平行线的判定

合集下载

平行线的判定的方法

平行线的判定的方法

平行线的判定的方法
嘿,你问平行线的判定方法啊?那咱就来唠唠。

一种方法呢,就是看同位角。

啥是同位角呢?就比如说两条直线被第三条直线所截,在同一位置的角就叫同位角。

如果同位角相等,那这两条直线就是平行的。

这就好比两个人站在同一条起跑线上,要是他们跑的速度一样快,方向也一样,那他们跑出来的路线肯定是平行的嘛。

还有一种方法是看内错角。

内错角就是两条直线被第三条直线所截,在两条直线之间,位置交错的角。

要是内错角相等,那这两条直线也平行。

比如说你走路的时候,左脚和右脚走的方向要是一样,那走出来的路线肯定也是平行的。

就像内错角相等的时候,两条直线也是平行的。

再一个方法是看同旁内角。

同旁内角就是两条直线被第三条直线所截,在两条直线之间,在同一侧的角。

如果同旁内角互补,也就是加起来等于 180 度,那这两条直线也平行。

这就好像两个人背靠背站着,他们往相反的方向走,走出来的路线肯定是平行的。

就像同旁内角互补的时候,两条直线也是平行的。

另外呢,还有平行于同一条直线的两条直线互相平行。

这就好比你有三个好朋友,你和第一个朋友关系好,你和第二个朋友关系也好,那第一个朋友和第二个朋友关系肯定也不错。

如果两条直线都和第三条直线平行,那这两条直线也互相平行。

总之啊,判定平行线的方法有好几种呢。

你可以根据具体的情况来选择合适的方法。

嘿嘿。

平行线的六个判定

平行线的六个判定

平行线的六个判定平行线是高中数学中的一个重要概念,也是几何学的基本定理之一。

平行线的概念最早由古希腊数学家欧几里得提出,并在《几何原本》一书中给出了平行线的六个判定。

六个判定分别是:同位角、内错角、同旁内角、同旁外角、平行线错角定理以及平行线夹角定理。

首先,同位角判定,其原理是:如果两条直线被一条横截线所切,且同位角之和为180°,则这两条直线是平行线。

也就是说,如果有一个横截线切过两条直线,使得这两条直线上的同位角之和为180°,那么这两条直线就是平行的。

这个判定可以通过实际的图形来演示和证明。

其次,内错角判定,其原理是:如果两条直线被一条横截线所切,且内错角互补,则这两条直线是平行线。

也就是说,如果有一个横截线切过两条直线,使得这两条直线上的内错角(一个在两直线之间,一个在两直线之外)互为补角,那么这两条直线就是平行的。

这个判定同样可以通过实际的图形来演示和证明。

接下来是同旁内角判定,其原理是:如果两条直线被一条横截线所切,且同旁内角之和为180°,则这两条直线是平行线。

也就是说,如果有一个横截线切过两条直线,使得这两条直线上的同旁内角之和为180°,那么这两条直线就是平行的。

同样地,这个判定可以通过实际的图形来演示和证明。

然后是同旁外角判定,其原理是:如果两条直线被一条横截线所切,且同旁外角互补,则这两条直线是平行线。

也就是说,如果有一个横截线切过两条直线,使得这两条直线上的同旁外角(一个在两直线之外,一个在两直线之间)互为补角,那么这两条直线就是平行的。

同样地,这个判定可以通过实际的图形来演示和证明。

接下来是平行线错角定理,其原理是:如果两条直线被一条横截线所切,且错角互补,则这两条直线是平行线。

