的相邻两项中增加一项,则经过第1n +次拓展后增加的项数为1n b −, 所以1121n n n n b b b b +=+−=−, 即()1121n n b b +−=−,即1121n n b b +−=−, 所以数列{}1−n b 是以12b =为首项,2为公比的等比数列,是以12nn b −=,所以21n n b =+,则经过11次拓展后在2与6之间增加的数为1021−,所以经过11次拓展后6所在的位置为第10102111211025−++=+=, 所以10256a =. 故选:A.二、多选题20.(2022秋·安徽阜阳·高三安徽省临泉第一中学校联考阶段练习)若数列{}n a 满足:对任意正整数{}1,n n n a a +−为递减数列,则称数列{}n a 为“差递减数列”.给出下列数列{}()*N n a n ∈,其中是“差递减数列”的有( ) A .2n n a = B .2n a n =C .n aD .ln n a n =【答案】CD【分析】利用差递减数列的定义及函数的单调性即可求解.【详解】对A ,若2n n a =,则11222n n nn n a a ++−=−=,由函数2n y =在()0,∞+上单调递增,所以{}1n n a a +−为递增数列,故A 错误;对B ,若2n a n =,则221(1)21n n a a n n n +−=+−=+,由函数21y n =+在()0,∞+上单调递增,所以{}1n n a a +−为递增数列,故B 错误;对C ,若n a =1n n a a +−==y =()0,∞+上单调递减,所以{}1n n a a +−为递减数列,故C 正确;对D ,若ln n a n =,则()111ln 1ln ln ln 1n n n a a n n n ++⎛⎫−=+−==+ ⎪⎝⎭,由函数1ln 1y n ⎛⎫=+ ⎪⎝⎭在()0,∞+上单调递减,所以{}1n n a a +−为递减数列,故D 正确. 故选:CD .21.(2023春·江西新余·高二新余市第一中学校考阶段练习)若数列{}n a 满足:,A B ∃∈R ,0AB ≠,使得对于*n ∀∈N ,都有21n n n a Aa Ba ++=+,则称{}n a 具有“三项相关性”,下列说法正确的有( ). A .若数列{}n a 是等差数列,则{}n a 具有“三项相关性” B .若数列{}n a 是等比数列,则{}n a 具有“三项相关性” C .若数列{}n a 是周期数列,则{}n a 具有“三项相关性”D .若数列{}n a 具有正项“三项相关性”,且正数A ,B 满足1A B +=,12a a B +=,数列{}n b 的通项公式为n n b B =,{}n a 与{}n b 的前n 项和分别为n S ,n T ,则对*n ∀∈N ,n n S T <恒成立【答案】ABD【分析】根据题目给出的“三项相关性”的定义,逐项验证即可.【详解】若{}n a 为等差数列,则有211n n n n a a a a +++−=−,212n n n a a a ++=−,A 正确;若数列{}n a 是等比数列,则21n n a qa ++=,1n n a qa +=,(0q ≠),即()211n n n a q a qa ++=−+,易知1q ≠,显然成立,1q =时,21n n n a a a ++==,取12A B ==,有211122n n n a a a ++=+,也成立,所以B 正确; 对周期数列:0,0,1,0,0,1,⋅⋅⋅,所以1n =时,100A B =⨯+⨯,显然不成立,所以C 错误; 对D ,()211n n n a B a Ba ++=−+,即()211n n n n a a B a a ++++=+,12a a B += ∴121n n n n a a B BB −+++=⋅=,1B >,易知()211n n n n n a a B a a a ++++=+>,即n n b a >,*N n ∈,故n n S T <,D 正确; 故选:ABD22.(2023春·广东惠州·高三校考阶段练习)斐波那契数列又称黄金分割数列,因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.斐波那契数列用递推的方式可如下定义:用n a 表示斐波那契数列的第n 项,则数列{}n a 满足:121a a ==,21n n n a a a ++=+,记121ni n i a a a a ==++⋅⋅⋅+∑,则下列结论正确的是( )A .数列{}n a 是递增数列B .()2123n n n a a a n −+=+≥C .20222202220231i i a a a ==⋅∑D .2021202311i i a a ==−∑【答案】BCD【分析】由数列的递推公式可判断A,B ;利用累加法计算可判断选项C,D.【详解】对A ,由21n n n a a a ++=+知,{}n a 的前10项依次为:1,1,2,3,5,8,13,21,34,55, 其中,第一二项相等,不满足递增性,故A 错误;对B ,根据递推公式12n n n a a a −−=+,得()21213n n n n n n n a a a a a a a n −−−++=++=+≥,故B 正确;对C ,2121a a a =⋅,()222312321a a a a a a a a =⋅−=⋅−⋅,()233423432a a a a a a a a =⋅−=⋅−⋅,……,()220222022202320212022202320222021a a a a a a a a =⋅−=⋅−⋅,∴22212202220222023a a aa a ++⋅⋅⋅=⋅,即20222202220231i i a a a ==⋅∑,故C 正确;对D ,由递推式,得321a a a −=,432a a a −=,…,202320222021a a a −=, 累加得324320232022122021a a a a a a a a a −+−+⋅⋅⋅+−=++⋅⋅⋅+, ∴20232122021a a a a a −=++⋅⋅⋅+, ∴1220212023220231a a a a a a ++⋅⋅⋅+=−=−, 即2021202311i i a a ==−∑,故D 正确;故选:BCD .23.