初中数学几何最值专题28:瓜豆原理之定比分点轨迹圆(最全修正版)

合集下载

专题4.5圆---利用“瓜豆”模型求最值-中考数学二轮复习必会几何模型剖析(全国通用)

专题4.5圆---利用“瓜豆”模型求最值-中考数学二轮复习必会几何模型剖析(全国通用)
轨迹的相似比!
上述模型在数学江湖中也被称作“捆绑动点轨迹模型”
Q
强化训练
“瓜豆”模型
提升能力
1.如图,正方形ABCD中,AB=12,E是BC边上一点,CE=7,F是正方形内部一点,
且EF=3,连接EF,DE,DF,并将△DEF绕点D逆时针旋转90º得到△DMN(点M,N
10
分别为点E,F的对应点),连接CN,则CN长度的最小值为_____.
2
2
E G
D
A
圆型运动轨迹
典例精讲
考点2-2
【引例】如图,已知A是⊙O外一点,P是⊙O上的动点,线段AP的中点为Q,连
接OA,OP.若⊙O的半径为2,OA=4,则线段OQ的最小值是(
A.0
B.1
C.2
B )
D.3
【思考】当点P在圆O上运动时,Q点轨迹是?
解:连接AO,取AO的中点M,连接QM,PO.
O
A
(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:
∠OAM=∠PAQ;
(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:
AP:AQ=AO:AM,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q
与P的关系相当于旋转+伸缩.
古人云:种瓜得瓜,种豆得豆.种圆得圆,种线得线,谓之“瓜豆模型”.
2
倍而得到的,所以点P所在圆的圆心绕点A逆时针旋转90º,
再乘以 2 就是点C所在圆的圆心B´,而半径也缩小
2
2倍,
2
即 2 .根据点圆最值模型,可知:BB´-CB´≤BC≤BB´+CB´,
即3 2 ≤BC≤ 5 2 ,因此最大值与最小值的差为 3 2 .

2024年中考数学常见几何模型最值模型之瓜豆模型(原理)圆弧轨迹型

2024年中考数学常见几何模型最值模型之瓜豆模型(原理)圆弧轨迹型

最值模型之瓜豆模型(原理)圆弧轨迹型动点轨迹问题是中考和各类模拟考试的重要题型,学生受解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的集中点。

掌握该压轴题型的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径。

本专题就最值模型中的瓜豆原理(动点轨迹为圆弧型)进行梳理及对应试题分析,方便掌握。

【模型解读】模型1、运动轨迹为圆弧模型1-1. 如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.Q点轨迹是?如图,连接AO,取AO中点M,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.则动点Q是以M为圆心,MQ为半径的圆。

模型1-2. 如图,△APQ是直角三角形,∠PAQ=90°且AP=k⋅AQ,当P在圆O运动时,Q点轨迹是?如图,连结AO,作AM⊥AO,AO:AM=k:1;任意时刻均有△APO∽△AQM,且相似比为k。

则动点Q是以M为圆心,MQ为半径的圆。

模型1-3. 定义型:若动点到平面内某定点的距离始终为定值,则其轨迹是圆或圆弧。

(常见于动态翻折中)如图,若P为动点,但AB=AC=AP,则B、C、P三点共圆,则动点P是以A圆心,AB半径的圆或圆弧。

模型1-4. 定边对定角(或直角)模型1)一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧.如图,若P为动点,AB为定值,∠APB=90°,则动点P是以AB为直径的圆或圆弧。

2)一条定边所对的角始终为定角,则定角顶点轨迹是圆弧.如图,若P为动点,AB为定值,∠APB为定值,则动点P的轨迹为圆弧。

【模型原理】动点的轨迹为定圆时,可利用:“一定点与圆上的动点距离最大值为定点到圆心的距离与半径之和,最小值为定点到圆心的距离与半径之差”的性质求解。

1(2023·山东泰安·统考中考真题)如图,在平面直角坐标系中,Rt△AOB的一条直角边OB在x轴上,点A的坐标为(-6,4);Rt△COD中,∠COD=90°,OD=43,∠D=30°,连接BC,点M是BC中点,连接AM.将Rt△COD以点O为旋转中心按顺时针方向旋转,在旋转过程中,线段AM的最小值是()A.3B.62-4C.213-2D.22(2023·四川广元·统考一模)如图,线段AB为⊙O的直径,点C在AB的延长线上,AB=4,BC=2,点P是⊙O上一动点,连接CP,以CP为斜边在PC的上方作Rt△PCD,且使∠DCP=60°,连接OD,则OD长的最大值为.3(2023·四川宜宾·统考中考真题)如图,M是正方形ABCD边CD的中点,P是正方形内一点,连接BP,线段BP以B为中心逆时针旋转90°得到线段BQ,连接MQ.若AB=4,MP=1,则MQ的最小值为.4(2023·湖南·统考中考真题)如图,在矩形ABCD中,AB=2,AD=7,动点P在矩形的边上沿B→C→D→A运动.当点P不与点A、B重合时,将△ABP沿AP对折,得到△AB P,连接CB ,则在点P的运动过程中,线段CB 的最小值为.5(2023·山东·统考中考真题)如图,在四边形ABCD中,∠ABC=∠BAD=90°,AB=5,AD=4,AD< BC,点E在线段BC上运动,点F在线段AE上,∠ADF=∠BAE,则线段BF的最小值为.6(2023·浙江金华·九年级校考期中)如图,点A,C,N的坐标分别为(-2,0),(2,0),(4,3),以点C为圆心、2为半径画⊙C,点P在⊙C上运动,连接AP,交⊙C于点Q,点M为线段QP的中点,连接MN,则线段MN的最小值为.7(2023上·江苏连云港·九年级校考阶段练习)已知矩形ABCD,AB=6,BC=4,P为矩形ABCD内一点,且∠BPC=135°,若点P绕点A逆时针旋转90°到点Q,则PQ的最小值为.8(2023下·陕西西安·九年级校考阶段练习)问题提出:(1)如图①,在△ABC中,AB=AC,∠BAC=120°,BC=43,则AB的长为;问题探究:(2)如图②,已知矩形ABCD,AB=4,BC=5,点P是矩形ABCD内一点,且满足∠APB= 90°,连接CP,求线段CP的最小值;问题解决:(3)如图③所示,我市城市绿化工程计划打造一片四边形绿地ABCD,其中AD∥BC,AD= 40m,BC=60m,点E为CD边上一点,且CE:DE=1:2,∠AEB=60°,为了美化环境,要求四边形ABCD的面积尽可能大,求绿化区域ABCD面积的最大值.课后专项训练1(2023·安徽合肥·校考一模)如图,在△ABC中,∠B=45°,AC=2,以AC为边作等腰直角△ACD,连BD,则BD的最大值是()A.10-2B.10+3C.22D.10+22(2023春·广东·九年级专题练习)已知:如图,在△ABC中,∠BAC=30°,BC=4,△ABC面积的最大值是( ).A.8+43B.83+4C.83D.8+833(2022秋·江苏扬州·九年级校考阶段练习)如图,A是⊙B上任意一点,点C在⊙B外,已知AB=2,BC=4,△ACD是等边三角形,则△BCD的面积的最大值为()A.43+4B.4C.43+8D.64(2023·山东济南·一模)正方形ABCD中,AB=4,点E、F分别是CD、BC边上的动点,且始终满足DE=CF,DF、AE相交于点G.以AG为斜边在AG下方作等腰直角△AHG使得∠AHG=90°,连接BH.则BH的最小值为()A.25-2B.25+2C.10-2D.10+25(2023上·江苏连云港·九年级统考期中)如图,在矩形ABCD中,已知AB=3,BC=4,点P是BC边上一动点(点P不与点B,C重合),连接AP,作点B关于直线AP的对称点M,连接CM,则CM的最小值为.6(2023春·广东深圳·九年级专题练习)如图,点G是△ABC内的一点,且∠BGC=120°,△BCF是等边三角形,若BC=3,则FG的最大值为.7(2023·江苏泰州·九年级专题练习)如图,在矩形ABCD中,AD=10,AB=16,P为CD的中点,连接BP.在矩形ABCD外部找一点E,使得∠BEC+∠BPC=180°,则线段DE的最大值为.8(2023·陕西渭南·三模)如图,在矩形ABCD中,AB=6,BC=5,点E在BC上,且CE=4BE,点M 为矩形内一动点,使得∠CME=45°,连接AM,则线段AM的最小值为.9(2023江苏扬州·三模)如图,在等边△ABC和等边△CDE中,AB=6,CD=4,以AB、AD为邻边作平行四边形ABFD,连接AF.若将△CDE绕点C旋转一周,则线段AF的最小值是.10(2023秋·湖北武汉·九年级校考阶段练习)如图,△ABC为等腰直角三角形,∠BAC=90°,AB= AC=22,点D为△ABC所在平面内一点,∠BDC=90°,以AC、CD为边作平行四边形ACDE,则CE的最小值为.11(2023·福建泉州·统考模拟预测)如图,点E是正方形ABCD的内部一个动点(含边界),且AD= EB=8,点F在BE上,BF=2,则以下结论:①CF的最小值为6;②DE的最小值为82-8;③CE= CF;④DE+CF的最小值为10;正确的是.12(2021·广东·中考真题)在△ABC中,∠ABC=90°,AB=2,BC=3.点D为平面上一个动点,∠ADB=45°,则线段CD长度的最小值为.13(2023·广东·深圳市二模)如图,在矩形ABCD中,AB=3,BC=4,E为边BC上一动点,F为AE 中点,G为DE上一点,BF=FG,则CG的最小值为.14(2023秋·广东汕头·九年级校考期中)如下图,在正方形ABCD中,AB=6,点E是以BC为直径的圆上的点,连接DE,将线段DE绕点D逆时针旋转90°,得到线段DF,连接CF,则线段CF的最大值与最小值的和.15(2023·陕西渭南·统考一模)如图,在矩形ABCD中,AB=2,BC=4,Q是矩形ABCD左侧一点,连接AQ、BQ,且∠AQB=90°,连接DQ,E为DQ的中点,连接CE,则CE的最大值为.16(2023·安徽亳州·统考模拟预测)等腰直角△ABC 中,BAC =90°,AB =5,点D 是平面内一点,AD =2,连接BD ,将BD 绕D 点逆时针旋转90°得到DE ,连接AE ,当DAB =(填度数)度时,AE 可以取最大值,最大值等于.17(2023·河北廊坊·统考二模)已知如图,△ABC 是腰长为4的等腰直角三角形,∠ABC =90°,以A 为圆心,2为半径作半圆A ,交BA 所在直线于点M ,N .点E 是半圆A 上仟意一点.连接BE ,把BE 绕点B 顺时针旋转90°到BD 的位置,连接AE ,CD .(1)求证:△EBA ≌△DBC ;(2)当BE 与半圆A 相切时,求弧EM的长;(3)直接写出△BCD 面积的最大值.18(2022·北京·中考真题)在平面直角坐标系xOy 中,已知点M (a ,b ),N .对于点P 给出如下定义:将点P 向右(a ≥0)或向左(a <0)平移a 个单位长度,再向上(b ≥0)或向下(b <0)平移b 个单位长度,得到点P ',点P '关于点N 的对称点为Q ,称点Q 为点P 的“对应点”.(1)如图,点M (1,1),点N 在线段OM 的延长线上,若点P (-2,0),点Q 为点P 的“对应点”.①在图中画出点Q;②连接PQ,交线段ON于点T.求证:NT=12 OM;(2)⊙O的半径为1,M是⊙O上一点,点N在线段OM上,且ON=t12<t<1,若P为⊙O外一点,点Q为点P的“对应点”,连接PQ.当点M在⊙O上运动时直接写出PQ长的最大值与最小值的差(用含t的式子表示)19(2023下·广东广州·九年级校考阶段练习)如图,△ABC为等边三角形,点P是线段AC上一动点(点P不与A,C重合),连接BP,过点A作直线BP的垂线段,垂足为点D,将线段AD绕点A逆时针旋转60°得到线段AE,连接DE,CE.(1)求证:BD=CE;(2)连接CD,延长ED交BC于点F,若△ABC的边长为2;①求CD的最小值;②求EF的最大值.20(2023·江苏常州·统考二模)如图,在平面直角坐标系中,二次函数y=-13x2+bx-3的图像与x轴交于点A和点B9,0,与y轴交于点C.(1)求二次函数的表达式;(2)若点P是抛物线上一点,满足∠PCB+∠ACB=∠BCO,求点P的坐标;(3)若点Q在第四象限内,且cos∠AQB=35,点M在y轴正半轴,∠MBO=45°,线段MQ是否存在最大值,如果存在,直接写出最大值;如果不存在,请说明理由.最值模型之瓜豆模型(原理)圆弧轨迹型动点轨迹问题是中考和各类模拟考试的重要题型,学生受解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的集中点。