也就是说,如果有一个横截线切过两条直线,使得这两条直线上的错角(一个在两直线之间,一个在两直线之外)互为补角,那么这两条直线就是平行的。

同样地,这个判定可以通过实际的图形来演示和证明。

平行线的判定5种方法

平行线的判定5种方法

1.同位角相等,两条线平行。

2.内错角相等,两条线平行。

3.同旁内角互补,两条线平行。

4.经过直线外一点,有且只有一条直线与已知直线平行。

5.如果两条直线都与第三条直线直线平行,那么这两条直线也互相平行。

平行线的判定定理:
(1)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。

(内错角相等,两直线平行)
(2)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。

(同旁内角互补,两直线平行)
(3)两直线都与第三条直线平行,那么这两条直线也互相平行。

(若直线a平行于直线b,直线b平行于直线c,那么直线a也平行于直线c)(等量代换)。

平行线的特征

平行线的特征

平行线的特征平行线在几何学中具有重要的作用,它们是指在同一个平面上,永远不会相交的直线。

本文将探讨平行线的特征,以及与平行线相关的性质和定理。

一、平行线的定义平行线的定义是两条直线在同一个平面上,并且永远不会相交。

这意味着两条平行线之间的距离始终相等。

二、平行线的特征1. 方向相同:平行线在平面上具有相同的方向,它们始终在相同的方向上延伸。

2. 永不相交:平行线永远不会相交。

无论延长多远,它们仍然保持平行的形状。

3. 距离相等:平行线之间的任意两点到两条平行线的距离始终相等。

这是平行线的一个重要性质。

4. 平行四边形的对边平行性:在平行四边形中,对边是平行的。

这是平行线特征的一个重要应用。

三、平行线的判定1. 同位角判定:如果两条直线被一条截线所切,并且同位角相等,那么这两条直线平行。

2. 转换判定:如果一条线与两条平行线分别相交,形成相等的内错角或外错角,那么这条线与这两条平行线平行。

3. 斜率判定:如果两条直线的斜率相等,那么这两条直线平行。

斜率是直线在坐标系中的倾斜度量。

四、平行线的应用1. 平行线与横向交错线条:在道路规划和交通设计中,平行线经常用于构建车道和交通流线的布局。

2. 平行线与角度构造:在建筑设计中,平行线被广泛应用于角度构造。

通过平行线的布局,可以创建出各种角度和形状。

3. 平行线与等距关系:平行线之间的距离相等,这一性质在几何学和测量中具有重要的应用。

五、平行线的定理1. 交替内角定理:如果两条平行线被一条截线所切,那么两条平行线上的交替内角是相等的。

2. 内错角定理:如果两条平行线被一条截线所切,那么两条平行线上的内错角是补角。

3. 锐角和钝角定理:如果两条平行线被一条截线所切,那么两条平行线上的锐角和钝角的和是180度。

六、平行线的重要性平行线的研究对几何学和应用数学具有重要意义。

它们为解决实际问题提供了基础,而且在建筑、工程、地图制作等领域也有广泛的应用。

综上所述,平行线作为几何学中的一个重要概念,具有方向相同、永不相交和距离相等等特征。

平行线的定义与判定

平行线的定义与判定

平行线的定义与判定平行线是几何学中的基础概念之一,其定义和判定方法在几何学中具有重要的意义。