(2023秋·河北邯郸·高二统考期末)若{}n a 不是等比数列,但{}n a 中存在互不相同的三项可以构成等比数列,则称{}n a 是局部等比数列.下列数列中是局部等比数列的是( ) A .(){}28n−+ B .137n ⎧⎫⎨⎬+⎩⎭C .17122n n +⎧⎫−⎨⎬⎩⎭D .{}225n +【答案】ABD【分析】对于ABD ,直接取特定项验证即可;对于C ,定义法可证为等比数列后即可判断.【详解】对于A :若()28nn a =−+,则16a =,212a =,424a =,由212624=⨯,得1a ,2a ,4a 成等比数列,因为(){}28n−+不是等比数列,所以(){}28n−+是局部等比数列.故A 正确;对于B :若137n a n =+,则1110a =,11140a =,511160a =,由21114010160⎛⎫=⨯ ⎪⎝⎭,得1a ,11a ,51a 成等比数列,因为137n ⎧⎫⎨⎬+⎩⎭不是等比数列,所以137n ⎧⎫⎨⎬+⎩⎭是局部等比数列. 故B 正确;对于C :若117113222n n n n a ++=−=,则112n n a a +=,则{}n a 是等比数列,所以17122n n +⎧⎫−⎨⎬⎩⎭不是局部等比数列. 故C 错误;对于D :若225n a n =+,则550a =,15250a =,351250a =,由250125050250=,得5a ,15a ,35a 成等比数列,因为{}225n +不是等比数列,所以{}225n +是局部等比数列. 故D 正确.故选:ABD.24.(2023春·安徽蚌埠·高二蚌埠二中校考阶段练习)已知数列{}n a 是各项均为正数且公比不等于1的等比数列()*N n ∈,对于函数()f x ,若数列(){}ln n f a 为等差数列,则称函数()f x 为“保比差数列函数”,则定义在()0,∞+上的如下函数中是“保比差数列函数”的有( ) A .()1f x x=为“保比差数列函数” B .()2f x x =为“保比差数列函数”C .()e xf x =为“保比差数列函数” D .()f x =“保比差数列函数”【答案】ABD【分析】设数列{}n a 的公比为()1q q ≠,利用保比差数列函数的定义,结合等差数列的定义逐项验证即可. 【详解】设数列{}n a 的公比为()1q q ≠, 选项A :()1ln lnn nf a a =, 所以()()11111ln ln lnln ln ln n n n n n n af a f a q a a a +++−=−==−是常数, 所以数列(){}ln n f a 为等差数列,A 满足题意;选项B :()2ln ln n n f a a =,所以()()22221112ln ln ln ln ln ln 2ln n n n n nna f a f a aa q q a +++−=−===是常数,所以数列(){}ln n f a 为等差数列,B 满足题意;选项C :()ln ln e n an n f a a ==,所以()()11ln ln n n n n f a f a a a ++−=−不是常数, 所以数列(){}ln n f a 不为等差数列,C 不满足题意; 选项D :()ln n f a =所以()()11ln ln ln 2n n f a f a q +−==是常数,所以数列(){}ln n f a 为等差数列,D 满足题意; 故选:ABD25.(2022秋·福建福州·高二校联考期末)在数列{}n a 中,若221(2,,n n a a p n n p *−−=≥∈N 为常数),则称{}n a 为“平方等差数列”.下列对“平方等差数列”的判断,其中正确的为( )A .{}(2)n−是平方等差数列B .若{}n a 是平方等差数列,则{}2n a 是等差数列C .若{}n a 是平方等差数列,则{}(,,,n ka b k b k b *+∈N 为常数)也是平方等差数列D .若{}n a 是平方等差数列,则{}(,,,kn b a k b k b *+∈N 为常数)也是平方等差数列【答案】BD【分析】根据等差数列的定义,结合平方等差数列的定义逐一判断即可. 【详解】对于A ,当n 为奇数时,则()1n −为偶数,所以()()()11122223?2n n n n n −−−−−−=−+=−,当n 为偶数时,则()1n −为奇数,所以()()()11122223?2n n n n n −−−−−−=+=,即{}(2)n−不符合平方等差数列的定义,故错误;对于B ,若{}n a 是平方等差数列,则221(2,,n n a a p n n p *−−=≥∈N 为常数),即{}2n a 是首项为21a ,公差为p 的等差数列,故正确;对于C ,若{}n a 是平方等差数列,则221(2,,n n a a p n n p *−−=≥∈N 为常数), 则()()()()222221112n n n n n n ka b ka b k a a kb a a −−−+−+=−+−,即()())222112n n n n ka b ka b k p kb a a −−+−+=+−,当{}n a 为等差数列时,1n n a a d −−=,则{}n ka b +为平方等差数列, 当{}n a 不为等差数列时,则{}n ka b +不为平方等差数列,故错误;对于D ,因为{}n a 是平方等差数列,所以()()222222121111+++++−−=−==−=kn kn kn kn kn k n a a a a a a p ,把以上的等式相加,得()()()()()222222121111+++++−−+−+⋯+−=kn kn kn kn k n k n a a a a a a kp , 22(1)k n kn a a kp +∴−=,则()221kn b k n ba a kp +++−=,即数列{}knb a +是平方等差数列,故正确; 故选:BD26.(2023秋·山西吕梁·高二统考期末)定义:在数列的每相邻两项之间插入此两项的积,形成新的数列,这样的操作叫作该数列的一次“美好成长”.将数列1,4进行“美好成长”,第一次得到数列1,4,4;第二次得到数列1,4,4,16,4,L ,设第n 次“美好成长”后得到的数列为121,,,,,4k x x x L ,并记()412log 14n k a x x x =⨯⨯⨯⨯⨯L ,则( )A .25a =B .131n n a a +=−C .21nk =+D .