最值模型之瓜豆模型(原理)直线轨迹型-2024年中考数学常见几何模型及参考答案

最值模型之瓜豆模型(原理)直线轨迹型-2024年中考数学常见几何模型及参考答案

最值模型之瓜豆模型(原理)直线轨迹型动点轨迹问题是中考和各类模拟考试的重要题型,学生受解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的集中点。

掌握该压轴题型的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径。

本专题就最值模型中的瓜豆原理(动点轨迹为直线型)进行梳理及对应试题分析,方便掌握。

【模型解读】瓜豆原理:若两动点到某定点的距离比是定值,夹角是定角,则两动点的运动路径相同。

动点轨迹基本类型为直线型和圆弧型,本专题受教学进程影响,估只对瓜豆原理中的直线型轨迹作讲解。

主动点叫瓜,从动点叫豆,瓜在直线上运动,豆也在直线_上运动;瓜在圆周上运动,豆的轨迹也是圆。

古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”。

模型1、运动轨迹为直线1)如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?解析:当P点轨迹是直线时,Q点轨迹也是一条直线.理由:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.2)如图,在△APQ中AP=AQ,∠PAQ为定值,当点P在直线BC上运动时,求Q点轨迹?解析:当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形。

理由:当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q点的起始位置和终点位置,连接即得Q点轨迹线段。

【最值原理】动点轨迹为一条直线时,利用“垂线段最短”求最值。

1)当动点轨迹已知时可直接运用垂线段最短求最值;2)当动点轨迹未知时,先确定动点轨迹,再垂线段最短求最值。

3)确定动点轨迹的方法(重点)②当某动点到某条直线的距离不变时,该动点的轨迹为直线;③当一个点的坐标以某个字母的代数式表示时,若可化为一次函数,则点的轨迹为直线;④观察动点运动到特殊位置时,如中点,端点等特殊位置考虑;⑤若动点轨迹用上述方法不都合适,则可以将所求线段转化(常用中位线、矩形对角线、全等、相似)为其他已知轨迹的线段求最值。

最值问题之瓜豆原理(学生版)

最值问题之瓜豆原理(学生版)

最值问题之瓜豆原理知识解读瓜豆原理是主从动点联动问题,也叫旋转相似,这类问题在解答的时候需要有轨迹思想,就是先要明确主动点的轨迹,然后要搞清楚主动点和从动点的关系,进而确定从动点的轨迹来解决问题.瓜豆原理:一个主动点,一个从动点(根据某种约束条件,跟着主动点动),当主动点运动时,从动点的轨迹相同.(古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.)满足条件:1.两动一定;2.动点与定点的连线夹角是定角;3.动点到定点的距离比值是定值.方法:第一步:找主动点的轨迹;第二步:找从动点与主动点的关系;第三步:找主动点的起点和终点;第四步:通过相似确定从动点的轨迹;第五步:根据轨迹确定点线、点圆最值.“瓜豆原理”其实质就是构造旋转、相似.涉及的知识和方法:知识:①相似;②三角形的两边之和大于第三边;③点到直线之间的距离垂线段最短;④点到圆上点共线有最值.运动轨迹为圆弧引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系.引例2:如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P点轨迹都是圆.接下来确定圆心与半径.考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.引例3:如图,△APQ是直角三角形,∠PAQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?【分析】考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO: AM=2:1.即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.【模型总结】为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.此类问题的必要条件:两个定量;主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠PAQ=∠OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.模型二运动轨迹为线段引例:如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?【分析】当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.【引例】如图,△APQ是等腰直角三角形,∠PAQ=90°且AP=AQ,当点P在直线BC上运动时,求Q点轨迹?【分析】当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q点的起始位置和终点位置,连接即得Q 点轨迹线段.【模型总结】必要条件:主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).结论:P、Q两点轨迹所在直线的夹角等于∠PAQ(当∠PAQ≤90°时,∠PAQ等于MN与BC夹角)P、Q两点轨迹长度之比等于AP:AQ(由△ABC∽△AMN,可得AP:AQ=BC:MN)1针对训练一、单选题1如图,A是⊙B上任意一点,点C在⊙B外,已知AB=2,BC=4,△ACD是等边三角形,则△BCD的面积的最大值为()A.43+4B.4C.43+8D.62如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF 所在直线翻折,得到△A'EF,则A'C的长的最小值是()A.132B.3C.13-1D.10-13如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,BC=23,△ADC与△ABC关于AC对称,点E、F分别是边DC、BC上的任意一点,且DE=CF,BE、DF相交于点P,则CP的最小值为()A.1B.3C.32D.24如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M 为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A.24π B.22π C.1 D.25如图,在平面直角坐标系中,Q是直线y=-12x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q ,连接OQ ,则OQ 的最小值为()A.455B.5 C.523D.655二、填空题6如图,等边三角形ABC中,AB=4,高线AH=23,D是线段AH上一动点,以BD为边向下作等边三角形BDE,当点D从点A运动到点H的过程中,点E所经过的路径为线段CM,则线段CM的长为,当点D运动到点H,此时线段BE的长为.7如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E运动的路径长为.8如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边ΔEFG,连接CG,则CG的最小值为.9如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=2,线段BC绕点B旋转到BD,连AD,E为AD的中点,连接CE,则CE的最大值是.10如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠DAC=60°,点F沿线段AO从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,连接OE.现给出以下结论:①∠BDE=∠EFC;②ED=EC;③直线OE⊥CD;④点E运动的路程是23.其中正确的结论是.(写出所有正确结论的序号)11如图,已知AC =2AO =8,平面内点P 到点O 的距离为2,连接AP ,若∠APB =60°且BP =12AP ,连接AB ,BC ,则线段BC 的最小值为.12如图,线段AB 为⊙O 的直径,点C 在AB 的延长线上,AB =4,BC =2,点P 是⊙O 上一动点,连接CP ,以CP 为斜边在PC 的上方作Rt △PCD ,且使∠DCP =60°,连接OD ,则OD 长的最大值为.三、解答题13如图,过抛物线y =14x 2-2x 上一点A 作轴的平行线,交抛物线于另一点B ,交轴于点C ,已知点A 的横坐标为.(1)求抛物线的对称轴和点B 的坐标;(2)在AB 上任取一点P ,连结OP ,作点C 关于直线OP 的对称点D ;①连接BD ,求BD 的最小值;②当点D 落在抛物线的对称轴上,且在轴上方时,求直线PD 的函数表达式.14如图①,在ΔABC中,AB=AC=3,∠BAC=100°,D是BC的中点.小明对图①进行了如下探究:在线段AD上任取一点P,连接PB,将线段PB绕点P按逆时针方向旋转80°,点B的对应点是点E,连接BE,得到ΔBPE.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)当点E在直线AD上时,如图②所示.①∠BEP=;②连接CE,直线CE与直线AB的位置关系是.(2)请在图③中画出ΔBPE,使点E在直线AD的右侧,连接CE,试判断直线CE与直线AB的位置关系,并说明理由.(3)当点P在线段AD上运动时,求AE的最小值.15如图,等边三角形ABC的边长为4,点D是直线AB上一点.将线段CD绕点D顺时针旋转60°得到线段DE,连结BE.(1)若点D在AB边上(不与A,B重合)请依题意补全图并证明AD=BE;(2)连接AE,当AE的长最小时,求CD的长.16如图所示,在Rt△ABC中,AB=BC=2,点D是AC上一点,以BD为一边向右下方作等边△BDE,当D由点A运动到点C时,求点E运动的路径长.17在平面直角坐标系中,A(a,0)、B(b,0),且a,b满足a2-6a+9+b+3=0,C、D两点分别是y轴正半轴、x轴负半轴上的两个动点;(1)如图1,若C(0,4),求△ABC的面积;(2)如图1,若C(0,4),BC=5,BD=AE,且∠CBA=∠CDE,求D点的坐标;(3)如图2,若∠CBA=60°,以CD为边,在CD的右侧作等边△CDE,连接OE,当OE最短时,求A,E两点之间的距离.18如图,在矩形ABCD中,AB=3,AD=4,连接BD,将△ABD绕点D顺时针旋转,记旋转后的三角形为△A′B′D,旋转角为α(0°<α<360°且α≠180°).(1)在旋转过程中,当A′落在线段BC上时,求A′B的长;(2)连接A′A、A′B,当∠BA′B'=90°时,求tan∠A′AD;(3)在旋转过程中,若△DAA′的重心为G,则CG的最小值=.19如图所示,在矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF的中点,连接PB,求PB的最小值.20如图所示,在扇形AOB 中,OA =3,∠AOB =120°,点C 是AB上的动点,以BC 为边作正方形BCDE ,当点C 从点A 移动至点B 时,求点D 经过的路径长.21如图1,在△ABC 中,∠ACB =90°,AC =2,BC =23,以点B 为圆心,3为半径作圆.点P 为⊙B 上的动点,连接PC ,作P C ⊥PC ,使点P 落在直线BC 的上方,且满足P C :PC =1:3,连接BP ,AP .(1)求∠BAC 的度数,并证明△AP C ∽△BPC ;(2)如图2,若点P 在AB 上时,连接BP ,求BP 的长;(3)点P 在运动过程中,BP 是否有最大值或最小值?若有,请求出当BP 取得最大值或最小值时,∠PBC 的度数;若没有,请说明理由.22如图所示,△ABO为等腰直角三角形,A-4,0,直角顶点B在第二象限,点C在y轴上移动,以BC为斜边向上作等腰直角△BCD,我们发现直角顶点D点随着C点的移动也在一条直线上移动,求这条直线的函数解析式.23如图所示,点P3,4,⊙P的半径为2,A2.8,0,点M是⊙P上的动点,点C是MB的中点,求AC的,B5.6,0最小值.24如图所示,在等腰Rt△ABC中,AC=BC=22,点P在以斜边AB为直径的半圆上,M为PC的中点,当点P 沿半圆从点A运动至点B时,求点M运动的路径长.25如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形点A,C分别在x轴和y轴的正半轴上,连结AC,OA=3,tan∠OAC=33,D是BC的中点.(1)求OC的长和点D的坐标;OC,点P是线段OM上的一个动点,经过P,D,B三点的抛物线交x轴的正半(2)如图2,M是线段OC上的点,OM=23轴于点E,连结DE交AB于点F①将ΔDBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时BF的长和点E的坐标;②以线段DF为边,在DF所在直线的右上方作等边ΔDFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动路径的长.26在等边三角形ABC中,点D为AC上一点,连接BD,将BD绕D逆时针旋转角度α得到DE,连接BE,已知AB =4,BG⊥AC;(1)如图1,若α=60°,tan∠DBG=2-3,连接CE,求CE的长;(2)如图2,若α=120°,分别取CD的中点H,BE的中点F,连接HF,DF,求证:HG=HF;,连接GP ,(3)如图3,若AD=32,P为AE上一点,且满足AP=2PE,连接BP,将BP沿着BG所在直线翻折得到BP当GP 最大时,直接写出△BPE的面积.27在菱形ABCD中,∠BAD=120°,E是对角线BD上的一点,连接AE.(1)当E在AB的中垂线上时,把射线EA绕点E顺时针旋转90°后交CD于F,连接BF.如图①,若AB=4,求EF的长.(2)在(1)的条件下,连接BF,把△BEF绕点B顺时针旋转得到△BHK如图②,连接CH,点N为CH的中点,连接AN,求AN的最大值.28在△ABC中,D为直线AC上一动点,连接BD,将BD绕点B逆时针旋转90°,得到BE,连接DE与AB相交于点F.(1)如图1,若D为AC的中点,∠BAC=90°,AC=4,BD=29,连接AE,求线段AE的长;(2)如图2,G是线段BA延长线上一点,D在线段AC上,连接DG,EC,若∠BAC<90°,EC⊥BG,∠ADE=∠DBC,∠DBC+∠G=∠EBF,证明2BC=2AD+DC;(3)如图3,若△ABC为等边三角形,AB=62,点M为线段AC上一点,且2CM=AM,点P是直线BC上的动点,连接EP,MP,EM,请直接写出当EP+MP最小时△EPM的面积.。