本文将对平行线的定义和判定进行详细的讨论。

一、平行线的定义平行线是指在同一平面上,永不相交且不在同一直线上的两条直线。

二、平行线的判定方法有多种方法可以用来判定两条直线是否平行,下面将介绍三种常用方法。

1. 用角度判定法当两条直线上的任一对相对应的内角、外角或同旁内角之和等于180°时,这两条直线是平行线。

2. 用斜率判定法斜率是描述直线斜率(即直线倾斜程度)的概念,两条直线的斜率相等时,它们是平行线。

具体判定方法如下:- 若两条直线斜率都存在且相等,则这两条直线是平行线。

- 若两条直线中至少有一条斜率不存在且另一条斜率也不存在,则这两条直线是平行线。

- 若两条直线中至少有一条斜率存在,而另一条斜率不存在,则这两条直线不是平行线。

3. 用距离判定法两条平行线上任意一点到另一条线的距离相等,这两条直线是平行线。

三、平行线的性质平行线具有一些重要的性质,下面将介绍其中几个常见的性质。

1. 平行线的斜率平行线的斜率相等。

2. 平行线上的角平行线上的对应角相等,即如果两条平行线被一条横截线相交,那么相邻的内角、外角和同旁内角相等。

3. 平行线的性质引申平行线的性质可以推广到平行于这些线的其他线段和角,这一属性在解决几何问题中具有重要的应用价值。

总结:平行线是几何学中的基本概念,定义了在同一平面上永不相交且不在同一直线上的两条直线。

要判定两条直线是否平行,可以使用角度判定法、斜率判定法和距离判定法。

此外,平行线还具有斜率相等、对应角相等等性质。

熟练掌握平行线的定义和判定方法有助于我们在几何学中解决问题和应用推理。

注意:文章字数已超过1500字,请检查并提出是否还需要增加字数。

平行线和垂直线的判定

平行线和垂直线的判定

平行线和垂直线的判定平行线和垂直线是几何学中常见的概念,能够帮助我们更好地理解和解决各种几何问题。

在几何学中,我们常常需要根据给定的条件来判定两条线是否平行或垂直,下面将介绍一些判定平行线和垂直线的方法。

一、平行线的判定1. 求斜率法平行线的特点是在同一平面内,它们的斜率相等。

因此,通过计算两条线的斜率来判定它们是否平行。

例如,给出两条直线L1:y = k1x + b1和L2:y = k2x + b2,其中k1、k2分别为直线L1和L2的斜率,b1、b2分别为L1和L2的截距。

若k1 = k2,则可判定L1和L2平行。

2. 向量法平行线的另一种判定方法是使用向量。

对于两条平行线上的两个向量,它们的方向相同或相反,即可判定两条线平行。

具体做法如下:1) 首先,取两条平行线上的两个点A和B,分别得到向量AB。

2) 然后,取另一条平行线上的一点C,得到向量AC。

3) 如果向量AB和向量AC方向相同(或相反),则可判定这两条线平行。

3. 截距法(平行线截距定理)平行线截距定理指出,在同一水平线上,两条平行线上任意两个点的横坐标差之比等于两条线的斜率之差。

设有两条平行线L1和L2,直线L1上的两个点为A(x1, y1)和B(x2, y2),直线L2上的两个点为C(x3, y3)和D(x4, y4)。

若直线L1和L2平行,则有以下关系成立:(x1 - x2) / (x3 - x4) = (y1 - y2) / (y3 - y4)二、垂直线的判定1. 斜率法垂直线的特点是在同一平面内,它们的斜率相互乘积为-1。