数列{}n na 的前n 项和为()()13213218n n n n +−+++【答案】ABD【分析】对A :由题意直接运算判断;对B :根据第1n +次“美好成长”与第n 次“美好成长”的关系分析运算;对C :根据题意分析可得:()1121n n b b ++=+,利用构造法结合等比数列分析运算;对D :由131n n a a +=−,利用构造法结合等比数列可得312n n a +=,利用裂项相消结合分组求和运算求解.【详解】对A :()()25144244log 144log 42,log 144164log 45a a =⨯⨯===⨯⨯⨯⨯==,A 正确;对B :由题意可知:()()()(){}()()212141211241214log 1414log 1414k n k k k x x x a x x x x x x x x x x +⎡⎤⨯⨯⨯⨯⨯⎡⎤=⨯⨯⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⎢⎥⎣⎦⨯⎢⎥⎣⎦()()312441214log 3log 141314k k n x x x x x x a ⨯⨯⨯⨯⨯==⨯⨯⨯⨯⨯−=−,故131n n a a +=−,B 正确;对C :设第n 次“美好成长”后共插入n b 项,即n k b =,共有1n b +个间隔,且11b =, 则第1n +次“美好成长”后再插入1n b +项,则()1121n n n n b b b b +=++=+, 可得()1121n n b b ++=+,且1120b +=≠,故数列{}1n b +是以首项为2,公比为2的等比数列, 则11222n n n b −+=⨯=,故21n n k b ==−,C 错误;对D :∵131n n a a +=−,则111322n n a a +⎛⎫−=− ⎪⎝⎭,且113022a −=≠, 故数列12n a ⎧⎫−⎨⎬⎩⎭是以首项为32,公比为3的等比数列,则11333222n n n a −−=⨯=,即312n n a +=,设()()()1313232332222n n n n n n n n nna An B A n B An A B +=+⋅−++⋅+=−−−⋅+=⨯+⎡⎤⎣⎦,则122320A A B ⎧−=⎪⎨⎪−−=⎩,解得1438A B ⎧=−⎪⎪⎨⎪=⎪⎩,故1321233882n n n n n nna +−−=⋅−⋅+, 设数列{}n na 的前n 项和为n S , 则22311211133212122333333888888222n n n n n n n S a a na +⎡−−−−−⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=⨯−⨯+⨯−⨯++⋅−⋅++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L L L()()1113122321322388218n n n n n n n n ++⎛⎫+ −++⎪−⎝⎭=−⋅++=, 即数列{}n na 的前n 项和为()()13213218n n n n +−+++,D 正确.故选:ABD. 【点睛】结论点睛:(1)构造法:()()110,1n n n n a ka m km k a a λλ++=+≠≠⇔+=+;(2)裂项构造:()()()11n n n kn b q An B q A n B q ++⋅=+⋅−++⋅⎡⎤⎣⎦.27.(2023春·安徽·高二合肥市第八中学校联考开学考试)在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列,将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*N n n ∈次得到数列1,1x ,2x ,3x ,…,k x ,2.记1212n k a x x x =+++⋅⋅⋅++,数列{}n a 的前n 项和为n S ,则( ) A .342a = B .133n n a a +=− C .()2332n a n n =+ D .()133234n n S n +=+− 【答案】ABD【分析】根据数列的构造方法先写出前面几次数列的结果,寻找规律,再进行推理运算即可. 【详解】解:由题意可知,第1次得到数列1,3,2,此时1k =, 第2次得到数列1,4,3,5,2,此时3k =,第3次得到数列1,5,4,7,3,8,5,7,2,此时7k =,第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时15k =,第n 次得到数列1,1x ,2x ,3x ,L ,k x ,2,此时21n k =−, 由此可得133a =+,2339a =++,33392742a =+++=,故A 正确; 43392781a =++++,…,()112331333333333132n n nna +−+=++++⋅⋅⋅+=+=−,故C 错误; 由1332n n a ++=,可得2133332n n n a a +++==−,故B 正确;由()()()23411129131313333333232221324n n n n n n n S a a a n ++−=++⋅⋅⋅+=+++⋅⋅⋅++=⨯+=+−−,故D 正确.故选:ABD .三、填空题28.(2022春·上海长宁·高二上海市延安中学校考期中)对于数列{}n a ,若存在正整数m ,使得对任意正整数n ,都有n m n a a q +=(其中q 为非零常数),则称数列{}n a 是以m 为周期,以q 为周期公比的“类周期性等比数列”.若“类周期性等比数列”的前4项为1,1,2,3,周期为4,周期公比为3,则数列{}n a 前21项的和为__. 【答案】1090【分析】确定43n n a a +=,数列{}n a 从第二项起连续四项成等比数列,利用等比数列公式计算得到答案. 【详解】43n n a a +=,故513a a q ==,由题意得数列{}n a 从第二项起连续四项成等比数列, 234512339,3a a a a q +++=+++==,则数列{}n a 前21项的和为()5523451913()(1)11090113a a a a q a q ⨯−+++−+=+=−−. 故答案为:109029.