变频器维修检测常用方法及故障总结

变频器维修检测常用方法及故障总结
变频器维修检测常用方法及故障总结

常见方法

变频器维修检测常用方法

一)静态测试

1、测试整流电路

找到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑表棒分别依到R、S、T,正常时有几十欧的阻值,且基本平衡。相反将黑表棒接到P端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。将红表棒接到N端,重复以上步骤,都应得到相同结果。如果有以下结果,可以判定电路已出现异常,A.阻值三相不平衡,说明整流桥有故障。B.红表棒接P 端时,电阻无穷大,可以断定整流桥故障或启动电阻出现故障。

2、测试逆变电路

将红表棒接到P端,黑表棒分别接U、V、W上,应该有几十欧的阻值,且各相阻值基本相同,反相应该为无穷大。将黑表棒N端,重复以上步骤应得到相同结果,否则可确定逆变模块有故障。

二)动态测试

在表态测试结果正常以后,才可进行动态测试,即上电试机。在上电前后必须注意以下几点:

1、上电之前,须确认输入电压是否有误,将380V电源接入220V级变频器之中会出现炸机(炸电容、压敏电阻、模块等)。

2、检查变频器各接播口是否已正确连接,连接是否有松动,连接异常有时可能会导致变频器出现故障,严重时会出炸机等情况。

3、上电后检测故障显示内容,并初步断定故障及原因。

4、如未显示故障,首先检查参数是否有异常,并将参数复归后,在空载(不接电机)情况下启动变频器,并测试U、V、W三相输出电压值。如出现缺相、三相不平衡等情况,则模块或驱动板等有故障。

5、在输出电压正常(无缺相、三相平衡)的情况下,负载测试,尽量是满负载测试。

三)故障判断

1、整流模块损坏

通常是由于电网电压或内部短路引起。在排除内部短路情况下,更换整流桥。在现场处理故障时,应重点检查用户电网情况,如电网电压,有无电焊机等对电网有污染的设备等。

2、逆变模块损坏

通常是由于电机或电缆损坏及驱动电路故障引起。在修复驱动电路之后,测驱动波形良好状态下,更换模块。在现场服务中更换驱动板之后,须注意检查马达及连接电缆。在确定无任何故障下,才能运行变频器。

3、上电无显示

通常是由于开关电源损坏或软充电电路损坏使直流电路无直流电引起,如启动电阻损坏,操作面板损坏同样会产生这种状况。

4、显示过电压或欠电压

通常由于输入缺相,电路老化及电路板受潮引起。解决方法是找出其电压检测电路及检测点,更换损坏的器件。

5、显示过电流或接地短路

通常是由于电流检测电路损坏。如霍尔元件、运放电路等。

6、电源与驱动板启动显示过电流

通常是由于驱动电路或逆变模块损坏引起。

7、空载输出电压正常,带载后显示过载或过电流

通常是由于参数设置不当或驱动电路老化,模块损坏引起。以下检测过程无需打开变频器机壳,仅仅在外部对一些常见现象进行检测和判断。

1. 整流器

???它与单相或三相交流电源相连接,产生脉动的直流电压。

艾默生变频器常见故障及维修

艾默生CT变频器常见故障代码及维修方法 1、电流检测故障(如报E019,E001): (1)控制板Q1(15050026)坏。 (2)7840坏:在变频器通电时,用直流档,黑接5脚,红分别接6,7,8脚,值为2.5,2.5,5为正常,否则7840坏。 (3)小板坏:在变频器通电时,用直流档,黑接7840的5脚,红分别接小板的脚从左到右应为2.5,2.5,2.5,3.41.5,0,1.6。 如值不对,小板坏:此时可更换小板坏中的三个小IC(39030024LMV393),如还不好,更换小板。 2、显示POFF: 驱动板上电POFF,测CVD电压正常应为2.6-2.7,如测得1.9,可能R51,R52,C36,C37,排线中的某一个坏,其中的电解电容坏的最多。只在带电机运行时报POFF,驱动板变压器也有可能坏。 3、缓冲电阻坏: 缓冲电阻和滤波大电容是成对的。如果其一坏,另一个很可能也坏。缓冲电阻坏也有可能是继电器不吸合(继电器坏或控制板坏,或与二者相连的电路上元件坏)引起。单相输入(220V)的变频器,特别要注意:如果无显示或炸机,很可能是用户接入了三相电(380V)引起的(可察控制板的故障记录:母线电压是否由310变为了540)。此时不断IPM的整流桥已坏,滤波大电容也坏(或炸裂或顶面凸起变硬)。如果只更换IPM后就上电,会听到“啪,啪”的响声(电容内的声音),应立即掉电,否则IPM的整流桥又会坏。发现一个大电容坏,最好都换新的。因电容是易坏易老化的器件。 4、显示不稳: 先有显示,然后没有,风扇停下,电压只有12,此种现象一般是U1厚膜坏。报故障E015:通电指示灯亮,键盘不亮,拨了风扇就好--风扇短路。 5、不制动: 01180099,01180100,01180113,01180114的制动管不在IPM内部,变频器炸机和不显示很可能就是在变频器停机制动时引起的,所以更换IPM后,一定要检测制动电路的好坏:制动光耦,制动管(MOS管不好测,可测其串联的续流二极管,正常应为0.37左右),门极电阻(也就是MOS管的门极电阻,正常应为100欧姆)。修好上电后,TD900F093改为150,报E007,红接P(+),黑接PB,如电压在17-30跳动,制动正常。TD3200F133=150直流电压270-350V制动起作用。 6、炸整流桥:

高压变频器的工作原理和常见故障分析 贾瑟

高压变频器的工作原理和常见故障分析贾瑟 摘要:随着现代科学技术的迅速发展,大量的发电企业正在使用着高压变频器。高压变频器在使用过程中具有显著的节能效果,但也存在一定的潜在安全隐患, 可能会对发电企业的生产活动造成严重影响。基于此,本文先对高压变频器工作 原理进行具体的分析,然后对高压变频器在运行中常见的故障及原因进深入的探讨,以供相关的工作人员参考,希望能给我国发电企业的发展带来一定的贡献。 关键词:高压变频器;工作原理;常见故障;分析 采用交流变频器调速技术对交流电机进行调速,具有节电效果好、调速方便、保护功能完善、组态灵活、可靠性强等很多优点。由于交流变频调速技术的众多 优越性,在发电领域也得到了非常广泛的应用,对电厂内的风机、水泵等大功率 耗能设备实现高压变频器调速改造,已成为公认的节能方案。随着变频器应用范 围的扩大,检修维护工作中遇到的问题也越来越多。因此,本文对此进行分析。 1高压变频器工作原理 高压变频器一般采用目前国际流行的功率单元串联多电平技术,系统为高-高 结构。高压电直接输入变频器,经过变频器内部功率系统整流、逆变后,变频器 直接高压输出至电机,不需要升压变压器等部件。每个功率单元都是一台三相输入、单相输出的脉宽调制型低压变频器,技术可靠,结构和性能完全一致,极大 的提高了高压变频器的可靠性与维护性;采用叠波技术,最大限度的消除了高压 变频器输出电压中的谐波含量,电压波形接近于标准的正弦波,大大改善了变频 器的输出性能,是真正的“无谐波”高压变频器。 变频器一般由以下几个部分组成:制动单元、微处理单元、滤波、整流、逆变、检测单元以及驱动单元等等。它能够按照电动机的具体需求为其提供所需的 电源电压,从而实现调速和节能。此外,大部分变频器都具备多种保护功能,如 过载保护、过电压保护以及过电流保护等。 对于不同电压等级的高压变频系统,一般采用每相5~8个功率单元串联方案。通过主电路图,可以更加直观的了解变压器的副边绕组与功率单元以及各功率单 元之间的电路连接方式:具有相同标号的3组副边绕组,分别向同一功率柜(同 一级)内的三个功率单元供电。第一级内每个功率单元的一个输出端连接在一起 形成星型连接点,另一个输出端则与下一级功率单元的输出端相连,依此方式, 将同一相的所有功率单元串联在一起,便形成了一个星型连接的三相高压电源, 驱动电动机运行。当电网电压为6kV时,变压器的副边输出电压即功率单元的输 入电压为690V,每个功率单元的最高输出电压也为690V,同一相的五个单元串 联后,相电压为690V×5=3450V,由于三相连接成星型,那么线电压便等于 1.732×3450V≈6000V,达到电网电压的水平。功率单元串联后得到的是阶梯正弦 的PWM波形,PWM控制,脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要形状和幅值的波形,这种波形正弦度好,du/dt小,可 减少对电机和电缆的绝缘损坏,无需输出滤波器就可以使输出电缆长度很长,电 动机也不需要降额使用,可直接用于旧设备的改造;同时,电机的谐波损耗也大 大减少,消除了由此引起的机械振动,减小了轴承和传动部分的机械应力。 通过本相上的5(8)个功率单元输出的SPWM波相叠加后,可得到正弦波形。这种波形正弦度好,dv/dt小,即使在低速下也能保持很好的波形。电机的谐波

变频器常见故障

变频器的常见故障分析 1 引言 在现代工业中,采用变频器控制的电动机系统,有着节能效 果显著、调节控制方便、维护简单、可网络化集中、远程控制、可 与PLC组成自动控制系统等优点。变频器的这些特质使其在电力电 子系统、工业自动控制等领域的应用日益广泛。市场上不同型号规 格变频器的安装、接线、调试各有特点,但主要方法及注意事项基 本一致。本文阐述了变频器的常见故障,并对其进行分析。 2 变频器常见故障分析 2.1 维修的原则:先静后动 静是指不通电状态,动是指通电后的工作状态。检修开始时,要先静下来,不要盲目动手,应多问。例如: 问清是否违反操作规程、出现故障时的现象、是否更改过内部参数等,根据情况对故障 作客观的、大致的分析,再根据变频器显示的故障提示,判断故障 部位。检修时,应先仔细阅读变频器说明书,了解其检修注意事 项。 不要贸然通电,通过眼观、手摸、鼻嗅等先做必要的安全检查,以 免引发新的故障。 (1)检查快熔FU是否烧断; (2)检查线路板上元件引线间有无碰锡、碰线或细金属落在二线 间; (3)检查电容器、整流桥、逆变桥、集成电路等元件有无明显烧坏 的痕迹; (4)检查线路板上是否有水滴(尤其在潮湿环境中使用的变频 器); (5)检查线路板上是否有灰尘。 通过以上检查,可发现变频器是否有短路故障点及元件的炭化熏黑 部位。 2.2 参数设定不当时易碰到的问题 (1)变频器在电机空载时工作正常,但不能带负载启动 这种问题常常出现在恒转矩负载。遇到此类问题时应重点检 查加、减速时间设定或提升转矩设定值。 (2)变频器开始运行,但电机还未启动就过载跳停 如冶金厂一台725kW-6电机,投入运行时,跳停频繁。经检查,偏置频率原设定为3Hz,变频器在到运行指令但未给出调频信 号之前,电机将一直接收3Hz的低频运行指令而无法启动。经测定 该电机的堵转电流达到50A,约为电机额定电流的3倍;变频器过