最值模型-瓜豆原理(解析版)--中考数学常见几何模型全归纳之模型解读

最值模型-瓜豆原理(解析版)--中考数学常见几何模型全归纳之模型解读

最值模型-瓜豆原理动点轨迹问题是中考的重要题型,受学生解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的集中点。

掌握该压轴题型的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径。

本专题就最值模型中的瓜豆原理(动点轨迹基本类型为直线型和圆弧型)进行梳理及对应试题分析,方便掌握。

【模型解读】瓜豆原理:若两动点到某定点的距离比是定值,夹角是定角,则两动点的运动路径相同。

主动点叫瓜,从动点叫豆,瓜在直线上运动,豆也在直线_上运动;瓜在圆周上运动,豆的轨迹也是圆。

古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”。

模型1、运动轨迹为直线模型1-1如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?解析:当P点轨迹是直线时,Q点轨迹也是一条直线.理由:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.模型1-2如图,在△APQ中AP=AQ,∠PAQ为定值,当点P在直线BC上运动时,求Q点轨迹?解析:当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形。

理由:当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q点的起始位置和终点位置,连接即得Q点轨迹线段。

【最值原理】动点轨迹为一条直线时,利用“垂线段最短”求最值。

1)当动点轨迹确定时可直接运用垂线段最短求最值;2)当动点轨迹不易确定是直线时,可通过以下三种方法进行确定:①观察动点运动到特殊位置时,如中点,端点等位置时是否存在动点与定直线的端点连接后的角度不变,若存在该动点的轨迹为直线;②当某动点到某条直线的距离不变时,该动点的轨迹为直线;③当一个点的坐标以某个字母的代数式表示时,若可化为一次函数,则点的轨迹为直线;④若动点轨迹用上述方法都合适,则可以将所求线段转化为其他已知轨迹的线段求值。

一文搞定最值系列之“瓜豆原理”(重磅精编)

一文搞定最值系列之“瓜豆原理”(重磅精编)