通过计算两条线的斜率及其乘积来判定它们是否垂直。

例如,给出两条直线L1:y = k1x + b1和L2:y = k2x + b2,其中k1、k2分别为直线L1和L2的斜率,b1、b2分别为L1和L2的截距。

若k1 * k2 = -1,则可判定L1和L2垂直。

2. 向量法垂直线的另一种判定方法也是使用向量。

平行线与垂直线的判定

平行线与垂直线的判定在几何学中,平行线和垂直线是基本的概念。

它们在解决几何问题时具有重要的作用。

在本文中,我们将探讨如何判断两条线是否平行或垂直,并介绍几种常用的方法。

一、平行线的判定1. 通过斜率判断我们知道,直线的斜率是通过直线上两个点的纵坐标差除以横坐标差得到的。

如果两条直线的斜率相等,那么它们就是平行线。

设直线l1的斜率为k1,直线l2的斜率为k2,如果k1=k2,则l1和l2为平行线。

2. 通过角度判断另一种判定平行线的方法是通过角度判断。

如果两条直线的倾斜角度相等,那么它们就是平行线。

可以通过绘制两条直线并测量它们的角度来判断是否平行。

3. 通过向量判断平行线还可以通过向量判断。

如果两条直线的方向向量平行,则它们是平行线。

设直线l1的方向向量为v1,直线l2的方向向量为v2,如果v1与v2平行,则l1和l2为平行线。

二、垂直线的判定1. 通过斜率判断垂直线的一个特点是,两条直线的斜率的乘积等于-1。

设直线l1的斜率为k1,直线l2的斜率为k2,如果k1*k2=-1,则l1和l2为垂直线。

2. 通过角度判断另一种判定垂直线的方法是,如果两条直线的倾斜角度之和等于90度或π/2弧度,那么它们是垂直线。

可以通过绘制两条直线并测量它们的角度来判断是否垂直。

3. 通过向量判断垂直线也可以通过向量判断。

如果两条直线的方向向量垂直,则它们是垂直线。

设直线l1的方向向量为v1,直线l2的方向向量为v2,如果v1与v2垂直,则l1和l2为垂直线。

总结判定平行线和垂直线的方法有很多种,我们可以根据具体情况选择合适的方法。

通过斜率、角度或向量判断都是常用的方法,而且它们互相印证,可以增加结果的准确性。

在几何学问题中,正确判断平行线和垂直线的关系对于解题至关重要,希望本文的讨论能为读者提供一些帮助。

注意:以上所介绍的方法仅适用于直线。

对于曲线或其他特殊情况,判定平行线和垂直线的方法可能略有不同。

在实际问题中,应根据实际情况选择合适的方法进行判断。

平行线的判定方法 → 斜线的判定方法

平行线的判定方法→ 斜线的判定方法
平行线和斜线是几何学中非常重要的概念。

平行线是指在同一个平面内不相交的两条直线,斜线则是指倾斜的直线。

在判定线条的性质时,我们可以使用一些简单的方法。

平行线的判定方法
如果需要确定两条线是否平行,我们可以使用以下判定方法:
1. 角度判定法:如果两条线之间的对应角度相等(即对应角相等),那么这两条线是平行线。

2. 平行线定理:如果一条直线与两条平行线相交,那么这两条平行线的对应角相等。

3. 距离判定法:如果两条线之间的距离在平行线上保持不变,那么这两条线是平行线。

4. 推论判定法:如果两条直线与一条相交直线的对应角相等,
那么这两条直线是平行线。

斜线的判定方法
如果需要确定一条直线是斜线,我们可以使用以下判定方法:
1. 角度判定法:如果直线与另一条直线夹角不为90度(直角),那么这条直线是斜线。

2. 斜率判定法:如果直线的斜率不为零,那么这条直线是斜线。

3. 坐标判定法:如果直线上的点的x坐标和y坐标不成比例关系,那么这条直线是斜线。

这些方法可以帮助我们快速确定线条的性质,从而解决与线条
相关的几何问题。

平行线的判定定理

平行线的判定定理
首先,先理顺下关于平行线的判定所可能用到的公理、定理
公理:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(即:同位角相等,两直线平行)
定理:1、两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;
2、两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;
3、两直线都与第三条直线平行,那么这两条直线也互相平行(平行线的传递性).
既然是公理,也就是劳动人民在日常生活中总结出来的常识,这是不需要证明的.其他的几个定理,均是依托公理而展开,可以算是公理的特殊化、简单化、具体化.
另外,有关其他定理的证明,比如:如何将相等的内错角转换成相等的同位角,这需要做图,分析角.
最后,提醒下,关于平面几何方面的证明题目,一定要有规范的步骤,谨遵口诀:
条件:同位角相等结论:两直线平行。