变频器线路板常见维修方法

变频器线路板常见维修方法 往往变频器的故障只有一点,而对于维修者最重要的就是找到故障点,有针对性地处理问题,尽量减少无用的拆卸,尤其是要尽量减少使用烙铁的次数。除了经验,掌握正确的检查方法是非常必要的。正确的方法可以帮助维修者由表及里,由繁到简,快速的缩小检测范围,最终查出故障并适当处理而修复。 首先谈谈故障的检查方法 报警参数检查法: 所有的变频器都以不同的方式给出故障指示,对于维修者来说是非常重要的信息。通常情况下,变频器会针对电压、电流、温度、通讯等故障给出相应的报错信息,而且大部分采用微处理器或DSP处理器的变频器会有专门的参数保存3次以上的报警记录。 (例1)某变频器有故障,无法运行并且LED显示“UV”(under voltage的缩写),说明书中该报警为直流母线欠压。因为该型号变频器的控制回路电源不是从直流母线取的,而是从交流输入端通过变压器单独整流出的控制电源。所以判断该报警应该是真实的。所以从电源入手检查,输入电源电压正确,滤波电容电压为0伏。由于充电电阻的短路接触器没动作,所以与整流桥无关。故障范围缩小到充电电阻,断电后用万用表检测发现是充电电阻断了。更换电阻马上就修好了。 (例2)有一台三垦IF 11Kw的变频器用了3年多后,偶尔上电时显示“AL5”(alarm 5 的缩写),说明书中说CPU被干扰。经过多次观察发现是在充电电阻短路接触器动作时出现的。怀疑是接触器造成的干扰,在控制脚加上阻容滤波后果然故障不再发生了。 (例3)一台富士E9系列3.7千瓦变频器,在现场运行中突然出现OC3(恒速中过流)报警停机,断电后重新上电运行出现OC1(加速中过流)报警停机。我先拆掉U、V、W到电机的导线,用万用表测量U、V、W之间电阻无穷大,空载运行,变频器没有报警,输出电压正常。可以初步断定变频器没有问题。原来是电机电缆的中部有个接头,用木版盖在地坑的分线槽中,绝缘胶布老化,工厂打扫卫生进水,造成输出短路。 (例4)三肯SVF303,显示“5”,说明书中“5”表示直流过压。电压值是由直流母线取样后(530V左右的直流)通过分压后再由光耦进行隔离,当电压超过一定阀值时,光耦动作,给处理器一个高电平。过压报警,我们可以看一下电阻是否变值,光耦是否有短路现象等。 由以上的事例当中不难看出,变频器的报警提示对处理问题有多么重要,提示你正确的处理问题的方向。 类比检查法:

变频器参数基本设置

变频器参数基本设置 变频器应用领域涉及到钢铁行业,化工行业,汽车行业,机床行业,电机机械行业,食品行业,造纸行业,水泥行业,矿业行业,石油行业,工厂建筑等,它促进企业实现了自动化,节约了能源,提高了产品质量和合格率以及生产率,延长了设备使用寿命。通过变频器的功能参数的设置调试,就可以实现相应的功能,一般都有数十甚至上百个参数供用户选择,在实际应用中,没必要对每一参数都进行设置和调试,多数只要采用出厂设定值即可。但有些参数由于和实际使用情况有很大关系,且有的还相互关联,因此要根据实际进行参数的设定和调试。变频器调试的好坏决定了变频器运行的稳定性、应用效果以及使用寿命等,最终关系到企业经济效益的大小,调好了可能大大节约费用,调不好可能损失惨重。以下是作者在普传变频器使用中的经验总结,希望能供其他用户参考,使变频器能更好地推广使用,为企业带来更大的经济效益。 1 变频器调试的步骤 变频器能否成功地应用到各种负载中,且长期稳定地运行,现场调试很关键,必须按照下述相应的步骤进行。 1.1 变频器的空载通电检验 1)将变频器的电源输入端子经过漏电保护开关接到电源上。 2)将变频器的接地端子接地。 3)确认变频器铭牌上的电压、频率等级与电网的是否相吻合,无误后送电。 4)主接触器吸合,风扇运转,用万用表AC 挡测试输入电源电压是否在标准规范内。5)熟悉变频器的操作键盘键, 以普传科技变频器为例: FWD为正向运行键,令驱动器正向运行; REV为反向运行键,令驱动器反向运行; ESC/DISPL为退出/显示键,退出功能项的数据更改,故障状态退出,退出子菜单或由

功能项菜单进入状态显示菜单; STOP/RESET 为停止复位键,令驱动器停止运行,异常复位,故障确认; PRG为参数设定/移位键; SET 为参数设定键,数值修改完毕保存,监视状态下改变监视对象; ▲▼为参数变更/加减键,设定值及参数变更使用,监视状态下改变给定频率; JOG为寸动运行键,按下寸动运行,松开停止运行,不同变频器操作键的定义基本相同。6)变频器运行到50 Hz,测试变频器U V W三相输出电压是否平衡。 7)断电完全没显示后,接上电机线。 1.2 变频器带电机空载运行 1)设置电机的基本额定参数,要综合考虑变频器的工作电流。 2)设定变频器的最大输出频率、基频、设置转矩特性。v/f类型的选择包括最高频率、基本频率和转矩类型等项目。最高频率是变频器—电动机系统可以运行的最高频率,由于变频器自身的最高频率可能较高,当电动机容许的最高频率低于变频器的最高频率时,应按电动机及其负载的要求进行设定。基本频率是变频器对电动机进行恒功率控制和恒转矩控制的分界线,应按电动机的额定电压进行设定。转矩类型指负载是恒转矩负载还是变转矩负载。用户根据变频器使用说明书中的v/f类型图和负载特点,选择其中的一种类型。通用变频器均备有多条v/f曲线供用户选择,用户在使用时应根据负载的性质选择合适的v/f 曲线。为了改善变频器启动时的低速性能,使电机输出的转矩能满足生产负载启动的要求,要调整启动转矩。在异步电机变频调速系统中,转矩的控制较复杂。在低频段,由于电阻、漏电抗的影响不容忽略,若仍保持v/f为常数,则磁通将减小,进而减小了电机的输出转矩。为此,在低频段要对电压进行适当补偿以提升转矩。一般变频器均由用户进行人工设定补偿。普传变频器则为用户提供两种选择,即42种v/f提升方式,自动转矩提升。