瓜豆原理原理概述俗语云“种瓜得瓜,种豆得豆”,数学上有“种线得线,种圆得圆”:平面内,动点Q 随着动点P 的运动而运动,我们把点P 叫做主动点,点Q 叫做从动点;当这两个动点与某个定点连 线的夹角一定,且与该定点距离之比一定时(简记为“定角、定比”),易判断两个动点与定点构成的三角形形状一定,大小可能变,此时两个动点的轨迹形状相同,瓜豆问题的本质是 旋转、相似(包含全等)变换,往往与共点旋转(手拉手)模型相结合,考查类型有: (1)确定动点轨迹;(2)求运动路程;(3)求线段最值、面积最值等.基本模型一、种直线得直线(主动点与从动点的轨迹都是直线或直线上一部分) 1.图1 图2如图1,已知l 为定直线,O 为直线外一定点,P 为直线l 上一动点,连接OP ,若Q 为直线 OP 上一点(一般在线段OP 上),且Q 点到O 点的距离与P 点到O 点的距离之比为定值k (k >0且k ≠1),即k OP OQ=,此时我们可认为Q 、P 两点与定点O 连线的夹角一定(夹角为0°),符合瓜豆原理“定角、定比”的条件,因而Q 点的运动轨迹也是直线;如图2,另取 一组对应的点P ’、Q ’,则k O PO Q P O Q O =='',因而△OQ ’Q ∽△OP ’P ,相似比为k ,可知从动点Q 在平行于l 的直线m 上运动.易判断点O 到直线m 和l 的距离之比也等于k. 2.图1 图2如图1,已知l 为定直线,O 为直线外一定点,P 为直线l 上一动点,将射线OP 绕着点O 按 确定的方向(如顺时针)旋转一个确定的角度α(0<α<180°),得到射线OM ,在射线 OM 上取一点Q ,使k OP OQ=(k 为大于0的定值),此时符合瓜豆原理“定角、定比”的条件, 因而Q 点的运动轨迹也是直线;如图2,另取一组对应的点P ’、Q ’,则Q 点的运动轨迹即 为直线QQ ’,∵∠POQ=∠P ’OQ ’=α,∴∠POP ’=∠QOQ ’,又∵k P O Q O O P O Q=='',∴△OPP ’∽△OQQ ’.特别的,当k=1时,△OPP ’≌△OQQ ’.k ≠1时,△OQQ ’可看做由 △OPP ’绕着O 点旋转并放缩(0<k <1时缩小,k >1时放大)而来.直线QQ ’可看做由直 线l 绕着点O 顺时针旋转α角而来,0<α<90°时,两直线的夹角即为α.典型例题1-1如图,在平面直角坐标系中,A (4,0),B 为y 轴正半轴上 一动点,以AB 为一边向下作等边△ABC ,连接OC ,则线段 OC 的最小值为_________.【分析】B 为主动点,C 为从动点;方法一:与从动点有关的线段最值,优先转化为与主动点有关的线段最值,将线段OA 绕着点A 顺时针旋转60°,得到线段O ’A ,构造全等三角形可实现线段的转化;方法二:两动点与定点A 连线的夹角为定值(60°),到点A的距离之比为定值1(即CA:BA=1),符合瓜豆原理“定角、定比”的特征,主动点B 的轨迹为射线,则从动点C 的轨迹也为射线,确定其轨迹后,依据“垂线段最短”求OC 得最小值.【解答】方法一:如图1,将线段OA 绕着点A 顺时针旋转60°,得到线段O ’A ;连接O ’B ,易证△AO ’B ≌△AOC ,则OC=O ’B ,即求O ’B 的最小值;由于O ’为定点,点B 在y 轴正半轴上运动,如图2,由垂线段最短,知O ’B ⊥y 轴时,O ’B 最小,连接OO ’,则 △AOO ’为等边三角形,作O ’H ⊥OA 于H ,此时O ’B=OH=21OA=2,即OC 的最小值为2.图1 图2 方法二:如图3,当点B 位于原点时,对应的点C 位于1C (2,-23)处,当点B 位于2B (0,334)时,对应的点C 位于2C (0,-334) 处,则点C 的运动轨迹为射线21C C ,当OC ’⊥21C C 时,OC ’ 最小;易证△O AB 2≌△12C AC ,∴∠12C AC =∠O AB 2=60°, 则∠C OC '2=60°,∴OC ’=223OC =2,即OC 的最小值为2.【小结】1.动点引起的最值问题,经常需要确定动点轨迹; 图3 2.两种方法中,均有两个等边三角形构成“共点旋转(手拉手)”模型,会伴随产生一组全等三角形;3.方法二中,由于从动点的轨迹为射线,因而先确定其端点,再找一组特殊位置的主动点和从动点(目的是便于计算),即可确定从动点的轨迹;4.严格来说,y 轴的正半轴不包括原点,因此C 点的轨迹不包括点1C .典型例题1-2如图,正方形 ABCD 的边长为4,动点E 从A 点出发,沿着AB 边向终点B 作无折返运动,连接DE ,以DE 为边向右上方作正 方形DEFG ,则点E 在整个运动过程中,点F 经过的路径长为______.【分析】E 为主动点,F 为从动点,依据正方形的性质,两动点与定点A 的连线夹角恒为45°,且始终有DF :DE=2,符合瓜豆原理“定角、定比”的特征,故F 点的运动轨迹为线段,由临界情况确定该线段的两个端点,结合“共点旋转(手拉手)”相似模型,运用相似比计算该线段长.【解答】如图1,连接BF 、BD 和DF ,由正方形的性质知D ED F D A DB==2,图1∠BDA=∠FDE=45°,则∠ADE=∠BDF ,∴△DAE ∽△DBF ,∴BF=2AE , 当E 点位于A 点处时,F 点位于B 点处,当E 点位于B 点处时,F 点的 位置如图2,则F 点的运动轨迹即为图2中的线段BF ,BF=2AB=42,即点F经过的路径长为42.图2【小结】1.图1中,△DAB与△DEF构成“共点旋转(手拉手)”模型,伴随产生一组相似三角形(△DAE和△DBD);2.瓜豆题型的突破口在于找到从动点、主动点和某定点之间的“定角、定比”关系.变式训练1-1如图,△ABC为等边三角形,AB=4,AD为高,E为直线AD上一动点,连接CE并以CE为边向下作等边△CEF,连接DF;则点E在运动的过程中,线段DF的最小值为_________.变式训练1-2(原创)如图,在△ABC中,∠A=105°,∠ABC=30°,AC=2,动点D从A点出发,沿着AC边向终点C作无折返运动,以BD为边向上作△BDE,使∠BDE=∠A,且∠E=45°,则点D运动的整个过程中,点E运动的路径长为________;F为直线CE上一动点,连接BF,则线段BF的最小值为_______.变式训练1-3(多种方法)如图,已知AB=12,点C在线段AB上,且AC=4,以AC为一边向上作等边△ACD,再以CD为直角边向右作Rt△DCE,使∠DCE=90°,F为斜边DE的中点,连接DF,随着CE边长的变化,BF长也在改变,则BF长的最小值为_________.二、种曲线得曲线(主动点与从动点的轨迹都是双曲线或双曲线一部分)其原理与模型一类似,不再赘述,直接看例题:典型例题2-1如图,点A 是双曲线xy 4=在第一象限上的一动点,连接AO并延长,交双曲线的另一支于点B ,以AB 为斜边作等腰Rt △ABC , 点C 落在第二象限内,随着点A 的运动,点C 的位置也在不断变化, 但始终在同一函数图像上,则该函数解析式为___________. 【分析】A 为主动点,C 为从动点;方法一:根据点C 坐标判断,连接CO 过点C 向x 轴作垂线段,构建“三垂直”模型,设点A 坐标,表示出点C 坐标,观察其坐标符合的函数解析式; 方法二:根据反比例函数k 的几何意义判断;方法三:动点A 、C 与定点O 符合瓜豆原理“定角、定比”的特征,因而点C 的轨迹是双曲线的一支,任意的点C 均可看做对应的点A 绕着点O 逆时针旋转90°而来,因而点C 的轨迹可看做由原双曲线第一象限的一支绕点O 逆时针旋转得到. 【解答】方法一:连接OC ,作CD ⊥x 轴于点D ,AE ⊥x 轴于点E ,由双曲线的对称性知OA=OB ,又∵△ABC 为等腰直角三角形,∴CO ⊥OA ,CO=OA ,则易证△COD ≌△OAE ,设A (a,a 4),则C (-a 4,a ),易判断点C 在反比例函数y=-x 4(x <0)上,故答案为:y=-x4(x <0). 方法二:辅助线同方法一,由反比例函数k 的几何意义知COD AOE S S ∆∆==2,易判断点C 在反比例函数y=-x4(x <0)上. 方法三:点C 的轨迹可看做由原双曲线第一象限的一支绕点O 逆时针旋转得到,因而新反比例函数的k 与原函数k 互为相反数,故点C 在反比例函数y=-x 4(x <0)上. 变式训练2-1如图,Rt △ABO 中,∠AOB=90°,点A 在第一象限、点B 在第四象限, 且AO :BO=1:,若点A (x 0,y 0)的坐标x 0,y 0满足y 0=,则点B (x ,y )的坐标x ,y 所满足的关系式为 .三、种圆得圆(主动点与从动点的轨迹都是圆或圆弧) 1.图1 图2如图1,已知点P 为⊙M 上一动点,O 为定点(一般在圆外),Q 为直线OP 上一点(一般在线段OP 上),若OP OQ=k (k >0且k ≠1),则主动点P 、从动点Q 与定点O 符合“定角(0°)、定比”特征,因而Q 点的轨迹也是圆,如何确定该圆的圆心和半径呢?如图2,连接MP 、MO ,作QN ∥PM ,交MO 于点N ,则△OQN ∽△OPM ,从而有MPNQO PO Q OM O N ===k,由于M 、O 为定点,k 为定值,∴N 为定点,设⊙M 半径为R ,⊙N 半径为r ,∵NQ=kMP=kR,∴NQ 长为定值,由圆的定义知,点Q 在以N 为圆心,kR 长为半径的圆上运动,即Q 点的轨迹是以N 为圆心,kR 长为半径的圆. 2.图1 图2如图1,已知点P 为⊙M 上一动点,O 为定点(一般在圆外),将射线OP 绕着点O 按确定的方向(如顺时针)旋转一个确定的角度α(0<α<180°),得到射线OT ,在射线OT 上有一点Q ,满足OP OQ=k (k 为大于0的常数),则主动点P 、从动点Q 与定点O 符合“定角、定比”的特征,因而Q 点的轨迹也是圆,如何确定该圆的圆心和半径呢?如图2,连接MP 、MO ,将射线OM 绕点O 顺时针旋转α角,得到射线OS ,在射线OS 上取一点N ,使OM ON =k,则N 为定点,易证△OQN ∽OPM ,则O PO QPM Q N=k ,∴QN=kPM=kR,则QN 为定值,由圆的定义知,点Q在以N 为圆心,kR 长为半径的圆上运动,即Q 点的轨迹是以N 为圆心,kR 长为半径的圆.特别的,当k=1时,△OQN ≌OPM ,⊙N 和⊙M 为等圆,⊙N 可看做由⊙M 绕着点O 顺时针旋转α角而来;当k ≠1时,⊙N 可看做由⊙M 绕点O 顺时针旋转α角,且半径放缩k 倍(0<k <1时缩小,k >1时放大)而来.典型例题3-1如图,在Rt △ABC 中,∠ACB=90°,AC=8,BC=6,点D 是以点A 为圆心4为半径的圆上一动点,连接BD ,点M 为BD 中点,线段CM 长度的最大值为________.【分析】方法一:关联三角形法,取AB 的中点E ,连接EC 、EM 和AD ,放到△CEM 中求解CM 的范围,三点共线时取最大值; 方法二:辅助圆法,从动点相关的线段优先转化为主动点相关的线段,将线段BC 加倍延长,借助中位线构造出2CM ,即求2CM 的最大值; 方法三:符合瓜豆原理基本模型,确定从动点M 的轨迹圆,进而求CM 的最大值.【解答】方法一:如图1,取AB 的中点E ,连接EC 、EM 和AD ,∵M 为BD 的中点,∴EM 为△BAD 的中位线,∴EM=21AD=2;∵∠ACB=90°,∴CE=21AB=5,CM ≤CE+EM ,即CM ≤7,当且仅当C 、E 、M 共线时(如图2),CM 取得最大值7.图1 图2方法二:如图3,延长BC 至点F ,使CF=BC ,则F 为定点,连接DF ,则CM 为△BDF 的中位线,∴FD=2CM ,当FD 最大时,CM 最大;如图4,连接FA 并延长,与⊙A 交于点D ,此时FD 最大,易知AF=AB=10,则此时FD=14,对应CM 的最大值即为7.图3 图4方法三:主动点D 、从动点M 与定点B 符合“定角(0°)、定比”特征,因而点M 的轨迹为圆;如图5,连接AD ,∵M 为BD 的中点,∴取AB 得中点E ,连接EM ,可知E 为定点且EM=21AD=2,根据圆的定义知,点M 的轨迹为以E 为圆心,2为半径的圆;如图6,∵C 为⊙E外一定点,∴连接CE 并延长,与⊙E 交于点M ,此时CM 最大,此时CM=CE+EM=7.图5 图6【小结】以上方法中,辅助线均有一举多得之妙,我们可总结出一些常见的辅助线作法: ①出现直角三角形:常作斜边的中线;②出现直角三角形:常倍长直角边,构造等腰三角形;③出现线段中点:常取另一线段的中点,构造中位线;④出现线段中点:常倍长另一线段,构造中位线.典型例题3-2(改编)如图,△ABC 中,AB=3,AC=2,以BC 为斜边作等腰Rt △BCD (与△ABC 分布在直线BC 的两侧),连接AD ,则线段AD 的最大值为___________.【分析】方法一:∵△BCD 为等腰直角三角形,∴以AB 为斜边向下作等腰直角三角形,与△BCD 构成“共点旋转(手拉手)”模型,伴随产生一组相似三角形,用“关联三角形”法求出AD 的最大值.方法二:不妨固定AB 边,则主动点C 在以A 为圆心,2为半径的一段圆弧上运动,它与从动点D 、定点B 符合“定角、定比”特征,借助模型确定D 点的轨迹圆弧,求出AD 的最大值.【解答】方法一:如图1,以AB 为斜边向下作等腰Rt △BAE ,连接DE ,则△BAE ∽△BCD ,从而易证△BAC ∽△BED ,∴21==ABBE AC DE,∴DE=2AC =2,又AE=2232=AB ,∴AD ≤AE+DE ,即AD ≤225,如图2,当且仅当A 、E 、D 三点共线时,AD 取得最大值,最大值为225.图1 图2方法二:如图3,假定AB边固定,则主动点C在半圆(不包括端点G、H)上运动,从动点D可看作由主动点C绕着点B顺时针旋转45°,且到点B的距离缩至22倍而来,则将主动圆心A按照相同的操作可得到从动圆心F,从动圆的半径缩小至主动圆半径的22(即构造△BDF∽△BCA,与构造“手拉手”模型本质相同),D点在如图所示的半圆(不包括端点I、J)上运动,A为⊙F外一定点,∴当A、F、D共线时,AD最大,最大值为AF+DF=225. 图3【小结】1.方法一与方法二实质相同,只是方法二多了确定主动点轨迹、从动点轨迹的过程;2.由图2可知,当AD取得最大值时,∠BAC=∠BDE=90°,∠BAD=∠CAD=45°,因而可以变换多种问法,如当AD取得最大值时,求∠BAD、∠BAC的大小,求BC长、BD长等;3.本题可稍稍加大难度,将“求AD得最大值”改为“求△ABD面积的最大值”(答案为4269 ,方法见视频讲解);4.许多同学误将主动点和从动点的轨迹判断为完整的圆,虽不影响结论,但不够严谨.5.共点旋转与瓜豆可谓形影相伴模型,很多题往往用两种方法均可解答;变式训练3-1如图,一次函数y=2x与反比例函数y=xk(k>0)的图象交于A,B两点,点P在以C(﹣2,0)为圆心,1为半径的⊙C上,连接AP,Q是AP的中点,连接OQ,已知OQ长的最大值为23,则k的值为______;BQ的最大值为________.变式训练3-2(原创)如图,在平面直角坐标系中,圆心在x轴正半轴上的⊙M交x轴的负半轴于点A(-1,0),交y轴正半轴于点B(0,3),交y轴负半轴于点C,动点P从点B出发,沿着⊙M顺时针向终点C做无折返运动,D(-2,0),在点P运动过程中,连接DP,Q为线段DP上一点且始终满足PQ=2DQ,则在整个运动过程中,点Q经过的路径长为_______;线段DQ扫过的区域面积为________.变式训练3-3(原创)如图,在平面直角坐标系中,A(2,0),B(-1,0),以OA为直径的圆上有两个动点C、D,连接BC,并以BC为直角边向逆时针方向作Rt△BCE,使∠CBE=90°,∠BEC=30°,连接CD、ED和BD,则C、D两点的位置在变化的过程中,△BCE面积的最大值与最小值之差为_______;线段DE的最小值为_________;当∠EBD最大时,线段BE和CD的数量关系是_____________.中考真题6在第二象限分支上的一个动点,连接AO并延长交另一分支于1.如图,点A是双曲线y=-x点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点Ck上运动,则k的值为()的位置也不断变化,但点C始终在双曲线y=xA.1B.2C.3D.42.如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是()A.3B.C.D.43.如图,在矩形ABCD中,AB=4,∠DCA=30°,点F是对角线AC上的一个动点,连接DF,以DF为斜边作∠DFE=30°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A 到点C的运动过程中,点E的运动路径长是.4.如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2 B.4 C.D.5.如图,在等腰Rt△ABC中,AC=BC=22,点P在以斜边AB为直径的半圆上,M为PC的中点,当点P沿着半圆从点A运动到点B时,点M运动的路径长为.6.如图,在矩形ABCD中,AB=,AD=3,点P是AD边上的一个动点,连接BP,作点A关于直线BP的对称点A1,连接A1C,设A1C的中点为Q,当点P从点A出发,沿边AD运动到点D时停止运动,点Q的运动路径长为.7.如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.8.如图,正方形ABCD中,AB=2,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF.(1)求证:AE=CF;(2)若A,E,O三点共线,连接OF,求线段OF的长.(3)求线段OF长的最小值.参考答案变式训练1-1 1.变式训练1-2262+;2622+.变式训练1-3 6.变式训练2-1 y=-x2.变式训练3-12532,1051452+.变式训练3-298π;27839π+. 变式训练3-343;3-3;BE=3CD. 中考真题1.B2.C3.3344.D5.π6.33π7.25 8.(1)证明:如图1,由题意知:∠EDF=90°,ED=DF ,∵四边形ABCD 是正方形,∴∠ADC=90°,AD=CD ,∴∠ADC=∠EDF , 即∠ADE+∠EDC=∠EDC+∠CDF ,∴∠ADE=∠CDF ,在△ADE 和△DCF 中, ∵,∴△ADE ≌△DCF ,∴AE=CF ;(2)如图2,过F 作OC 的垂线,交BC 的延长线于P , ∵O 是BC 的中点,且AB=BC=2,∵A ,E ,O 三点共线,∴OB=,由勾股定理得:AO=5,∵OE=2,∴AE=5﹣2=3,由(1)知△ADE ≌△DCF , ∴∠DAE=∠DCF ,CF=AE=3,∵∠BAD=∠DCP ,∴∠OAB=∠PCF , ∵∠ABO=∠P=90°,∴△ABO ∽△CPF ,∴==2,∴CP=2PF ,设PF=x ,则CP=2x ,由勾股定理得:32=x 2+(2x )2, x=或﹣(舍去),∴FP=,OP=+=,由勾股定理得:OF==,(3)方法一:如图3,由于OE=2,所以E 点可以看作是以O 为圆心,2为半径的半圆上运动,延长BA 到P 点,使得AP=OC ,连接PE ,∵AE=CF ,∠PAE=∠OCF ,∴△PAE ≌△OCF , ∴PE=OF ,当PE 最小时,为O 、E 、P 三点共线, OP===5,∴PE=OF=OP ﹣OE=5﹣2,∴OF 的最小值是5﹣2.方法二:如图4,连接OD ,将△ODE 绕点D 逆时针旋转90°得到△IDF ,连接OI 、OF , 在Rt △OCD 中,OD=22CD OC +=5,在Rt △ODI 中,OI=22ID OD +=52,∵OF ≥OI-FI ,而 FI=OE=2,∴OF ≥52-2,即OF 的最小值是5﹣2.。