条件:内错角相等结论:两直线平行。

条件:同旁内角互补结论:两直线平行。

初二数学平行线的判定及性质

初二数学平行线的判定及性质1、平行线的判定1)判定公理:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简述为:同位角相等,两直线平行.2)判定定理(一):两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简述为:内错角相等,两直线平行.3)判定定理(二):两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简述为:同旁内角互补,两直线平行.2、平行线的性质定理1)性质定理(一):两条平行直线被第三条直线所截,同位角相等﹒简述为:两直线平行,同位角相等﹒2)性质定理(二):两条平行直线被第三条直线所截,内错角相等﹒简述为:两直线平行,内错角相等﹒3)性质定理(三):两条平行直线被第三条直线所截,同旁内角互补﹒简述为:两直线平行,同旁内角互补﹒3、解答证明题一般有以下三个步骤:1)画出图形——根据题意画出图形,标上必要的字母;2)写已知、求证——用字母、符号表示命题的条件和结论;3)写证明过程——用“∵……”、“∴……”,再注明相应依据的方式,写出证明过程.注意:通常文字证明题要有以上三个步骤,而在我们所接触到的证明题中,有相当一部分不是文字证明题﹒题目已经明确用字母、符号把命题表示出来,甚至也画出了示意图,对于不是文字证明的题,我们只需从第三步开始写即可.例1、如图所示,直线a,b被直线c所截,且∠1+∠2=180°.求证:a∥b.1、如图所示,在下列给出的条件中,不能判定AB∥EF的是()A.∠1=∠2 B.∠4=∠B C.∠1+∠3=180°D.∠3+∠B=180°2、学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图(1)~(4)所示).从图中可知,小敏画平行线的依据有()①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①② B.②③ C.③④ D.①④3、如图所示,若AB∥EF∥DC,EG∥BD,BD交EF于点H,则图中与∠1相等的角(∠1除外)共有()A.6个B.5个 C.4个 D.2个4、如右上图所示,AB∥CD,∠A=25°,∠C=45°,则∠E的度数是()A.60° B.70° C.80° D.65°5、如图所示.1)如图∠1=∠3,可推出_______//________,其理由是________________;2)如果∠2=∠4,可推出_______//__________,其理由是________________;3)如果∠B+∠BAD=180°,那么可推出____//______,其理由是________________.6、如图所示,已知AB∥CD,AD∥BC,点E在CB的延长线上,E,A,F三点共线,∠C=50°,∠FAD=60°,则∠EAB=__________.7、如图所示,直线a∥b,点B在直线b上,且AB⊥BC,∠2=59°,则∠1=__________°.9、如图所示,AC交BD于点O,请你从下面三项中选出两个作为条件,另一个作为结论,写出一个真命题,并加以证明.①OA=OC;②OB=OD;③AB∥DC.10、王师傅焊制了一种如图所示的铁架,按要求AB与CD应是平行的,王师傅在焊制完后想看一下自己所焊制的是否符合要求,于是他测量了一下∠B与∠CDF的度数,发现∠B=∠CDF=88°,那么王师傅焊制的铁架符合要求吗?11、如图所示,在△ABC中,AB=AC,D为BC上一点,过点D作DE∥AB交AC于点E.求证:∠C=∠CDE.12、如图所示,A,C两地之间要修一条公路,在A地测得公路走向是北偏东50°,如果A,C两地同时开工,那么在C地应按什么方向开始施工,才能使公路准确接通?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行平行线的判定(提高)知识讲解【学习目标】1.熟练掌握平行线的画法;2.掌握平行公理及其推论;3.掌握平行线的判定方法,并能运用“平行线的判定方法”,判定两条直线是否平行. 【要点梳理】要点一、平行线的画法及平行公理1.平行线的画法用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合.②靠:用直尺紧靠三角板一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点.④画:沿着这条斜边画一条直线,所画直线与已知直线平行.2.平行公理及推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.要点二、平行线的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.【典型例题】类型一、平行公理及推论1.在同一平面内,下列说法:(1)过两点有且只有一条直线;(2)两条直线有且只有一个公共点;(3)过一点有且只有一条直线与已知直线垂直;(4)过一点有且只有一条直线与已知直线平行. 