英威腾变频器维修中遇到的故障代码及解决方法

英威腾变频器维修中遇到的故障代码及解决方法 内容来源网络,由深圳机械展收集整理! 更多变频器及自动化技术,就在深圳机械展-自动化展区! 1、逆变单元故障(OUT) 此故障包括OUT1、OUT2、OUT3,它们分别代表逆变单元U相、V相、W相故障。此故障一般只出现在驱动光耦使用PC929的机器中,代表驱动板有1270系列、1290AV03、1250AVS系列、1258AVS系列等。 【检修思路】OUT故障一般分有上电跳OUT;运行跳OUT;带载加载跳OUT。此原因一般都是因为检测电路检测到逆变管VCE电压异常输出告警信号,当控制板检测到此信号后马上停止驱动输出并显示出故障代码。当然不排除因保护电路本身异常导致的误保护。值得注意的是在某些情况下会因为开关电源输出不稳定影响驱动电路供电导致机器无规律跳OUT故障,如因散热风扇启动电流过大,每次运行风扇启动瞬间即跳OUT。检修时需注意区分。 (1)对于上电跳OUT故障:此问题一般都是因为保护电路本身不良或者驱动部分,模块门极有明显的短路、断路情况。可以通过屏蔽相应相OUT保护信号判断。如果屏蔽后其它一切正常,则说明问题是因保护电路本身不良引起。屏蔽后运行,如果有三相不平衡,则说明驱动电路或者模块有问题。 (2)对于运行跳OUT故障:此问题一般都是驱动电路和模块本身不良引起。首先可以用万用表电阻档测试驱动电路相关部位及模块门极有无明显短路、断路现象。屏蔽相关相OUT 保护信号运行,测试驱动波形是否正常(无示波器时可使用万用表交流电压档对比测试各路驱动波形)。重点关注波形的形状、幅度、死区时间等,最后检测IGBT是否损坏。对比其它相测试驱动门极结电容是否正常(万用表电容档)。 (3)对于带载加载跳OUT故障:此情况相对前两种来说检修难度稍大。首先,检测保护电路本身是否有元件性能不良。正确检测前提下,对怀疑有问题的二极管、贴片电容采取替换法代换之(注意判断控制板上OUT信号检测电路是否正常,可用替换法)。第二,对比检测驱动电路驱动光耦供电是否正常,门极驱动电阻是否变值。第三,不加载测试驱动波形是否正常。最后仔细判断,测试IGBT本身是否有问题。

(推荐)变频器常用10个参数--变频器参数设置(精)

关键词:变频器参数设置,电机,节能控制 变频器的设定参数较多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象,因此,需要对相关的参数进行正确的设定。 1.控制方式: 即速度控制、转距控制、PID 控制或其他方式。采取控制方式后,一般要根据控制精度进行静态或动态辨识。 2.MIN运行频率: 即电机运行的MIN转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。而且低速时,其电缆中的电流也会增大,也会导致电缆发热。 3.MAX运行频率: 一般的变频器MAX频率到60Hz ,有的甚至到400 Hz ,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。 4.载波频率: 载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。 5.电机参数: 变频器在参数中设定电机的功率、电流、电压、转速、MAX频率,这些参数可以从电机铭牌中直接得到。 6.跳频:

在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要避免压缩机的喘振点。 7.加减速时间 加速时间就是输出频率从0 上升到MAX频率所需时间,减速时间是指从MAX频率下降到0 所需时间。通常用频率设定信号上升、下降来确定加减速时间。在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降率以防止过电压。 加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出更佳加减速时间。 8.转矩提升 又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围f/V 增大的方法。设定为自动时,可使加速时的电压自动提升以补偿起动转矩,使电动机加速顺利进行。如采用手动补偿时,根据负载特性,尤其是负载的起动特性,通过试验可选出较佳曲线。对于变转矩负载,如选择不当会出现低速时的输出电压过高,而浪费电能的现象,甚至还会出现电动机带负载起动时电流大,而转速上不去的现象。 9.电子热过载保护 本功能为保护电动机过热而设置,它是变频器内CPU 根据运转电流值和频率计算出电动机的温升,从而进行过热保护。本功能只适用于“一拖一”场合,而在“一拖多”时,则应在各台电动机上加装热继电器。

西门子440变频器常见故障

一般来说,当你拿到一台有故障的变频器,再上电之前首先要用万用表检查一下整流桥和IGBT模块有没有烧,线路板上有没有明显烧损的痕迹。 具体方法是:用万用表(最好是用模拟表)的电阻1K档,黑表棒接变频器的直流端(-)极,用红表棒分别测量变频器的三相输入端和三相输出端的电阻,其阻值应该在5K-10K之间,三相阻值要一样,输出端的阻值比输入端略小一些,并且没有充放电现象。然后,反过来将红表棒接变频器的直流端(+)极,黑表棒分别测量变频器三相输入端和三相输出端的电阻,其阻值应该在5K-10K之间,三相阻值要一样,输出端的阻值比输入端略小一些,并且没有充放电现象。否则,说明模块损坏。这时候不能盲目上电,特别是整流桥损坏或线路板上有明显的烧损痕迹的情况下尤其禁止上电,以免造成更大的损失。 如果以上测量结果表明模块基本没问题,可以上电观察。 1)上电后面板显示[F231]或[F002](MM3变频器),这种故障一般有两种可能。常见的是由于电源驱动板有问题,也有少部分是因为主控板造成的,可以先换一块主控板试一试,否则问题肯定在电源驱动板部分了。 2)上电后面板无显示(MM4变频器),面板下的指示灯[绿灯不亮,黄灯快闪],这种现象说明整流和开关电源工作基本正常,问题出在开关电源的某一路不正常(整流二极管击穿或开路,可以用万用表测量开关电源的几路整流二极管,很容易发现问题。 换一个相应的整流二极管问题就解决了。这种问题一般是二极管的耐压偏低,电源脉动冲击造成的。 3)有时显示[F0022,F0001,A0501]不定(MM4),敲击机壳或动一动面板和主板时而能正常,一般属于接插件的问题,检查一下各部位接插件。也发现有个别机器是因为线路板上的阻容元件质量问题或焊接不良所致。 4)上电后显示[-----](MM4),一般是主控板问题。多数情况下换一块主控板问题就解决了,一般是因为外围控制线路有强电干扰造成主控板某些元件(如帖片电容、电阻等)损坏所至,我分析与主控板散热不好也有一定的关系。 但也有个别问题出在电源板上。 例如:重庆某水泥厂回转窑驱动用的一台MM440-200kW变频器,由于负载惯量较大,启动转距大,设备启动时频率只能上升到5Hz左右就再也上不去,并且报警[F0001]。客户要求到现场服务,我当时考虑认为:作为变频器本身是没有问题的,问题是客户参数设置不当,用矢量控制方式,再正确设定电机的参数/模型就可以解决问题。又过了两天客户来电告诉我变频器已经坏了,故障现象是上电显示[-----]。经现场检查分析,这种故障是因为主控板出问题造成的,因为用户在安装的过程中没有严格遵循EMC规范,强弱电没有分开布线、接地不良并且没有使用屏蔽线,致使主控板的I/O口被烧毁。后来,我申请了维修服务,SFAE 的工程师去现场维修,更换了一块主控板问题解决了。 5)上电后显示正常,一运行即显示过流。[F0001](MM4)[F002](MM3)即使空载也一样,一般这种现象说明IGBT模块损坏或驱动板有问题,需更换IGBT模块并仔细检查驱动部分后才能再次上电,不然可能因为驱动板的问题造成IGBT模块再次损坏!这种问题的出现,一般是因为变频器多次过载或电源电压波动较大(特别是偏低)使得变频器脉动电流过大主控板CPU来不及反映并采取保护措施所造成的。 还有一些特殊故障(不常见但有一些普遍意义,可以举一反三,希望达到抛砖引玉的效果),例如:

变频器的常见故障及处理方法介绍

变频器的常见故障及处理方法介绍 在变频器维修时我们需要根据变频器的故障来判断,一般发生的故障和损坏的特征一般可分为:一种是在运行中频繁出现的自动停机现象,并伴随着一定的故障显示代码,其处理措施可根据随机说明书上提供的指导方法,进行处理和解决。这类故障一般是由于变频器运行参数设定不合适,或外部工况、条件不满足变频器使用要求所产生的一种保护动作现象。另一类是由于使用环境恶劣,高温、导电粉尘引起的短路、潮湿引起的绝缘降低或击穿等突发故障(严重时,会出现打火、爆炸等异常现象)。这类故障发生后,一般会使变频器无任何显示,其处理方法是先对变频器解体检查,重点查找损坏件,根据故障发生区,进行清理、测量、更换,然后全面测试,再恢复系统,空载试运行,观察触发回路输出侧的波形,当6组波形大小、相位差相等后,再加载运行,达到解决故障的目的。 关于变频器的常见故障以及维修方法详解 1.维修变频器整流块损坏 变频器整流桥的损坏也是变频器的常见故障之一,早期生产的变频器整流块均以二极管整流为主,目前部分整流块采用晶闸管的整流方式(调压调频型变频器)。 中、大功率普通变频器整流模块一般为三相全波整流,承担着变频器所有输出电能的整流,易过热,也易击穿,其损坏后一般会出现变频器不能送电、保险熔断等现象,三相输入或输出端呈低阻值(正常时其阻值达到兆欧以上)或短路。 在更换整流块时,要求其在与散热片接触面上均匀地涂上一层传热性能良好的硅导热膏,再紧固螺丝。如果没有同型号整流块时,可用同容量的其它类型的整流块替代,其固定螺丝孔,必须重新钻孔、攻丝,再安装、接线。 2.变频器充电电阻易损坏维修 导致变频器充电电阻损坏原因一般是:如主回路接触器吸合不好时,造成通流时间过长而烧坏;或充电电流太大而烧坏电阻;或由于重载启动时,主回路通电和RUN信号同时接通,使充电电阻既要通过充电电流,同时又要通过负载逆变电流,故易被烧坏。 其损坏的特征,一般表现为烧毁、外壳变黑、炸裂等损坏痕迹。也可根据万用表测量其电阻(不同容量的机器,其阻值不同,可参考同一种机型的阻值大小确定)判断。

变频器维修检测常用方法

变频器维修检测常用方法 如果是变频器出现故障,如何去判断是哪一部分问题,在这里略作介绍。 一、静态测试 1、测试整流电路 找到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑表棒分别依到R、S、T,应该有大约几十欧的阻值,且基本平衡。相反将黑表棒接到P端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。将红表棒接到N端,重复以上步骤,都应得到相同结果。如果有以下结果,可以判定电路已出现异常,A.阻值三相不平衡,可以说明整流桥故障。B.红表棒接P端时,电阻无穷大,可以断定整流桥故障或起动电阻出现故障。 2、测试逆变电路 将红表棒接到P端黑表棒分别接U、V、W上,应该有几十欧的阻值,且各相阻值基本相同,反相应该为无穷大。将黑表棒接到N端,重复以上步骤应得到相同结果否则可确定逆变模块故障 二、动态测试 在静态测试结果正常以后,才可进行动态测试,即上电试机。在上电前后必须注意以下几点: 1、上电之前,须确认输入电压是否有误,将380V电源接入220V级变频器之中会出现炸机(炸电容、压敏电阻、模块等)。 2、检查变频器各接插口是否已正确连接,是否有镙丝松动,连接异常有时可能导致变频器出现故障,严重时会出现炸机等情况。 3、上电后检测故障显示内容并初步断定故障及原因。 4、如未显示故障首先检查参数是否有异常并将参数复归后进行空载(不接电机)情况下启动变频器并测试U、V、W三相输出电压值。如出现缺相、三相不平衡等情况则模块或驱动板等有故障 5、在输出电压正常(无缺相、三相平衡)的情况下,带载测试。测试时,最好是满负载测试。 三、故障判断 1、整流模块损坏 一般是由于电网电压或内部短路引起。在排除内部短路情况下,更换整流桥。在现场处理故障时,应重点检查用户电网情况,如电网电压,有无电焊机等对电网有污染的设备等。 2、逆变模块损坏 一般是由于电机或电缆损坏及驱动电路故障引起。在修复驱动电路之后,测驱动波形良好状态下,更换模块。在现场服务中更换驱动板之后,还必须注意检查马达及连接电缆。在确定无任何故障下,运行变频器。 3、上电无显示 一般是由于开关电源损坏或预充电电路损坏使直流电路无直流电压引起,如启动电阻损坏,也有可能是面板损坏。 4、上电后显示过电压或欠电压 一般由于输入缺相,电路老化及电路板受潮引起。找出其电压检测电路及检测点,更换损坏的器件。 5、上电后显示过电流或接地短路 一般是由于电流检测电路损坏。如霍尔元件、运放等。 6、启动显示过电流 一般是由于驱动电路或逆变模块损坏引起。 7、空载输出电压正常带载后显示过载或过电流 该种情况一般是由于参数设置不当或驱动电路老化模块损伤引起。