【中考数学】刘岳:初中数中最值问题之瓜豆原理

【中考数学】刘岳:初中数中最值问题之瓜豆原理

【中考数学】刘岳:初中数中最值问题之瓜豆原理在辅助圆问题中,我们了解了求关于动点最值问题的方式之一——求出动点轨迹,即可求出关于动点的最值.本文继续讨论另一类动点引发的最值问题,在此类题目中,题目或许先描述的是动点P,但最终问题问的可以是另一点Q,当然P、Q 之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值,为常规思路01动点轨迹之“圆”引例1如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.当点P在圆O上运动时,Q点轨迹是?【分析】观察动图:点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.引例2如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.当点P在圆O上运动时,Q点轨迹是?【分析】动图先看结果:Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P点轨迹都是圆.接下来确定圆心与半径.考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系.引例3如图,△APQ是直角三角形,∠PAQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?【分析】动图先看结果:考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.模型总结为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.【条件】两个定量主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠PAQ=∠OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.思考1如图,P是圆O上一个动点,A为定点,连接AP,以AP为一边作等边△APQ.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】Q点满足(1)∠PAQ=60°;(2)AP=AQ,故Q点轨迹是个圆:考虑∠PAQ=60°,可得Q点轨迹圆圆心M满足∠MAO=60°;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.【小结】可以理解AQ由AP旋转得来,故圆M亦由圆O旋转得来,旋转角度与缩放比例均等于AP与AQ的位置和数量关系.思考2如图,P是圆O上一个动点,A为定点,连接AP,以AP为斜边作等腰直角△APQ.考虑:当点P在圆O上运动时,如何作出Q点轨迹?【分析】Q点满足(1)∠PAQ=45°;(2)AP:AQ=根号2:1,故Q点轨迹是个圆.连接AO,构造∠OAM=45°且AO:AM=根号2:1.M点即为Q 点轨迹圆圆心,此时任意时刻均有△AOP∽△AMQ.即可确定点Q的轨迹圆.真题战场2016余姚模拟如图,点P(3,4),圆P半径为2,A(2.8,0),B(5.6,0),点M是圆P上的动点,点C是MB的中点,则AC的最小值是_______.【分析】M点为主动点,C点为从动点,B点为定点.考虑C是BM中点,可知C点轨迹:取BP中点O,以O为圆心,OC为半径作圆,即为点C轨迹.当A、C、O三点共线且点C在线段OA上时,AC取到最小值,根据B、P坐标求O,利用两点间距离公式求得OA,再减去OC即可.2016武汉中考如图,在等腰Rt△ABC中,AC=BC=2倍根号2,点P在以斜边AB为直径的半圆上,M为PC的中点,当半圆从点A运动至点B时,点M运动的路径长为________.【分析】考虑C、M、P共线及M是CP中点,可确定M点轨迹:取AB中点O,连接CO取CO中点D,以D为圆心,DM为半径作圆D分别交AC、BC于E、F两点,则弧EF即为M点轨迹.当然,若能理解M点与P点轨迹关系,可直接得到M点的轨迹长为P 点轨迹长一半,即可解决问题.2018南通中考如图,正方形ABCD中,AB=2倍根号5,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE、CF.求线段OF长的最小值.【分析】E是主动点,F是从动点,D是定点,E点满足EO=2,故E点轨迹是以O为圆心,2为半径的圆.考虑DE⊥DF且DE=DF,故作DM⊥DO且DM=DO,F点轨迹是以点M为圆心,2为半径的圆.直接连接OM,与圆M交点即为F点,此时OF最小.可构造三垂直全等求线段长,再利用勾股定理求得OM,减去MF即可得到OF的最小值.一条隐藏的瓜豆△ABC中,AB=4,AC=2,以BC为边在△ABC外作正方形BCDE,BD、CE交于点O,则线段AO的最大值为______.【分析】考虑到AB、AC均为定值,可以固定其中一个,比如固定AB,将AC看成动线段,由此引发正方形BCED的变化,求得线段AO的最大值.根据AC=2,可得C点轨迹是以点A为圆心,2为半径的圆.接下来题目求AO的最大值,所以确定O点轨迹即可,观察△BOC是等腰直角三角形,锐角顶点C的轨迹是以点A为圆心,2为半径的圆,所以O点轨迹也是圆,以AB为斜边构造等腰直角三角形,直角顶点M即为点O轨迹圆圆心.连接AM并延长与圆M交点即为所求的点O,此时AO最大,根据AB先求AM,再根据BC与BO的比值可得圆M的半径与圆A半径的比值,得到MO,相加即得AO.此题方法也不止这一种,比如可以如下构造旋转,当A、C、A’共线时,可得AO最大值.或者直接利用托勒密定理可得最大值.02动点轨迹之“直线”引例1如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P 在BC上运动时,Q点轨迹是?【分析】先看动图结果:当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N:在运动过程中,因为AP=2AQ,所以AM=2QN,即Q点到BC的距离是定值,故Q点轨迹是一条直线.引例2如图,△APQ是等腰直角三角形,∠PAQ=90°且AP=AQ,当点P 在直线BC上运动时,求Q点轨迹?【分析】动图先看结果:当AP 与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q点的起始位置Q1和终点位置Q2,连接即得Q点轨迹线段.模型总结【必要条件】主动点、从动点与定点连线的夹角是定量(∠PAQ 是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).【结论】P、Q两点轨迹所在直线的夹角等于∠PAQ(当∠PAQ≤90°时,∠PAQ等于MN与BC夹角)P、Q两点轨迹长度之比等于AP:AQ(由△ABC∽△AMN,可得AP:AQ=BC:MN)真题战场2017姑苏区二模如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD的右侧按如图所示的方式作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是________.【分析】根据△DPF是等边三角形,所以可知F点运动路径长与P点相同,P从E点运动到A点路径长为8,故此题答案为8.2013湖州中考如图,已知点A是第一象限内横坐标为2倍根号3的一个定点,AC⊥x轴于点M,交直线y=-x于点N,若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是________.【分析】根据∠PAB=90°,∠APB=30°可得:AP:AB=根号3:1,故B点轨迹也是线段,且P点轨迹路径长与B点轨迹路径长之比也为根号3:1,P点轨迹长ON为2倍根号6,故B点轨迹长为2倍根号2.坐标系中的最值如图,在平面直角坐标系中,A(-3,0),点B是y轴正半轴上一动点,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,求OP的最小值.【分析】求OP最小值需先作出P点轨迹,根据△ABP是等边三角形且B点在直线上运动,故可知P点轨迹也是直线.取两特殊时刻:(1)当点B与点O重合时,作出P点位置P1;(2)当点B在x轴上方且AB与x轴夹角为60°时,作出P点位置P2.连接P1P2,即为P点轨迹.根据∠ABP=60°可知:P1P2与y轴夹角为60°,作OP⊥P1P2,所得OP长度即为最小值,OP2=OA=3,所以OP=3/2.2019宿迁中考如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F 为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为_______.【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG最小值,可以将F点看成是由点B向点A运动,由此作出G点轨迹.考虑到F点轨迹是线段,故G点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G点在G1位置,最终G点在G2位置(G2不一定在CD边),G1G2即为G点运动轨迹.CG最小值即当CG⊥G1G2的时候取到,作CH⊥G1G2于点H,CH即为所求的最小值.根据模型可知:G1G2与AB夹角为60°,故G1G2⊥EG1.过点E作EF⊥CH于点F,则HF=G1E=1,CF=1/2CE=3/2,所以CH=5/2,因此CG的最小值为5/2.03动点轨迹之“其他图形”所谓“瓜豆原理”,就是根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.2016乐山中考如图,在反比例函数y=-2/x的图像上有一个动点A,连接AO并延长交图像的另一支于点B,在第一象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y=k/x的图像上运动,若tan∠CAB=2,则k的值为()A.2 B.4 C.6 D.8【分析】依旧动图观察:∠AOC=90°且AO:OC=1:2,显然点C的轨迹也是一条双曲线,分别作AM、CN垂直x轴,垂足分别为M、N,连接OC,易证△AMO∽△ONC,∴CN=2OM,ON=2AM,∴ON·CN=4AM·OM,故k=4×2=8.【思考】若将条件“tan∠CAB=2”改为“△ABC是等边三角形”,k会是多少?动点轨迹三角形如图,A(-1,1),B(-1,4),C(-5,4),点P是△ABC边上一动点,连接OP,以OP为斜边在OP的右上方作等腰直角△OPQ,当点P在△ABC边上运动一周时,点Q的轨迹形成的封闭图形面积为________.【分析】根据△OPQ是等腰直角三角形可得:Q点运动轨迹与P点轨迹形状相同,根据OP:OQ=根号2:1,可得P点轨迹图形与Q点轨迹图形相似比为根号2:1,故面积比为2:1,△ABC面积为1/2×3×4=6,故Q点轨迹形成的封闭图形面积为3.【小结】根据瓜豆原理,类似这种求从动点轨迹长或者轨迹图形面积,根据主动点轨迹推导即可,甚至无需作图.【来源】有一点数学(gh_41d61a2081f7)、作者:刘岳。