(2022秋·福建泉州·高二统考期末)对于数列{}n a ,记:()()()()()()()1212311112n n n n n n n n n a a +++∆∆∆=∆=∆=∆∆,,,…,()()()111k k n n k n−+−∆∆=∆(其中*n ∈N ),并称数列(){}k n ∆为数列{}n a 的k 阶商分数列.特殊地,当(){}kn ∆为非零常数数列时,称数列{}n a 是k 阶等比数列.已知数列{}n a 是2阶等比数列,且20123220482a a a ===,,,若n m n a a −=,则m =___________. 【答案】23【分析】根据给定的定义,计算(1)(1)12,∆∆,进而求出数列(1){}n ∆的公比及通项,再借助累乘法求出数列{}n a 的通项即可推理计算作答.【详解】由数列{}n a 是2阶等比数列,得(2)(0)nq q ∆=≠,即(1)(2)1(1)n nnq +∆∆==∆, 且(1)(1)10(1)932212(1)12112,2,2a a q a a ∆∆==∆====∆,即数列(1){}n ∆是首项为102,公比为12的等比数列, 则有(1)10111112()()22n n n −−∆=⨯=,即1111()2n n n a a −+=,当2n ≥时, 22320109121(10)(9)(12)3221121111112()()()()()22222nn n n n n n aa a a a a a a −+−−−−+−+−++−−=⋅⋅⋅⋅=⨯⨯⨯⨯==,而12a =满足上式,因此22320212n n n a −+⎛⎫= ⎪⎝⎭,由n m n a a −=得:222320()23()202211()()22nn m n m n −+−−−+=,即222320()23()20n n m n m n −+=−−−+,整理得(2)23(2)m n m n m −=−,又n 为小于m 的任意正整数,所以23m =. 故答案为:23【点睛】关键点睛:涉及数列新定义问题,关键是正确理解给出的定义,由给定的数列结合新定义探求数列的相关性质,并进行合理的计算、分析、推理等方法综合解决.30.(2023·河南郑州·统考一模)“外观数列”是一类有趣的数列,该数列由正整数构成,后一项是前一项的“外观描述”.例如:取第一项为1,将其外观描述为“1个1”,则第二项为11;将描述为“2个1”,则第三项为21;将21描述为“1个2,1个1”,则第四项为1211;将1211描述为“1个1,1个2,2个1”,则第五项为111221,…,这样每次从左到右将连续的相同数字合并起来描述,给定首项即可依次推出数列后面的项.则对于外观数列{}n a ,下列说法正确的有______. ①若13a =,则从4a 开始出现数字2;②若1a k =(1k =,2,3,…,9),则()*n a n ∈N 的最后一个数字均为k ;③{}n a 不可能为等差数列或等比数列; ④若1123a =,则()*n a n ∈N 均不包含数字4.【答案】②④【分析】对①,由外观数列定义列举判断; 对②,由外观数列定义判断; 对③,取反例,如122a =;对④,由反证法,结合外观数列定义判断.【详解】对①,12343,13,1113,3113a a a a ====,①错;对②,由外观数列的定义,每次都是从左到右描述,故一开始的k (1k =,2,3,…,9)始终在最右边,即最后一个数字,②对; 对③,取122a =,则2322a a ===,此时既为等差数列,也为等比数列,③错;对④,1234123,111213,31121113,1321123113a a a a ====,设数列()*,5k a k k N ∈≥首次出现数字4,则1k a −必出现了4个连续的相同数字m (1m =,2,3,…,9),而2k a −的描述必包含“1个m ,1个m ”,与1k a −的描述矛盾,故()*n a n ∈N 均不包含数字4,④对.故选:②④31.(2023秋·内蒙古阿拉善盟·高三阿拉善盟第一中学校考期末)设数列{}n a 的前n 项和为n S ,对任意n *∈N 都有1n n a a t ++=(t 为常数),则称该数列为“t 数列”,若数列{}n a 为“2数列”,且11a =−,则2023S =______. 【答案】2021【分析】利用并项求和即可.【详解】根据题意得到:2320222402532a a a a a a ++=+===,所以()()()202312345202220232101112021S a a a a a a a =+++++++=⨯−=.故答案为:2021.32.(2023秋·宁夏吴忠·高二吴忠中学校考期末)定义n 个正数12,,,n p p p ⋯的“均倒数”为12nnp p p ++⋅⋅⋅+,若各项均为正数的数列{}n a 的前n 项的“均倒数”为121n +,则2023a 的值为______ 【答案】8091【分析】利用“均倒数”的概念求出(21)n S n n =+,再利用递推关系求出41n a n =−,再代入值即可. 【详解】由已知可得数列{}n a 的前n 项的“均倒数”为 121,21n n n n a a a S n ==++⋯++可得(21)n S n n =+,则2n …时, 21[2(1)1](1)231n S n n n n −=−+−=−+141n n n a S S n −∴=−=−,当1n =时,113a S ==,满足41n a n =−, 202341,4202318091n a n a ∴=−=⨯−=.故答案为: 8091 .33.(2023秋·安徽淮北·高二淮北一中校考期末)对给定的数列{}()0n n a a ≠,记1n n na b a +=,则称数列{}n b 为数列{}n a 的一阶商数列;记1n n nb c b +=,则称数列{}n c 为数列{}n a 的二阶商数列;以此类推,可得数列{}n a 的P 阶商数列()P *∈N ,已知数列{}n a 的二阶商数列的各项均为e ,且121,1a a ==,则10a =___________.【答案】36e【分析】由题意可得1e n n n b c b +==,从而得1e n n b −=,即11e n n naa −+=,由累乘法即可求得10a 的值. 