FRD变频器基本参数设置

导入新课: 变压器变频器的发展及应用范围 变频技术诞生背景是交流电机的广泛需求。传统的直流调速技术因体积大故障率高而应用受限。 60年代以后,电力电子器件普遍应用了及其升级产品。但其调速性能远远无法满足需要。 20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速的研究得到突破,20世纪80年代以后微处理器技术的完善使得各种优化算法得以容易的实现。 20世纪80年代中后期,美、日、德、英等发达国家的VVVF实用化,商品投入市场,得到了广泛应用。步入21世纪后,逐步崛起,现已逐渐抢占高端市场。 讲授新课: 课题一:变频器功能参数设置与操作 一、教学内容 1、变频器的概念:是一种将固定频率的交流电变换成频率、电压连续可调的交流电,以供给电动机运转的电源装置。 2、变频器分类: (1)交-交变频器 它是将频率固定的交流电源直接变换成频率连续可调的交流电源,其主要优点是没有中间环节,变换效率高。但其连续可调的频率范围较窄,故主要用于容量较大的低速拖动系统中。又称直接式变频器。 (2)交-直-交变频器

先将频率固定的交流电整流后变成直流,再经过逆变电路,把直流电逆变成频率连续可调的三相交流电,又称为间接型变频器。由于把直流电逆变成交流电较易控制,因此在频率的调节范围,以及变频后电动机特性的改善等方面,都具有明显的优势,目前使用最多的变频器均属于交-直-交变频器。 二、实训目的和要求 1.熟悉变频器主回路接线; 2.熟悉操作面板显示及各按键操作; 三、三菱FR-D700变频器主回路接线 1. FR-D700变频器主回路接线图如下图 四、变频器的操作面板及使用 1、变频器操作面板如下图

变频器常见故障分析与处理

变频器常见故障分析与处理 本系列变频器具有过流、过热、过载、欠压多种保护功能。当发生故障时,变频器就会立即报警跳开,LED监视器上显示相应的故障类型,并且电动机自动停止转动。当排除故障后,按“STOP”键或输入控制电路端子复位命令,即能解除报警跳开状态。 故障代码表: 一过压:分别为加速时过电压(E002)、定速时过电压(E003)、停止时过电压(E00A)、减速时过电压(E00B) 分析:E002、E003、E00A、E00B故障出现的直接原因就是变频器本身检测到的电压过高。

而出现E002、E003、E00A根本原因有三个:1)外部实际电网电压过高,处理方法:降低电网电压(可采用稳压电源)。2)变频器检测到的电压(U)比外部实际的高,处理方法:重新检测电压(进入内部参数b123)。3)能量反馈,电机实际转速高于变频器输出(即电机被拖动);处理方法:去除电机拖动现象或加能耗电阻。4)变频器内部电压检测电路有故障,与办事处联系维修。 出现E00B则与下列几个因素有关:减速时间、制动器(制动电阻或制动单元)、负载惯性 减速时间过短会使变频器在减速过程中产生反馈电压(减速时间越短同样的负载产生的反馈电压越大),如果没有制动器或制动器过小,那就无法消耗这部分多余的电压,当电压高到一定值时(460)就会跳E00B报警,而负载惯性越大同样的减速时间产生的反馈电压就越高。所以,应适当的加长减速时间。 二欠压:E001 出现E001故障报警的原因有: 1)外部电网电压异常(缺相、三相不平衡、电压过低); 2)有大容量负载在同一线运行,处理方法:另选电源; 3)变频器检测到的电压(U)比实际低,处理方法:重新检测电压(进入内部参数b123); 4)变频器内部故障,继电器没吸合(现象是带负载时跳)。处理方法:检查继电器接口是否接触良好;否,则为变频器内部电压检测电路故障,与办事处联系。 三过流:分别为加速时过电流(E004)、定速时过电流(E005)、减速时过电流(E006)出现这三类故障的原因有: 1)电机连接端子相间短路,处理方法:检查输出线路及负载; 2)负载突变或过重,处理方法:减小线路负载,检查变频器与电机搭配是否适当; 3)加速时间过短,处理方法:加长加速时间;

丹佛斯变频器的常见故障及维修对策

丹佛斯变频器的常见故障及维修对策 丹佛斯变频器的常见故障及维修对策 唐山三友集团兴达化纤股份有限公司张志远 摘要主要阐述我公司生产线中的丹佛斯变频器常见故障与处理方法, 并协住车间提出合理的解决方案,减少此类故障的发生。 关键词:变频器故障处理 一.引言 我公司共有粘胶五条生产线,主要产品为粘胶短纤维,扩建后生产能力为16万吨。生产线上大量使用了Danfoss公司的VLT5000系列变频器,变频器具有调速性能好、调速范围宽和运行效率高、使用操作方便等优点并得以广泛的推广,多年来,我们在生产实践中对变频器原理与故障现象不断探索与学习,总结出一套切实可行的变频器维护保养和维修经验。 二.变频器的组成: 变频器主要由整流电路、平波电路、控制电路、逆变电路等几大部分组成,以下是变频器主电路图。 变频器控制电路: 给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,称为控制电路。控制电路由以下电路组成:频率、电压的运算电路、主电路的电压、电流检测电路、电动机的速度检测电路、将运算电路的控制信号进行放大的驱动电路,驱动电路为驱动主电路器件的电路,它与控制电路隔离使主电路器件导通、关断。 1、速度检测电路 装在异步电动机轴上的速度监测器(TG 、PLG等)的信号为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。 2、保护电路 (1)电压检测:主要检测三相整流桥输出电压是否过压、欠压,它通过取样电路运算放大器(CPU)进行比较。 (2)电流检测:它通过检测IGBT三相输出,输出电缆穿过(2-3)个霍尔电流检测