初中数学几何模型之圆弧轨迹型瓜豆原理专题 解析版

初中数学几何模型之圆弧轨迹型瓜豆原理专题 解析版

初中数学几何模型之圆弧轨迹型瓜豆原理专题一.模型介绍运动轨迹为圆弧型的瓜豆原理模型构造(1)如图,P 是圆O 上一个动点,A 为定点,连接AP ,Q 为AP 中点.Q 点轨迹是?(2)如图,△APQ 是直角三角形,∠PAQ =90°且AP =k ⋅AQ ,当P 在圆O 运动时,Q 点轨迹是?解决方法如图,连接AO ,取AO 中点M ,任意时刻,均有△AMQ ∽△AOP ,OM OP =AQ AP =12,则动点Q 是以M 为圆心,MQ 为半径的圆。

如图,连结AO ,作AM ⊥AO ,AO :AM =k :1;任意时刻均有△APO ∽△AQM ,且相似比为k 。

则动点Q 是以M 为圆心,MQ 为半径的圆。

【最值原理】动点的轨迹为定圆时,可利用:“一定点与圆上的动点距离最大值为定点到圆心的距离与半径之和,最小值为定点到圆心的距离与半径之差”的性质求解。

二.例题讲解1如图,M 是正方形ABCD 边CD 的中点,P 是正方形内一点,连接BP ,线段BP 以B 为中心逆时针旋转90°得到线段BQ ,连接MQ .若AB =4,MP =1,则MQ 的最小值为.答案:210-1.【分析有据】连接BM ,将△BCM 绕B 逆时针旋转90°得△BEF ,连接MF ,QF ,证明△BPM ≌△BQF (SAS ),得MP =QF =1,故Q 的运动轨迹是以F 为圆心,1为半径的弧,求出BM =BC 2+CM 2=25,可得MF =2BM =210,由MQ ≥MF -QF ,知MQ ≥210-1,从而可得MQ 的最小值为210-1.【解答有法】解:连接BM ,将△BCM 绕B 逆时针旋转90°得△BEF ,连接MF ,QF ,如图:∵∠CBE=90°,∠ABC=90°,∴∠ABC+∠CBE=180°,∴A,B,E共线,∵∠PBM=∠PBQ-∠MBQ=90°-∠MBQ=∠FBQ,由旋转性质得PB=QB,MB=FB,∴△BPM≌△BQF(SAS),∴MP=QF=1,∴Q的运动轨迹是以F为圆心,1为半径的弧,∵BC=AB=4,CM=12CD=2,∴BM=BC2+CM2=25,∵∠MBF=90°,BM=BF,∴MF=2BM=210,∵MQ≥MF-QF,∴MQ≥210-1,∴MQ的最小值为210-1.故答案为:210-1.2如图,点A、B的坐标分别为A(2,0)、B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM最长为()A.32B.52C.2D.3答案:A.【分析有据】根据同圆的半径相等可知:点C在半径为1的⊙B上,根据三角形的中位线定理可知,C在BD 与圆B的交点时,OM最小,在DB的延长线上时,OM最大,根据平行线分线段成比例定理求得C的坐标,进而即可求得M的坐标.【解答有法】解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B上,且半径为1,取OD=OA=2,连接CD,∵AM =CM ,OD =OA ,∴OM 是△ACD 的中位线,∴OM =CD ,当OM 最大时,即CD 最大,而D ,B ,C 三点共线时,当C 在DB 的延长线上时,OM 最大,∵OB =OD =2,∠BOD =90°,∴BD =2,∴CD =2+1=3,∴OM =32.故选:A .三.巩固练习1如图,在△ABC 中,∠B =45°,AC =2,以AC 为边作等腰直角△ACD ,连BD ,则BD 的最大值是()A.10-2B.10+3C.22D.10+2【分析有据】如图所示,以AC 为斜边,作等腰直角△AOC ,过点O 作OE ⊥AD 交DA 延长线于E ,连接OD ,则∠AOC =90°,OC =OA =2,∠OAC =45°,先证明点B 在以O 为圆心,2为半径的圆周上运动(AB 右侧),故当点O 在线段BD 上时,BD 最大,再求出OE ,DE 的长,进而利用勾股定理求出OD 的长即可得到答案.【解答有法】解:如图所示,以AC 为斜边,作等腰直角△AOC ,过点O 作OE ⊥AD 交DA 延长线于E ,连接OD ,∴∠AOC =90°,OC =OA =22AC =2,∠OAC =45°,∵∠ABC =45°,∴点B 在以O 为圆心,2为半径的圆周上运动(AB 右侧),∴当点O 在线段BD 上时,BD 最大,∵△ACD 是以AC 为边的等腰直角三角形,∴∠CAD =90°,AD =AC =2,∴∠OAE =45°,∴△AOE 是等腰直角三角形,∴AE =OE =22OA =1,∴DE =AE +AD =3,在Rt △DOE 中,由勾股定理得OD =OE 2+DE 2=10,∴BD 的最大值=DO +BO =10+2,故选:D .2正方形ABCD中,AB=4,点E、F分别是CD、BC边上的动点,且始终满足DE=CF,DF、AE相交于点G.以AG为斜边在AG下方作等腰直角△AHG使得∠AHG=90°,连接BH.则BH的最小值为()A.25-2B.25+2C.10-2D.10+2【分析有据】连接AC,取AD的中点O,连接OG,CO,利用△BAH∽△CAG,得CG=2BH,再证明△ADE≌△DCF(SAS),得∠DAE=∠CDF,则∠AGD=∠ADE=90°,可知当点O、G、C三点共线时,CG最小,从而解决问题.【解答有法】解:连接AC,取AD的中点O,连接OG,CO,∵△AHG和△ABC是等腰直角三角形,∴AC AB =AGAH=2,∠BAC=∠HAG,∴∠BAH=∠CAG,∴△BAH∽△CAG,∴CG=2BH,∵四边形ABCD是正方形,∴AD=CD,∠ADE=∠DCF,∵DE=CF,∴△ADE≌△DCF(SAS),∴∠DAE=∠CDF,∴∠AGD=∠ADE=90°,∴当点O、G、C三点共线时,CG最小,∴CG的最小值为OC-OG=25-2,∴BH的最小值为25-22=10-2,故选:C.3如图,点A的坐标为(4,3),AB⊥x轴于点B,点C为坐标平面内一点,OC=2,点D为线段AC的中点,连接BD,则BD的最大值为()A.3B.72C.352D.25【分析有据】作点A关于x轴的对称点E,根据中位线的性质得到BD=12EC,求出CE的最大值即可.【解答有法】解:如图,作点A关于x轴的对称点E(4,-3),则点B是AE的中点,又∵点D是AC的中点,∴BD是△AEC的中位线,∴BD=12EC,∴当EC最大时,BD最大,∵点C为坐标平面内一点,且OC=2,∴点C在以O为圆心,2为半径的⊙O上运动,∴当EC经过圆心O时,EC最大.∵OB=4,BE=3,∴OE=5,∴CE的最大值为5+2=7,∴BD的最大值=72.故选:B.4如图,点M坐标为(0,2),点A坐标为(2,0),以点M为圆心,MA为半径作⊙M,与x轴的另一个交点为B,点C是⊙M上的一个动点,连接BC,AC,点D是AC的中点,连接OD,当线段OD取得最大值时,点D的坐标为()A.(0,1+2)B.(1,1+2)C.(2,2)D.(2,4)【分析有据】根据垂径定理得到OA=OB,然后根据三角形中位线定理得到OD∥BC,OD=12BC,即当BC取得最大值时,线段OD取得最大值,根据圆周角定理得到CA⊥x轴,进而求得△OAD是等腰直角三角形,即可得到AD=OA=2,得到D的坐标为(2,2).【解答有法】解:∵OM⊥AB,∴OA=OB,∵AD=CD,∴OD ∥BC ,OD =12BC ,∴当BC 取得最大值时,线段OD 取得最大值,如图,∵BC 为直径,∴∠CAB =90°,∴CA ⊥x 轴,∵OB =OA =OM ,∴∠ABC =45°,∵OD ∥BC ,∴∠AOD =45°,∴△AOD 是等腰直角三角形,∴AD =OA =2,∴D 的坐标为(2,2),故选:C .5如图,点A 的坐标为(-3,3),点P 的坐标为(1,0),点B 的坐标为(-1,0),⊙A 的半径为1,C 为圆上一动点,Q 为BC 的中点,连接PC ,OQ ,则OQ 长的最大值为()A.5B.2.5C.6D.3【分析有据】由点P 、点B 的坐标得O 是BP 的中点,则OQ 是△CBP 的中位线,OQ =12PC ,当PC 的长最大时,OQ 的长最大,根据点与圆的位置关系可得PC 长的最大值为AP +1,求出AP =(1+3)2+32=5,即可求解.【解答有法】解:∵点P 的坐标为(1,0),点B 的坐标为(-1,0),∴O 是BP 的中点,∵Q 为BC 的中点,∴OQ 是△CBP 的中位线,∴OQ =12PC ,∴当PC 的长最大时,OQ 的长最大,如图,∵点A 的坐标为(-3,3),点P 的坐标为(1,0),∴AP =(1+3)2+32=5,∴PC 长的最大值为AP +1=6,∴OQ 长的最大值为OQ =12PC =3,故选:D .6如图,在正方形ABCD 中,AB =2,点P 是对角线AC 上一动点(不与A ,C 重合),连接PD ,PB .过点D 作DE ⊥DP ,且DE =DP ,连接PE ,CE .①∠APB =∠CDE ;②PE 的长度最小值为2;③PC 2+CE 2=2DE 2;④CE +CP =22.以上判断,正确的有()A.1个B.2个C.3个D.4个【分析有据】证明△ADP ≌△CDE (SAS ),得∠APD =∠CED ,CE =AP ,由正方形的对称性可得∠APD =∠APB ,即知∠APB =∠CED ,而P 为AC 上的动点,故CD =CE 不一定成立,可判断①错误;由PE =2PD =2DE ,知PD 最小时,PE 取最小值,此时PD 是△ADC 的边AC 上的高,PD =AD ⋅CD AC =2×222=2,可得PE =2PD =2,判断②错误;又∠PCE =∠DCE +∠ACD =45°+45°=90°,有PC 2+CE 2=PE 2=2DE 2;判断③正确;根据AP +CP =AC =22,AP =CE ,可判断④正确.【解答有法】解:∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =90°,∵DE ⊥DP ,∴∠PDE =90°=∠ADC ,∴∠ADP =∠CDE ,∵DE =DP ,∴△ADP ≌△CDE (SAS ),∴∠APD =∠CED ,CE =AP ,由正方形的对称性可得∠APD =∠APB ,∴∠APB =∠CED ,∵CD =AD ,CE =AP ,而P 为AC 上的动点,∴AD =AP 不一定成立,即CD =CE 不一定成立,∴∠CDE =∠CED 不一定成立,∴∠APB =∠CDE 不一定成立,故①错误;∵△PDE 是等腰直角三角形,∴PE =2PD =2DE ,∴PD 最小时,PE 取最小值,此时PD 是△ADC 的边AC 上的高,∵AC =2AB =22,∴PD =AD ⋅CD AC =2×222=2,∴PE =2PD =2,即PE 的长度最小值为2,故②错误;∵△ADP ≌△CDE ,∴∠DCE =∠DAP =45°,∴∠PCE=∠DCE+∠ACD=45°+45°=90°,∴PC2+CE2=PE2=2DE2;故③正确;∵AP+CP=AC=22,AP=CE,∴CE+CP=22,故④正确,∴正确的有③④,共2个,故选:B.7如图,点A,C,N的坐标分别为(-2,0),(2,0),(4,3),以点C为圆心、2为半径画⊙C,点P在⊙O上运动,连接AP,交⊙C于点Q,点M为线段QP的中点,连接MN,则线段MN的最小值为3.【分析有据】连接CM,OM,由垂径定理得出CM⊥QP,由直角三角形的性质得出OM=12AC=2,进而得出点M在以O为圆心,以2为半径的⊙O上,得出当O、M、N三点共线时,MN有最小值,由N(4,3),求出ON=5,进而求出MN=3,即线段MN的最小值为3.【解答有法】解:如图1,连接CM,OM,∵A(-2,0),C(2,0),∴AC=4,O是AC的中点,∵M是QP的中点,∴CM⊥QP,∴∠AMC=90°,∴OM=12AC=2,∴点M在以O为圆心,以2为半径的⊙O上,如图2,当O、M、N三点共线时,MN有最小值,∵N(4,3),∴ON=42+32=5,∵OM=2,∴MN=ON-OM=5-2=3,∴线段MN的最小值为3,故答案为:3.8如图,在四边形ABCD中,∠ABC=∠BAD=90°,AB=5,AD=4,AD<BC,点E在线段BC上运动,点F在线段AE上,∠ADF=∠BAE,则线段BF的最小值为 29-2.