其中正确的个数为:( ) .A.1个B.2个C.3个D.4个【答案】B【解析】正确的是:(1)(3).【总结升华】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意区分不同表述之间的联系和区别.举一反三:【变式】下列说法正确的个数是() .(1)直线a、b、c、d,如果a∥b、c∥b、c∥d,则a∥d.(2)两条直线被第三条直线所截,同旁内角的平分线互相垂直.(3)两条直线被第三条直线所截,同位角相等.(4)在同一平面内,如果两直线都垂直于同一条直线,那么这两直线平行.A.1个 B .2个C.3个D.4个【答案】B2.证明:平行于同一直线的两条直线平行.【答案与解析】已知:如图,a//c,b//c.求证:a//b.证明:假设直线a与直线b不平行,则直线a与直线b相交,设交点为A,如图.Q,a//c,b//c则过直线c外一点A有两条直线a、b与直线c平行,这与平行公理矛盾,所以假设不成立..a//b【总结升华】本题采用的是“反证法”的证明方法,反证法证题的一般步骤:第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立.类型二、平行线的判定3.(2015春•荣昌县校级期中)如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F.试说明:EC∥DF.【思路点拨】根据BD平分∠ABC,CE平分∠ACB,得出∠DBF=∠ABC,∠ECB=∠ACB,∠DBF=∠ECB,再根据∠DBF=∠F,得出∠ECB=∠F,即可证出EC∥DF.【答案与解析】解:∵BD平分∠ABC,CE平分∠ACB,∴∠DBF=∠ABC,∠ECB=∠ACB,∵∠ABC=∠ACB,∴∠DBF=∠ECB,∵∠DBF=∠F,∴∠ECB=∠F,∴EC∥DF.【总结升华】此题考查了平行线的判定,用到的知识点是同位角相等,两直线平行,关键是证出∠ECB=∠F.举一反三:【变式】一个学员在广场上驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130°【答案】A提示:“方向相同”有两层含义,即路线平行且方向相同,在此基础上准确画出示意图.图B显然不同向,因为路线不平行.图C中,∠1=180°-130°=50°,路线平行但不同向.图D中,∠1=180°-130°=50°,路线平行但不同向.只有图A路线平行且同向,故应选A.4.如图所示,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°.试说明AB∥EF的理由.【思路点拨】利用辅助线把AB、EF联系起来.【答案与解析】解法1:如图所示,在∠BCD的内部作∠BCM=25°,在∠CDE的内部作∠EDN=10°.∵∠B=25°,∠E=10°(已知),∴∠B=∠BCM,∠E=∠EDN(等量代换).∴AB∥CM,EF∥DN(内错角相等,两直线平行).又∵∠BCD=45°,∠CDE=30°(已知),∴∠DCM=20°,∠CDN=20°(等式性质).∴∠DCM=∠CDN(等量代换).∴CM∥DN(内错角相等,两直线平行).∵AB∥CM,EF∥DN(已证),∴AB∥EF(平行线的传递性).解法2:如图所示,分别向两方延长线段CD交EF于M点、交AB于N点.∵∠BCD=45°,∴∠NCB=135°.∵∠B=25°,∴∠CNB=180°-∠NCB-∠B=20°(三角形的内角和等于180°).又∵∠CDE=30°,∴∠EDM=150°.又∵∠E=10°,∴∠EMD=180°-∠EDM-∠E=20°(三角形的内角和等于180°).∴∠CNB=∠EMD(等量代换).所以AB∥EF(内错角相等,两直线平行).【总结升华】判定两条直线平行的方法有四种,选择哪种方法要根据问题提供的条件来灵活选取.举一反三:【高清课堂:平行线及判定403102经典例题2】【变式】(2015秋•巨野县期末)如图,已知∠BED=∠B+∠D,求证:AB∥CD.【答案】证明:延长BE交CD于F.∵∠BED+∠DEF=180°,(平角的定义)∴∠DEF+∠D+∠EFD=180°(三角形的内角和等于180°),∴∠BED=∠D+∠EFD,(等量代换)又∠BED=∠B+∠D,∴∠B=∠EFD(等量代换),∴AB∥CD(内错角相等,两直线平行).平行线的判定(提高)巩固练习【巩固练习】一、选择题1.下列说法中正确的有() .①一条直线的平行线只有一条.②过一点与已知直线平行的直线只有一条.③因为a∥b,c∥d,所以a∥d.④经过直线外一点有且只有一条直线与已知直线平行.A.1个B.2个C.3个D.4个2.如果两个角的一边在同一直线上,另一边互相平行,则这两个角() .A.相等B.互补C.互余D.相等或互补3.(2015•黔南州)如图,下列说法错误的是()A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c4.一辆汽车在广阔的草原上行驶,两次拐弯后,行驶的方向与原来的方向相同,那么这两次拐弯的角度可能是().A.第一次向右拐40°,第二次向右拐140°.B.