【详解】解:由数列{}n a 的二阶商数列的各项均为e ,可知1e n n nb c b +==, 而2111a b a ==, 故数列{}n b 是以1为首项,e 为公比的等比数列,即1e n n b −=,即11e ,n n na n a −*+=∈N , 即283102412391,e,e ,,e a a a a a a a a ====. 所以()18828128363102421011239··11e e ?·e e =e=e a a a a a a a a a a +⋅+++=⋅⋅⋅=⋅⋅⋅=,故3610e a =.故答案为:36e34.(2022秋·上海·高二期中)定义:对于任意数列{}n a ,假如存在一个常数a 使得对任意的正整数n 都有n a a <,且lim n n a a →+∞=,则称a 为数列{}n a 的“上渐近值”.已知数列{}n a 有12,a a a p ==(p 为常数,且0p >),它的前n 项和为n S ,并且满足()12n n n a a S −=,令2112n n n n n S S p S S ++++=+,记数列{}122n p p p n +++−的“上渐近值”为k ,则100coskπ的值为 _____. 【答案】12−##-0.5【分析】先根据n S 求解数列{}n a 的通项公式,得出等差数列后,利用等差数列求和方法求出n S ,代入n p 得出n p 的表达式,最后即可得出上渐近值. 【详解】解:当1n =时,()1111102a a S a ⨯−===,当2n ≥时,()()()1111122n n n n n n a a n a a a S S −−−−−=−=−,得到112n n n a a n −−=−, 根据累乘法:()212332123421n n n n a a n p n n n −−−=⨯⨯⨯⨯⨯⨯=−−−−;满足n=1情况, 故而数列{}n a 是首项为0,公差为p 的等差数列,()12n n n pS −∴=,21122112222n n n n n S S n n p S S n n n n +++++⎛⎫∴=+=+=+− ⎪++⎝⎭, 122n p p p n ∴+++−=111111111221232435112n n n n n n ⎛⎫+−+−+−++−+−− ⎪−++⎝⎭11121212n n ⎛⎫=+−− ⎪++⎝⎭()()46312n n n +=−++,()()()1246li 231m l 32im n n n n p p p n n n →+∞→+∞⎛⎫+∴+++−=−= ⎪ ⎪++⎝⎭, 3k ∴=,10010021coscos cos 332k πππ⎛⎫∴==−=− ⎪⎝⎭. 故答案为:12−35.(2023·高二课时练习)定义:各项均不为零的数列{}n a 中,所有满足10i i a a +⋅<的正整数i 的个数称为这个数列{}n a 的变号数.已知数列{}n b 的前n 项和26n S n n a =−+(n *∈N ,5a ≠),令41n na b =−(n *∈N ),若数列{}n a 的变号数为2,则实数a 的取值范围是___________. 【答案】()(),59,−∞+∞。
2023届高考数学专项练习放缩法证明数列不等式之常数型与函数型含解析 (2)

2023届高考数学专项练习放缩法证明数列不等式之常数型与函数型◆题型一:放缩法证明数列不等式之常数型方法解密:放缩法证明数列不等式属于数列大题中较有难度的一种题型.大部分是以证明某个数列和大于或小于一个常数类型,小部分是证明某个数列前n项和或者积大于或小于一个函数(下一专题详解).本专题我们来介绍最常见的常数类型.放缩的目的有两个:一是通过放缩使数列的和变换成比如裂项相消等可以简单求和的形式,这样可以方便比较大小.二是两者之间无法直接比较大小,这样我们需要通过寻找一个媒介,来间接比较大小.放缩的原则:放缩必然会导致数变大或者变小的情况,我们的原则是越精确越好.在证明过程中,为了使放缩更精确,往往会第一项不变,从第二项或者第三项开始放缩(例题会有讲解).放缩的方法:(1)当我们要证明多项式M<A时,我们无法直接证明两者的大小,这时我们可以将多项式M放大为N1,当我们能够证明N1<A,也间接证明了M<A.切不可将M缩小为N2,即使能够证明N2<A,M与A的关系无法得证.(2)当我们要证明多项式M>A时,这时我们可以将多项式M缩小为N1,当我们能够证明N1>A,也间接证明了M>A.需要放缩的多项式多以分式形式出现,要使得分式的值变大,就是将分母变小,常见是将分母减去一个正数,比如1.常见的放缩形式:(1)1n2<1n-1n=1n-1-1n n≥2;(2)1n2>1n n+1=1n-1n+1;(3)1n2=44n2<44n2-1=212n-1-12n+1;(5)1n =2n+n<2n-1+n=2-n-1+nn≥2;(6)1n =2n+n>2n+n+1=2-n+n+1;(7)1n =2n+n<2n-12+n+12=222n-1+2n+1=2-2n-1+2n+1;(8)2n2n-12=2n2n-12n-1<2n2n-12n-2=2n-12n-12n-1-1=12n-1-1-12n-1n≥2;(12)12n-1<2n-12n-1-12n-1=12n-1-1-12n-1n≥2.类型一:裂项放缩【经典例题1】求证112+122+132+.....+1n2<2【变式1】求证112+122+132+.....+1n2<74【变式2】求证112+122+132+.....+1n2<53【经典例题2】已知a n=n2,b n=n2,设c n=1a n+b n,求证:c1+c2+⋯+c n<43.【经典例题3】已知数列a n满足a1=1,a n-1=n-1n a n(n≥2,n∈N*),(1)求a n;(2)若数列b n满足b1=13,b n+1=b n+1a2n(n∈N*),求证:b n<2512.类型二:等比放缩所谓等比放缩就是数列本身并非为标准的等比数列,我们将数列的通项经过一定的放缩使之成为一个等比数列,然后再求和,我们通过例题进行观察了解.【经典例题4】证明:121-1+122-1+123-1+...+12n -1<53【经典例题5】已知数列a n 满足:a 1=2,a n +1=2a n +2n +1,n ∈N *.(1)求证a n 2n 是等差数列并求a n ;(2)求数列a n 的前n 项和S n ;(3)求证:1a 2-a 1+1a 3-a 2+1a 4-a 3+⋅⋅⋅+1a n +1-a n <12.