【分析有据】设AD的中点为O,以AD为直径画圆,连接OB交⊙O于F′,证得∠DFA=90°,于是得到点F在以AD为直径的半圆上运动,当点F运动到OB与⊙O是交点F′时,线段BF有最小值,据此解答即可.【解答有法】解:设AD的中点为O,以AD为直径画圆,连接OB交⊙O于F′,∵∠ABC=∠BAD=90°,∴AD∥BC,∴∠DAE=∠AEB,∵∠ADF=∠BAE,∴∠DFA=∠ABE=90°,∴点F在以AD为直径的半圆上运动,当点F运动到OB与⊙O是交点F′时,线段BF有最小值,∵AD=4,∴AO=OF′=1AD=2,2∴BO=52+22=29,∴线段BF的最小值为29-2,故答案为:29-2.9如图正方形ABCD的边长是8,点E是BC边的中点,连接DE,点F是线段DE上的一个动点,连接BF,点G是线段BF的中点,则线段AG的最小值为42 .【分析有据】取BD中点H和BE中点I,则点G的动轨迹是线段HI,确定出点G和点H重合时,线段值AG最小,据此解答即可.【解答有法】解:取BD中点H和BE中点I,则点G的动轨迹是线段HI,如图,∴当点G和点H重合时,线段值AG最小,∴BD=AB2+AD2=82+82=82,AG是直角△ABD的中线,BD=42.∴AG=12故答案为:42.10如图,在矩形ABCD中,已知AB=3,BC=4,点P是BC边上一动点(点P不与点B,C重合),连接AP,作点B关于直线AP的对称点M,连接CM,则CM的最小值为2.【分析有据】当A,M,C三点共线时,线段CM的长度最小,求出此时CM的长度即可.【解答有法】解:连接AM,∵点B和M关于AP对称,∴AB=AM=3,∴M在以A圆心,3为半径的圆上,∴当A,M,C三点共线时,CM最短,∵AC=32+42=5,AM=AB=3,∴CM=5-3=2,故答案为:2.11如图,点G是△ABC内的一点,且∠BGC=120°,△BCF是等边三角形.若BC=3,则FG的最大值为23 .【分析有据】如图,作△BFC的外接圆⊙O,连接OG,OF,OC,过点O作OH⊥CF于点H.说明B,F,C,G四点共圆,求出OF,可得结论.【解答有法】解:如图,作△BFC的外接圆⊙O,连接OG,OF,OC,过点O作OH⊥CF于点H.∵△BCF是等边三角形,∴∠BFC=∠FBC=60°,CB=CF=3,∵∠BGC=120°,∴点G在△ABC的外接圆上,∴OG=OF=OC,∵OH⊥CF,∴FH=CH=32,∵∠FOC=2∠FBC=120°,∴∠OFC=∠OCF=30°,=3,∵FG≤OF+OG=23,∴OF=FHcos30°∴FG的最大值为23.12在△ABC中,∠ABC=90°,AB=2,BC=3.点D为平面上一个动点,∠ADB=45°,则线段CD长度的最小值为 5-2.【分析有据】根据∠ADB=45°,AB=2,作△ABD的外接圆O,连接OC,当O、D、C三点共线时,CD的值最小.将问题转化为点圆最值.可证得△AOB 为等腰直角三角形,OB =OA =2,同样可证△OBE 也为等腰直角三角形,OE =BE =1,由勾股定理可求得OC 的长为5,最后CD 最小值为OC -OD =5-2.【解答有法】解:如图所示.∵∠ADB =45°,AB =2,作△ABD 的外接圆O (因求CD 最小值,故圆心O 在AB 的右侧),连接OC ,当O 、D 、C 三点共线时,CD 的值最小.∵∠ADB =45°,∴∠AOB =90°,∴△AOB 为等腰直角三角形,∴AO =BO =sin45°×AB =2.∵∠OBA =45°,∠ABC =90°,∴∠OBE =45°,作OE ⊥BC 于点E ,∴△OBE 为等腰直角三角形.∴OE =BE =sin45°•OB =1,∴CE =BC -BE =3-1=2,在Rt △OEC 中,OC =OE 2+CE 2=1+4=5.当O 、D 、C 三点共线时,CD 最小为CD =OC -OD =5-2.故答案为:5-2.13如图,点P (3,4),⊙P 半径为2,A (2.8,0),B (5.6,0),点M 是⊙P 上的动点,点C 是MB 的中点,则AC 的最小值是()A.1.4B.52C.32D.2.6【分析有据】如图,连接OP 交⊙P 于M ′,连接OM .因为OA =AB ,CM =CB ,所以AC =12OM ,所以当OM 最小时,AC 最小,M 运动到M ′时,OM 最小,由此即可解决问题.【解答有法】解:如图,连接OP 交⊙P 于M ′,连接OM ,由勾股定理得:OP =32+42=5,∵OA=AB,CM=CB,∴AC=12OM,∴当OM最小时,AC最小,∴当M运动到M′时,OM最小,此时AC的最小值=12OM′=12(OP-PM′)=12×(5-2)=32,故选:C.14如图,已知△ABC中,AB=AC,∠BAC=90°,点D是△ABC所在平面内一点,连接AD,BD,CD.(1)如图1,点D在BC上,AD=10,且tan∠CAD=13,求△ABD的面积;(2)如图2,点D为△ABC内部一动点,将线段BD绕点B逆时针旋转90°得到线段BF,连接CF,点G是线段CD的中点,连接AG,猜想线段AG,CF之间存在的位置关系和数量关系,并证明你的猜想;(3)如图3,点C关于直线AB的对称点为点C′.连接AC',BC',点D为△ABC′内部一动点,连接C'D.若∠BDC=90°,且BC=8,当线段C'D最短时,直接写出△ACD的面积.【分析有据】(1)过点D作DH⊥AC于点H.设DH=HC=m,利用勾股定理构建方程求出m,可得结论;(2)猜想:AG=12CF,AG⊥CF.延长CA到T,使得AT=AC,连接BT,TD,延长TD交CF于点K,交BC于点O.证明△TBD≌△CBF(SAS),推出DT=CF,∠BTD=∠BCF,可得结论;(3)取BC的中点J,连接C′J,DJ.求出JC′,DJ,推出当C′,D,J共线时,DC′的值最小,最小值为45 -4,由此可得结论.【解答有法】解:(1)过点D作DH⊥AC于点H.∵AB=AC,∠BAC=90°,∴∠C=45°,∵DH⊥AC,∴∠HDC=∠C=45°,∴DH=CH,设DH=DC=m,.∵tan∠DAC=DHAH =13,∴AH=3m,∵AD2=DH2+AH2,∴10=m2+(3m)2,∴m=1(负根已经舍弃),∴DH=CH=1,AH=3,∴AB=AC=4,∴S△ABD=S△ABC-S△ADC=12×4×4-12×4×1=6;(2)猜想:AG=12CF,AG⊥CF.理由:延长CA到T,使得AT=AC,连接BT,TD,延长TD交CF于点K,交BC于点O.∵AT=AC,BA⊥CT,∴BT=BC,∴∠BTC=∠BCA=45°,∴∠TBC=90°=∠DBF,∴∠TBD=∠CBF,∵BT=BC,BD=BF,∴△TBD≌△CBF(SAS),∴DT=CF,∠BTD=∠BCF,∵∠BOT=∠KOC,∴∠TBD=∠OKC=90°,∴TD⊥CF,∵AT=TC,GD=GC,∴AG=12DT=12CF,AG∥DT,∴AG⊥CF;(3)取BC的中点J,连接C′J,DJ.∵C,C′关于AB对称,∴BC=BC′=8,∠ABC=∠ABC′=45°,∴∠CBC′=90°,∵BJ=CJ=4,∴C′J=BJ2+C′B2=42+82=45,∵∠BDC=90°,BJ=JC,∴DJ=12BC=4,∵DC′≥JC′-DJ=45-4,∴当C′,D,J共线时,DC′的值最小,最小值为45-4.此时△ADC的面积=12S△DC′C=12S△DBC′=12×12×8×4×45-445=40-855.15阅读理解:(1)【学习心得】学习完“圆”这一章内容后,有一些几何问题,如果添加辅助圆,可以使问题变得容易.我们把这个过程称为“化隐圆为显圆”.这类题目主要是两种类型.①类型一,“定点+定长”:如图1,在△ABC中,AB=AC,∠BAC=52°,D是△ABC外一点,且AD= AC,求∠BDC的度数.解:由于AB=AC=AD,根据圆的定义可知,点B、C、D一定在以点A(定点)为圆心,AB(定长)为半径的⊙A上,则∠BAC是BC所对的圆心角,而∠BDC是BC所对的圆周角,从而可容易得到∠BDC= 26 .②类型二,“定角+定弦”:如图2,Rt△ABC中,AB⊥BC,AB=12,BC=8,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,求线段CP长的最小值.解:∵∠ABC=90°,∴∠ABP+∠PBC=90°.∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°.∴∠APB=90°.(定角)∴点P在以AB(定弦)为直径的⊙O上.又∵点P在△ABC内部,∴点P在弧BM上(不包括点B、点M),(如图5)请完成后面的过程.(2)【问题解决】如图3,在矩形ABCD中,已知AB=3,BC=4,点P是BC边上一动点(点P不与B,C重合),连接AP,作点B关于直线AP的对称点M,则线段MC的最小值为 2 .(3)【问题拓展】如图4,在正方形ABCD中,AD=6,动点E,F分别在边DC,CB上移动,且满足DE=CF.连接AE和DF,交于点P.点E从点D开始运动到点C时,点P也随之运动,点P的运动路径长为 3π .2【分析有据】(1)①以点A(定点)为圆心,AB(定长)为半径作辅助圆⊙A,得出∠BAC是⊙A的圆心角,而∠BDC是圆周角,即可求出答案;②先判断出∠ABP+∠PBC=90°,进而判断出∠APB=90°,进而判断出点P在OC上,即可求出答案;(2)当A,M,C三点共线时,线段CM的长度最小,求出此时CM的长度即可;(3)由“SAS”可证△ADE≌△DCF,可得AE=DF,∠DAE=∠FDC,由余角的性质可证AE⊥DF;由题意可得点P的运动路径是以AD为直径的圆的DPO,由弧长公式可求解.【解答有法】解:(1)①∵AB=AC,AD=AC,∴AB=AC=AD,∴点B,点C,点D在以点A为圆心,AB为半径的圆上,如图1,∵∠BAC=52°,∠BAC=26°,∴∠BDC=12故答案为:26°;②∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB(定弦)为直径的⊙O上,如图2,连接OC交⊙O于点P,此时PC最小,∵点O是AB的中点,∴OA =OB =12AB =6,在Rt △ABC 中,∠OBC =90°,BC =8,OB =6,∴OC =BC 2+OB 2=10,∴PC =OC -OP =10-6=4.∴PC 最小值为4;(2)如图3,连接AC ,AM ,∵点B ,点M 关于直线AP 对称,∴AB =AM =6,∴点M 在以点A 为圆心,AB 为半径的圆上运动,∴当点M 在线段AC 上时,MC 有最小值,∵AB =3,BC =4,∴AC =AB 2+BC 2=32+42=5,∴CM 的最小值为CM =AC -AM =5-3=2,故答案为:2.(3)∵四边形ABCD 是正方形,∴AD =DC ,∠ADE =∠DCF =90°,在△ADE 和△DCF 中,AD =DC∠ADE =∠DCF DE =CF,∴△ADE ≌△DCF (SAS ),∴AE =DF ,∠DAE =∠FDC ,∵∠ADE =90°,∴∠ADP +∠DCF =90°,∴∠ADP +∠DAE =90°,∴∠APD =180°-90°=90°,∴AE ⊥DF ;如图4,连接AC ,BD 交于点O ,∵点P在运动中保持∠APD=90°,∴点P的运动路径是以AD为直径的圆的DPO,∴点P的运动路径长为90π×3180=3π2.故答案为:32π.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最值系列之瓜豆定比圆原理
【瓜豆圆介绍】
如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点。