元件到变频器的输出端子(U、V、W)。在运行时进行电流检测,如:电机过载、电机或电缆是否接地、缺相等。 (3)温度报警:主要检测变频器运行中的温度是否超过设定值,它通过变频器内的风扇、温度检测器来散热和检测 三、Danfoss 变频调速器故障及分析实例 首先在检修故障机时对变频器做静态的测试,一般通用型变频器大致包括以下几个部分:1整流电路,2直流中间电路,3逆变电路,4控制电路。静态测试主要是对整流电路、直流中间电路和逆变电路部分的大功率晶体管(功率模块)的一个测试,工具主要是数字万用表.整流电路主要是对整流二极管的一个正反向的测试来判断它的好坏,直流中间回路主要是对滤波电容的容量及耐压的测试,我们也可以观察电容是否出现鼓包或漏液等现象来判断它的好坏,耐压检测方法采用可调的直流电压进行充放电检测,功率模块的好坏判断主要是对功率模块内的续流二极管和绝缘栅双极型晶体管的检测。 1.开关电源损坏 此型号变频器最常见的故障,通常是由于开关电源电路各别元件性能发生变化或保护部分失控造成电源损坏,丹佛斯变频器采用了新型脉宽集成控制器UC3844来调整开关电源的输出,同时UC3844还带有电流检测,电压反馈等功能,当发生无显示,控制端子无电压,DC12V,24V风扇不运转等现象时我们首先应该考虑是否开关电源损坏了。 2.ALARM 37—IGBT模块损坏 IGBT模块损坏,这也是变频器损坏的常见故障之一,电机抖动,三相电流,电压不平衡,有频率显示却无电压输出,这些都是IGBT模块损坏的常见现象。IGBT模块损坏的原因有多种,首先是外部负载发生故障而导致IGBT模块的损坏如负载发生短路,堵转等。其次驱动电路老化也有可能导致驱动波形失真或驱动电压波动太大而导致IGBT损坏,每一路驱动电路丹佛斯都使用了独立的带变压器隔离的电源,控制信号也是通过门极驱动变压器提供,所以可靠性相当高。 3. ALARM 14—接地报警 接地故障:主要检测到负载(电机)对地出现漏电流现象,致使变频器保护停机。而实际检测电机绝缘正常,在维修此类故障机时问题主要出在检测电路检测值出现偏差,导致变频器误报警。经分析电路为霍尔元件输出电压信号到电流取样板在送到运算放大器进行比较,检查发现电流取样板中的一路限流电阻断路造成变频器故障,用同规格的贴片电阻修复后,试验正常。

变频器逆变单元故障的检修方法

逆变单元故障包括OUT1、OUT2、OUT3,它们分别代表逆变单元U相、V相、W相故障。此故障一般只出现在驱动光耦使用PC929的机器中,代表驱动板有1270系列、1290AV03、1250AVS系列、1258AVS系列等。 OUT 故障一般分有上电跳OUT;运行跳OUT;带载加载跳OUT。此原因一般都是因为检测电路检测到逆变管VCE电压异常输出告警信号,当控制板检测到此信号后马上停止驱动输出并显示出故障代码。当然不排除因保护电路本身异常导致的误保护。值得注意的是在某些情况下会因为开关电源输出不稳定影响驱动电路供电导致机器无规律跳OUT故障,如因散热风扇启动电流过大,每次运行风扇启动瞬间即跳OUT。检修时需注意区分。 (1)对于上电跳OUT故障:此问题一般都是因为保护电路本身不良或者驱动部分,模块门极有明显的短路、断路情况。可以通过屏蔽相应相OUT保护信号判断。如果屏蔽后其它一切正常,则说明问题是因保护电路本身不良引起。屏蔽后运行,如果有三相不平衡,则说明驱动电路或者模块有问题。 (2)对于运行跳OUT故障:此问题一般都是驱动电路和模块本身不良引起。首先可以用万用表电阻档测试驱动电路相关部位及模块门极有无明显短路、断路现象。屏蔽相关相OUT保护信号运行,测试驱动波形是否正常(无示波器时可使用万用表交流电压档对比测试各路驱动波形)。重点关注波形的形状、幅度、死区时间等,最后检测IGBT是否损坏。对比其它相测试驱动门极结电容是否正常(万用表电容档)。 (3)对于带载加载跳OUT故障:此情况相对前两种来说检修难度稍大。首先,检测保护电路本身是否有元件性能不良。正确检测前提下,对怀疑有问题的二极管、贴片电容采取替换法代换之(注意判断控制板上OUT信号检测电路是否正常,可用替换法)。第二,对比检测驱动电路驱动光耦供电是否正常,门极驱动电阻是否变值。第三,不加载测试驱动波形是否正常。最后仔细判断,测试IGBT本身是否有问题。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解台达变频器、三菱变频器、西门子变频器、安川变频器、艾默生变频器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/8f9516992.html,/

变频器常用参数概念和设置

常用变频器参数概念和设置 一加、减速的功能设置 1,加、减速时间定义 (a)加速时间的定义 定义1变频器的输出频率从0Hz上升到基本频率所需要的时间; 定义2变频器的输出频率从0Hz上升到最高频率所需要的时间。 在大多数情况下,最高频率和基本频率是一致的。 (b)减速时间的定义 定义1变频器的输出频率从基本频率下降到0Hz所需要的时间; 定义2变频器的输出频率从最高频率下降到0Hz所需要的时间。 2,加、减速方式 (a)加速方式 加速过程中,变频器的输出频率随时间上升的关系曲线,称为加速方式。变频器设置的加速方式有: A,线性方式 变频器的输出频率随时间成正比地上升 大多数负载都可以选用线性方式。 B,S形方式 在加速的起始和终了阶段频率的上升较缓,加速过程呈S形。例如,电梯在开始起动以及转入等速运行时从考虑乘客的舒适度出发,应减缓速度的变化,以采用S形加速方式为宜。

C,半S形方式 在加速的初始阶段或终了阶段,按线性方式加速;而在终了阶段或初始阶段,按S形方式加速 如风机一类具有较大惯性的二次方律负载中,由于低速时负荷较轻,故可按线性方式加速,以缩短加速过程; 高速时负荷较重,加速过程应减缓,以减小加速电流;图(d)所示方式主要用于惯性较大的负载。 (b)减速方式同样 二起动频率 (1)起动频率 (a)功能含义 电动机开始起动时,并不从0Hz开始加速,而是直接从某一频率下开始加速。在开始加速瞬间,变频器的输出频率便是起动频率。 设置起动频率是部分生产机械的实际需要,例如: 有些负载在静止状态下的静摩擦力较大,难以从0Hz开始起动,设置了起动频率后,可以在起动瞬间有一点冲力,使拖动系统较易起动起来; 在若干台水泵同时供水的系统里,由于管路内已经存在一定的水压,后起动的水泵在频率很低的情况下将难以旋转起来,故也需要电动机在一定频率下直接起动; 锥形电动机如果从0Hz开始逐渐升速,将导致定、转子之间的磨擦。所以,设置了起动频率, 可以在起动时很快建立起足够的磁通,使转子与定子间保持一定的空气隙等等。 (b)设置起动频率的方式 主要有两种方式:

变频器常见故障代码及处理实例

一、过流(OC) 过流是变频器报警最为频繁的现象。 1.1现象 (1) 重新启动时,一升速就跳闸。这是过电流十分严重的现象。主要原因有:负载短路,机械部位有卡住;逆变模块损坏;电动机的转矩过小等现象引起。 (2) 上电就跳,这种现象一般不能复位,主要原因有:模块坏、驱动电路坏、电流检测电路坏。 (3) 重新启动时并不立即跳闸而是在加速时,主要原因有:加速时间设置太短、电流上限设置太小、转矩补偿(V/F)设定较高。 1.2 实例 (1) 一台LG-IS3-4 3.7kW变频器一启动就跳“OC” 分析与维修:打开机盖没有发现任何烧坏的迹象,在线测量IGBT(7MBR25NF-120)基本判断没有问题,为进一步判断问题,把IGBT拆下后测量7个单元的大功率晶体管开通与关闭都很好。在测量上半桥的驱动电路时发现有一路与其他两路有明显区别,经仔细检查发现一只光耦A3120输出脚与电源负极短路,更换后三路基本一样。模块装上上电运行一切良好。 (2) 一台BELTRO-VERT 2.2kW变频通电就跳“OC”且不能复位。 分析与维修:首先检查逆变模块没有发现问题。其次检查驱动电路也没有异常现象,估计问题不在这一块,可能出在过流信号处理这一部位,将其电路传感器拆掉后上电,显示一切正常,故认为传感器已坏,找一新品换上后带负载实验一切正常。 二、过压(OU) 过电压报警一般是出现在停机的时候,其主要原因是减速时间太短或制动电阻及制动单元有问题。 2.1 实例 一台台安N2系列3.7kW变频器在停机时跳“OU”。 分析与维修:在修这台机器之前,首先要搞清楚“OU”报警的原因何在,这是因为变频器在减速时,电动机转子绕组切割旋转磁场的速度加快,转子的电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中与大功率开关管并联的二极管流向直流环节,使直流母线电压升高所致,所以我们应该着重检查制动回路,测量放电电阻没有问题,在测量制动管(ET191)时发现已击穿,更换后上电运行,且快速停车都没有问题。 三、欠压(Uu) 欠压也是我们在使用中经常碰到的问题。主要是因为主回路电压太低(220V系列低于200V,380V系列低于400V),主要原因:整流桥某一路损坏或可控硅三路中有工作不正常的都有可能导致欠压故障的出现,其次主回路接触器损坏,导致直流母线电压损耗在充电电阻上面有可能导致欠压.还有就是电压检测电路发生故障而出现欠压问题。 3.1 举例 (1) 一台CT 18.5kW变频器上电跳“Uu”。 分析与维修:经检查这台变频器的整流桥充电电阻都是好的,但是上电后没有听到接触

日立变频器的常见故障及维修对策

日立变频器的常见故障及维修对策 日立,在自动化领域相对于西门子,ABB,三菱等一线品牌来说,还是一个相对比较陌生的品牌,其实在工控行业中日立的产品还是经常会看到的,像MICRO EH系列以及较大型的EH-150系列PLC,L系列,SJ系列,J系列变频器,以及交流伺服产品等等,在国内还是有一定的使用量。特别是日立变频器在启动负载较大的输送搅拌装置,需要四象限运行的升降装置,以及纺织化纤行业的卷绕等应用方面都有较多的应用实例。 日立变频器在选型划分上还是比较清晰的,现在市面上正在销售中的变频器包括经济型的L100系列,以及涵盖L100功能的SJ100矢量型变频器,无速度传感器矢量控制的SJ300系列变频器,电梯专用的SJ-300EL系列变频器,风机水泵专用的L300P系列变频器。现在,市场上的几款日立变频器性能稳定,特别是日立具有专利技术的无速度传感器矢量控制,使得日立变频器在低速时的启动特性相当优越。现在的日立变频器在功能应用上也比较丰富,在同类变频器上经常用到的内置PID功能,RS-485通讯功能,16段加减速功能,电机并行运行功能,速度升降功能,参数拷贝功能,三线运行功能等在日立变频器的应用中都能一一找到。特别值得一提的是当两台电机在并行运行时同时采用矢量控制,这对于一般变频器是很难做到的,大家都知道,矢量控制时对于电机的参数要求都非常精确。功率,电流,电压,定转子的阻抗都得非常准确,而两台电机并行运行时恰恰很难做到这一点。这可能也是日立变频器的一个亮点。日立变频器在可选件的应用上相对来说不是很多,在通讯选件上主要有Profibus,Device Net等可选。在抗干扰,抑制高低谐波,射频干扰上,日立变频器还是有多种选件可选,交直流电抗器,RFI滤波器,LCR输出正弦滤波器等都为抑制变频器的对外干扰做了很好的保证。 日立变频器相对于整个变频器市场,占有率可能并不是很高,对于用户来讲碰到故障可以查找解决故障办法的来源更少,以下我们就日立变频器的一些常见故障和大家做一探讨。 2、日立变频器的一些常见故障 2.1 液晶显示器 早期我们在国内市场上经常能碰到的日立变频器就是HFC-VWS3系列,这是一款V/F 控制的变频器,功率模块采用GTR的大功率晶体管。其最大功率能够做到132kW,采用液晶面板显示,这在同时期的日本变频器还是属于档次较高的。但相对于用数码管显示的变频器,液晶的使用寿命和稳定性相对就显得差了,我们经常会碰到液晶显示器有亮度但没有字幕,此类情况多半是由于液晶显示器的驱动电源侧由于贴片陶瓷电容容量下降而导致的,更换此类电容就能解决问题。 2.2 开关电源 此外,该系列变频器大量采用了厚膜电路,包括开关电源厚膜电路,驱动部分的厚膜电路。采用厚膜电路多半是出于技术保密上的考虑。碰到类似问题,我们首先应该考虑的是如何判断这些厚膜电路的好坏,对变频器维修来说,如何找出故障,也是一个很重要工作,对于开关电源的损坏,假如排除外围的部件包括开关管,起振电阻,脉冲变压器等的损坏外,最有可能出现问题的就是开关电源厚膜驱动电路了,在没有明显损坏痕迹下,我们可以外加直流电压测试厚膜电路能否正常输出驱动波形,外加直流电压一般在15V左右。如果输出

相关文档
最新文档