【练习1】已知数列{a n }中,a 1=1,其前n 项的和为S n ,且当n ≥2时,满足a n =S 2n S n -1.(1)求证:数列1S n 是等差数列;(2)证明:S 21+S 22+⋯+S 2n <74.【练习2】已知数列a n 的前n 项和为S n ,且S n =12na n +a n -1.(1)求数列a n 的通项公式;(2)若数列2a 2n 的前n 项和为T n ,证明:T n <32.【练习3】已知函数f (x )=x 3-2x ,数列a n 中,若a n +1=f (a n ),且a 1=14.(1)求证:数列1a n -1 是等比数列;(2)设数列a n 的前n 项和为S n ,求证:S n <12.【练习4】已知函数f (x )=x 2-2x ,数列a n 的前n 项和为S n ,点P n n ,S n 均在函数y =f x 的图象上.若b n=12a n +3 (1)当n ≥2时,试比较b n +1与2b n的大小;(2)记c n =1b n n ∈N *试证c 1+c 2+⋯+c 400<39.◆题型二:放缩法证明数列不等式之函数型方法解密:数列放缩较难的的两类便是形如数列的前n 项和与函数f (n )的不等关系,即a 1+a 2+⋯+a n <f (n )或者数列前n 项积与函数f (n )的不等关系,即a 1⋅a 2⋅⋯⋅a n <f (n )的问题,其中,这里的前n 项和与前n 项积难求或者是根本无法求.面对这类题时,首先,我们可以将f (n )看成某个数列的和或者积,然后通过比较通项的大小来解决;其次,我们也可以对a n 进行变形,使之能求和或者求积.往往第二种方法难以把握,对学生综合素质要求较高.而第一种方法相对简单易行,所以本专题以“拆项”为主线详细讲解.【经典例题1】已知数列a 1=32,a n +1=3a n -1,n ∈N *(1)若数列b n 满足b n =a n -12,求证:数列b n 是等比数列。
2023年高考数学试题分项版—不等式(原卷版)
2023年高考数学试题分项版——不等式(原卷版)一、选择题1.(2023·北京卷,8)若0xy ≠,则“0x y +=”是“2y xx y+=-”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、填空题1.(2023·全国甲卷理,14)设x ,y 满足约束条件2333231x y x y x y -+≤⎧⎪-≤⎨⎪+≥⎩,设32z x y =+,则z 的最大值为____________.2.(2023·全国甲卷文,15)若x ,y 满足约束条件323,2331,x y x y x y -≤⎧⎪-+≤⎨⎪+≥⎩,则32z x y =+的最大值为________.3.(2023·全国乙卷理,14)若x ,y 满足约束条件312937x y x y x y -≤-⎧⎪+≤⎨⎪+≥⎩,则2z x y =-的最大值为______.4.(2023·全国乙卷文,15)若x ,y 满足约束条件312937x y x y x y -≤-⎧⎪+≤⎨⎪+≥⎩,则2z x y =-的最大值为______.三、解答题1.(2023·全国甲卷理,23)已知()2,0f x x a a a =-->.(1)求不等式()f x x <的解集;(2)若曲线()y f x =与坐标轴所围成的图形的面积为2,求a .2.(2023·全国甲卷文,23)已知()2||, 0 f x x a a a =-->.(1)求不等式()f x x <的解集;(2)若曲线()y f x =与x 轴所围成的图形的面积为2,求a .3.(2023·全国乙卷理,23)已知()22f x x x =+-.(1)求不等式()6f x x ≤-的解集;(2)在直角坐标系xOy 中,求不等式组()60f x yx y ≤⎧⎨+-≤⎩所确定的平面区域的面积.4.(2023·全国乙卷文,23)已知()22f x x x =+-(1)求不等式()6x f x ≤-的解集;(2)在直角坐标系xOy 中,求不等式组()60f x y x y ⎧≤⎨+-≤⎩所确定的平面区域的面积.。
专题04 不等式与不等关系-2023年高考数学真题题源解密(全国卷)(解析版)
2023年高考数学真题题源解密(全国卷)专题04 不等式与不等关系目录一览①2023真题展现考向一 线性规划考向二 由函数的单调性解不等式②真题考查解读③近年真题对比考向一 线性规划考向二 基本不等式及其应用考向三 比较大小④命题规律解密⑤名校模拟探源⑥易错易混速记考向一 线性规划1.(2023·全国乙卷文数第15题)若x ,y 满足约束条件312937xy x y x y -≤-⎧⎪+≤⎨⎪+≥⎩,则2z x y =-的最大值为______.【答案】8【详解】作出可行域如下图所示:2z x y =-,移项得2y x z =-,联立有3129x y x y -=-⎧⎨+=⎩,解得52x y =⎧⎨=⎩,设()5,2A ,显然平移直线2y x =使其经过点A ,此时截距z -最小,则z 最大,2.(2023·全国乙卷理数第14题)若x,y满足约束条件【答案】15【详解】作出可行域,如图,由图可知,当目标函数32 y x =-由233323x yx y-+=⎧⎨-=⎩可得33xy=⎧⎨=⎩,即所以max332315z=⨯+⨯=.故答案为:考向二由函数的单调性解不等式【命题意图】1.二元一次不等式组与简单线性规划问题(1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.2.基本不等式:0,0)2a ba b +≥≥≥(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.【考查要点】线性规划这部分内容主要是以课程学习情境为主,备考以常见的简单题型为主;基本不等式这部分内容在全国卷主要以选做题的形式出现,在2020年的新高考中为多选题,题目难度为中等难度,在备考中以中等难度题型为主训练思维的灵活性,同时注意三个正数的算数—几何平均不等式这一题型;绝对值不等式这部分内容在全国卷中通常为选做题,考查的频率较高,题目的难度为中等难度,在备考中要注意与函数知识相结合【得分要点】高频考点:线性规划中频考点:基本不等式、比较大小低频考点:利用函数单调性解不等式考向一 线性规划一、单选题1.