当点P在圆O上运动时,Q点轨迹是?
思路提示:
总结
【例题精讲】
例1、如图,在Rt△ABC中,∠ACB=90∘,AC=4,BC=3,点D是平面内的一个动点,且AD=2,M为BD的中点,在D点运动过程中,线段CM长度的取值范围是。

解析提示:
总结
解析提示:
总结
例3、如图,点P (3,4),圆P 半径为2,A (2.8,0),B (5.6,0),点M 是圆P 上的动点,点C 是MB 的中点,则AC 的最小值是 。

解析提示:
总结
例4
、如图,在等腰Rt △ABC 中,AC=BC=P 在以斜边AB 为直径的半圆上,M 为PC 的中点,当半圆从点A 运动至点B 时,点M 运动的路径长为 。

解析提示:
总结 例5、如图,正方形ABCD ,将正方形AEFG 绕点A 旋转,连接DF ,点M 是DF 的中点,连接CM ,若AB =4,AE =1,则线段CM 的最大值为 。

解析提示:
总结 O y
x
A B C
M
P A
B
C M
P
针对训练
1、如图,⊙O的直径AB长为12,点E是半径OA的中点,过点E作CD⊥AB交⊙O于点C,D,点P在上运动,点Q在线段CP上,且PQ=2CQ,则EQ的最大值是。

2、如图,在Rt△ABC中,∠ACB = 90°,D是AC的中点,M是BD的中点,将线段AD绕A点任意旋转(旋转过程中始终保持点M是BD的中点),若AC = 4,BC = 3,那么在旋转过程中,线段CM长度的取值范围
3、如图,△ABC是边长为2的等边三角形,以AC为直径作半圆,P为半圆上任意一点,M为BP中点,则在点P由A到C运动过程中,点M运动路径长为。

4、如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值为。

5、如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C 为弦AB的中点,直线y=x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为。

6、如图,在等腰直角△ABC中,斜边AB的长度为8,以AC为直径作圆,点P为半圆上的动点,连接BP,取BP的中点M,则CM的最小值为。

7、如图,在平面直角坐标系中,C(0,4),A(3,0),⊙A半径为2,P为⊙A上任意一点,E是PC的中点,则OE的最小值是。

8、如图,直线y=﹣x+3与坐标轴交于A,B两点,点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则线段OM的最小值是。

相关文档
最新文档