第一次向右拐40°,第二次向左拐40°.C.第一次向左拐40°,第二次向右拐140°.D.第一次向右拐140°,第二次向左拐40°.5.如图所示,下列条件中,不能推出AB∥CE成立的条件是() .A.∠A=∠ACE B.∠B=∠ACE C.∠B=∠ECD D.∠B+∠BCE=180°6.(绍兴)学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图,(1)—(4)):从图中可知,小敏画平行线的依据有().①两直线平行,同位角相等.②两直线平行,内错角相等.③同位角相等,两直线平行.④内错角相等,两直线平行.A.①②B. ②③C. ③④D. ④①二、填空题7.(2015春•高密市月考)如图,在下列条件中:①∠DAC=∠ACB;②∠BAC=∠ACD;③∠BAD+∠ADC=180°;④∠BAD+∠ABC=180°.其中能使直线AB∥CD成立的是.(填序号)8.如图,DF平分∠CDE,∠CDF=55°,∠C=70°,则________∥________.9.规律探究:同一平面内有直线a1,a2,a3…,a100,若a1⊥a2,a2∥a3,a3⊥a4…,按此规律,a1和a100的位置是________.10.已知两个角的两边分别平行,其中一个角为40°,则另一个角的度数是11.直线l同侧有三点A、B、C,如果A、B两点确定的直线l'与B、C两点确定的直线l''都与l平行,则A、B、C三点,其依据是12.如图,AB⊥EF于点G,CD⊥EF于点H,GP平分∠EGB,HQ平分∠CHF,则图中互相平行的直线有.三、解答题13.(2015春•兴平市期末)如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.14.小敏有一块小画板(如图所示),她想知道它的上下边缘是否平行,而小敏身边只有一个量角器,你能帮助她解决这一问题吗?15.如图,把一张长方形纸条ABCD沿AF折叠,已知∠ADB=20°,那么∠BAF为多少度时,才能使AB′∥BD?16.如图所示,由∠1=∠2,BD平分∠ABC,可推出哪两条线段平行,写出推理过程,如果推出另两条线段平行,则应将以上两条件之一作如何改变?【答案与解析】一、选择题1. 【答案】A;【解析】只有④正确,其它均错.2. 【答案】D;3. 【答案】C;【解析】A、若a∥b,b∥c,则a∥c,利用了平行公理,正确;B、若∠1=∠2,则a∥c,利用了内错角相等,两直线平行,正确;C、∠3=∠2,不能判断b∥c,错误;D、若∠3+∠5=180°,则a∥c,利用同旁内角互补,两直线平行,正确;故选C.4. 【答案】B;5. 【答案】B;【解析】∠B和∠ACE不是两条直线被第三条直线所截所得到的角.6. 【答案】C;【解析】解决本题关键是理解折叠的过程,图中的虚线与已知的直线垂直,过点P的折痕与虚线垂直.二、填空题7. 【答案】②③;【解析】①∠DAC=∠ACB利用内错角相等两直线平行得到AD∥BC,错误;②∠BAC=∠ACD 利用内错角相等两直线平行得到AB∥CD,正确;③∠BAD+∠ADC=180°利用同旁内角互补得到AB∥CD,正确;④∠BAD+∠ABC=180°利用同旁内角互补得到AD∥BC,错误;故答案为:②③8. 【答案】BC,DE;【解析】∠CFD=180°-70°-55°=55°,而∠FDE=∠CDF=55°,所以∠CFD=∠FDE.9. 【答案】a1∥a100;【解析】为了方便,我们可以记为a1⊥a2∥a3⊥a4∥a5⊥a6∥a7⊥a8∥a9⊥a10…∥a97⊥a98∥a99⊥a100,因为a1⊥a2∥a3,所以a1⊥a3,而a3⊥a4,所以a1∥a4∥a5.同理得a5∥a8∥a9,a9∥a12∥a13,…,接着这样的规律可以得a1∥a97∥a100,所以a1∥a100.10.【答案】40°或140°;11.【答案】共线,平行公理;【解析】此题考查是平行公理,它是论证推理的基础,应熟练应用.12.【答案】AB∥CD,GP∥HQ;【解析】理由:∵AB⊥EF,CD⊥EF.∴∠AGE=∠CHG=90°.∴AB∥CD.∵AB⊥EF.∴∠EGB=∠2=90°.∴GP平分∠EGB.∴∠1=12EGB=45°.∴∠PGH=∠1+∠2=135°.同理∠GHQ=135°,∴∠PGH=∠GHQ.∴GP∥HQ.三、解答题13. 【解析】解:∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).14.【解析】解:如图所示,用量角器在两个边缘之间画一条线段MN,用量角器测得∠1=50°,∠2=50°,因为∠1=∠2,所以由内错角相等,两直线平行,可知画板的上下边缘是平行的.15. 【解析】解:要使AB′∥BD,只要∠B′AD=∠ADB=20°,∠B′AB=∠BAD+∠B′AD=90°+20°=110°.∴∠BAF=12∠B′AB=12×110°=55°.16.【解析】解:可推出AD∥BC.∵BD平分∠ABC(已知).∴∠1=∠DBC(角平分线定义).又∵∠1=∠2(已知),∴∠2=∠DBC(等量代换).∴AD∥BC(内错角相等,两直线平行).把∠1=∠2改成∠DBC=∠BDC.。

相关文档
最新文档