(2022·全国乙卷理数第5题)若x ,y 满足约束条件2,24,0,x yx y y +≥⎧⎪+≤⎨⎪≥⎩则2z x y =-的最大值是( )A .2-B .4C .8D .12【答案】C【详解】由题意作出可行域,如图阴影部分所示,转化目标函数2z x y =-为2y x z =-,上下平移直线2y x z =-,可得当直线过点()4,0时,直线截距最小,z 最大,所以max 2408z =⨯-=.故选:C.2.(2021·全国乙卷文数第5题)若,x y 满足约束条件4,2,3,x y x y y +≥⎧⎪-≤⎨⎪≤⎩则3z x y =+的最小值为( )A .18B .10C .6D .4【答案】C【详解】由题意,作出可行域,如图阴影部分所示,由43x y y +=⎧⎨=⎩可得点()1,3A ,转换目标函数3z x y =+为3y x z =-+,上下平移直线3y x z =-+,数形结合可得当直线过点A 时,z 取最小值,此时min 3136z =⨯+=.故选:C.考向二基本不等式及其应用[方法二]:建系法令 BD=t ,以D 为原点,OC 为x 轴,建立平面直角坐标系则C (2t,0),A (1,3),B (-t,0)()()(2222222134444241313,31t AC t t AB t t t t BD -+-+∴===-+++++==-当且仅当即考向三比较大小线性规划内容在近年的全国卷中考查的频率很高,属于基础性内容。
2023高考数学考点专题复习——基本不等式练习题
2023考点专题复习——基本不等式考法一: 直接法例题1、已知正数a ,b 满足8ab =,则2+a b 的最小值为( ) A .8B .10C .9D .6例题2、若正实数x ,y 满足2x +y =1.则xy 的最大值为( ) A .14B .18C .19D .116例题3、若0x >,则___________.练习1、已知x 、y R +∈,且24x y +=,则xy 的最大值是_________.练习2、若正实数x ,y 满足21x y +=,则2xy 的最大值为______. 练习3、已知正数x 、y 满足341x y +=,则xy 的最大值为_________. 练习4、已知,x y 为正实数,且4xy =,则4x y +的最小值是_____. 练习5、若0,0,10x y xy >>=,则25x y+的最小值为_____. 考法二:配凑法例1、已知01x <<,则)(33x x -的最大值为( ) A .12B .14C .23D .34例2、已知(3,)x ∈+∞,函数43y x x =+-的最小值为( ) A .4B .7C .2D .8例3、若103x <<,则()13x x -取最大值时x 的值是 例4、 若1x >-,则22441x x x +++的最小值为A .1B .2C .3D .4练习1、函数9424y x x=--,12x >的最小值为__________.练习2、函数131y x x =+-(1)x >的最小值是( )A .4B .3C .D .3练习3、函数233(1)1x x y x x ++=<-+的最大值为( )A .3B .2C .1D .-1练习4、若a 、b 、c >0且a (a +b +c )+bc =4-2a +b +c 的最小值为 。
练习5、已知1x >-,求函数11y x x =++的最小值是 。
全国通用近年高考数学总复习专题八选考内容8.2不等式选讲精选刷题练理(2021年整理)
(全国通用版)2019版高考数学总复习专题八选考内容8.2 不等式选讲精选刷题练理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2019版高考数学总复习专题八选考内容8.2 不等式选讲精选刷题练理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2019版高考数学总复习专题八选考内容8.2 不等式选讲精选刷题练理的全部内容。
8。
2 不等式选讲命题角度1含绝对值不等式的图象与解法高考真题体验·对方向1.(2018全国Ⅲ·23)设函数f(x)=|2x+1|+|x-1|。
(1)画出y=f(x)的图象;(2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值.解(1)f(x)=y=f(x)的图象如图所示.(2)由(1)知,y=f(x)的图象与y轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a≥3且b≥2时,f(x)≤ax+b在[0,+∞)成立,因此a+b的最小值为5.2。
(2017全国Ⅰ·23)已知函数f(x)=—x2+ax+4,g(x)=|x+1|+|x-1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[—1,1],求a的取值范围.解(1)当a=1时,不等式f(x)≥g(x)等价于x2—x+|x+1|+|x-1|-4≤0.①当x〈-1时,①式化为x2-3x—4≤0,无解;当-1≤x≤1时,①式化为x2-x—2≤0,从而-1≤x≤1;当x〉1时,①式化为x2+x-4≤0,从而1<x≤。
所以f(x)≥g(x)的解集为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
专练68 高考大题专练(八) 不等式选讲
1.[2022·郑州模拟]已知函数f(x)=|2x+a|+1.
(1)当a=2时,解不等式f(x)+x<2;
(2)若存在a∈-13,1,使得不等式f(x)≥b+|2x+a2|的解集非空,求b的取值范围.
2.[2022·江西省临川高三模拟]已知函数f(x)=|x+1|-|2x-a|(a>0),g(x)=
1
2
x-1
.
(1)当a=1时,解关于x的不等式f(x)≥0;
(2)若函数f(x)与g(x)的图像可以围成一个四边形,求a的取值范围.
2
3.[2020·全国卷Ⅲ]设a,b,c∈R,a+b+c=0,abc=1.
(1)证明:ab+bc+ca<0;
(2)用max{a,b,c}表示a,b,c的最大值,证明:max{a,b,c}≥34.
4.[2021·全国乙卷]已知函数f(x)=|x-a|+|x+3|.
(1)当a=1时,求不等式f(x)≥6的解集;
(2)若f(x)>-a,求a的取值范围.
3
5.[2022·全国甲卷(理),23]已知a,b,c均为正数,且a2+b2+4c2=3,证明:
(1)a+b+2c≤3;
(2)若b=2c,则1a+1c≥3.
4
6.[2022·全国乙卷(理),23]已知a,b,c都是正数,且a32+b32+c32=1,证明:
(1)abc≤19;
(2)ab+c+ba+c+ca+b≤12abc.
专练68 高考大题专练(八) 不等式选讲
1.解析:(1)当a=2时,函数f(x)=|2x+2|+1,
解不等式f(x)+x<2化为|2x+2|+1+x<2,
即|2x+2|<1-x,
∴x-1<2x+2<1-x(x<1),
解得-3 ∴不等式的解集为x-3 (2)由f(x)≥b+|2x+a2|, 由题意知存在a∈-13,1,使得上式成立, 而函数h(a)=|a2-a|+1在a∈-13,1上的最大值为h(-13)=139, ②-1<x<12时,f(x)=(x+1)+(2x-1)=3x≥0, 解得x≥0,所以0≤x<12; (2)f(x)=|x+1|-|2x-a|=x-a-1,x≤-13x+1-a,-1<x<a2,-x+a+1,x≥a2 所以f(x)与g(x)图像如图所示, 则a-13<2<a+1,即1<a<7. ∴ab+bc+ca=-12(a2+b2+c2). ∵a=-b-c,a=1bc, ∴a3=a2·a=(b+c)2bc=b2+c2+2bcbc≥2bc+2bcbc=4. 即3+a>-a或3+a-32. 故a的取值范围为{a|a>-32}. (2)(方法一)31a+1c=31a+22c=31a+12c+12c. =9,当且仅当a=2c时等号成立,所以1a+1c≥3. 所以a32+b32+c32≥33a32b32c32=3abc,当且仅当a=b=c=319时取等号. 所以b+c≥2bc,a+c≥2ac,a+b≥2ab,当且仅当a=b=c=319时同时取等号. (方法二)要证ab+c+ba+c+ca+b≤12abc成立,只需证a32bcb+c+b32aca+c+c32aba+b≤12成立 所以b+c≥2bc,a+c≥2ac,a+b≥2ab,当且仅当a=b=c=319时同时取等号.
得b≤|2x+a|-|2x+a2|+1,
设g(x)=|2x+a|-|2x+a2|+1,
则不等式的解集非空,等价于b≤g(x)max,
由g(x)≤|(2x+a)-(2x+a2)|+1
=|a2-a|+1,
∴b≤|a2-a|+1.
∴b≤139,
即b的取值范围是(-∞,139].
2.解析:(1)a=1时,f(x)=|x+1|-|2x-1|,
①当x≤-1时,f(x)=-(x+1)+(2x-1)=x-2≥0,
解得x≥2,所以x∈∅;
③当x≥12时,f(x)=(x+1)-(2x-1)=-x+2≥0,
解得x≤2,所以12≤x≤2.
综上所述,当a=1时,f(x)≥0的解集为{x|0≤x≤2}.
所以f(x)在(-∞,a2)上单调递增,(a2,+∞)上单调递减,
又因为f(-1)=-2-a<0,f(a-13)=f(a+1)=0,
且g(x)在(-∞,2)单调递减,(2,+∞)上单调递增,
6
要使得f(x)与g(x)的图像可以围成一个四边形,
故a的取值范围为(1,7).
3.证明:(1)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=0,
∵abc=1,∴a,b,c均不为0,∴a2+b2+c2>0,
∴ab+bc+ca=-12(a2+b2+c2)<0.
(2)不妨设max{a,b,c}=a,
由a+b+c=0,abc=1可知,a>0,b<0,c<0,
当且仅当b=c时,取等号,
∴a≥34,即max{a,b,c}≥34.
4.解析:(1)当a=1时,f(x)=|x-1|+|x+3|,
故f(x)≥6即|x-1|+|x+3|≥6,
当x≤-3时,1-x-x-3≥6,解得x≤-4,又x≤-3,所以x≤-4;
当-3
综上,原不等式的解集为{x|x≤-4或x≥2}.
(2)f(x)=|x-a|+|x+3|≥|(x-a)-(x+3)|=|3+a|,当x的值在a与 -3之
间(包括两个端点)时取等号,
若f(x)>-a,则只需|3+a|>-a,
7
5.证明:(1)因为a2+b2+4c2=3,所以由柯西不等式可知,(a2+b2+4c2)(1+1+1)≥(a
+b+2c)2,
即(a+b+2c)2≤9,且a,b,c均为正数,
所以a+b+2c≤3,当且仅当a=b=2c=1时等号成立.
所以a+b+2c≤3.
由b=2c,a+b+2c≤3得
31a+1c=31a+1b+12c≥(a+b+2c)1a+1b+12c≥(a·1a+b·1b+2c·12c)
2
(方法二)因为b=2c,由(1)知a+b+2c≤3,
所以1a+1c×3≥1a+1c(a+4c)=1+4ca+ac+4≥5+24ca·ac=9,当且仅当a=2c时
等号成立.所以1a+1c≥3.
6.证明:(1)因为a,b,c都是正数,
因为a32+b32+c32=1,所以abc≤13,即abc≤19.
(2)(方法一)因为a,b,c都是正数,
所以2abc(ab+c+ba+c+ca+b)≤2abc(a2bc+b2ac+c2ab)=a32+b32+c32=1,
所以ab+c+ba+c+ca+b≤12abc.
即可.
因为a,b,c都是正数,
8
所以a32bcb+c+b32aca+c+c32aba+b≤a32bc2bc+b32ac2ac+c32ab2ab=a32+b32+c322=12,得证.