知识讲解 正态分布(理)资料讲解

知识讲解 正态分布(理)资料讲解
知识讲解 正态分布(理)资料讲解

正态分布

【学习目标】

1. 了解正态分布曲线的特点及曲线所表示的意义。

2. 了解正态曲线与正态分布的性质。 【要点梳理】

要点诠释:

要点一、概率密度曲线与概率密度函数

1.概念:

对于连续型随机变量X ,位于x 轴上方,X 落在任一区间(a ,b]内的概率等于它与x 轴、直线x a =与直线x b =所围成的曲边梯形的面积(如图阴影部分),这条概率曲线叫做X 的概率密度曲线,以其作为图象的函数()f x 叫做X 的概率密度函数。

2、性质:

①概率密度函数所取的每个值均是非负的。

②夹于概率密度的曲线与x 轴之间的“平面图形”的面积为1

③()P a X b <<的值等于由直线x a =,x b =与概率密度曲线、x 轴所围成的“平面图形”的面积。 要点二、正态分布

1.正态变量的概率密度函数

正态变量的概率密度函数表达式为:22

()2,()(R)2x x x μσμσ?πσ

--

=

∈,(0,σμ>-∞<<+∞)

其中x 是随机变量的取值;μ为正态变量的期望;σ是正态变量的标准差.

2.正态分布 (1)定义

如果对于任何实数,()a b a b <随机变量X 满足:,()()b

a

P a X b x dx μσ?<≤=?,

则称随机变量X 服从正态分布。记为2

(,)X N μσ:。 (2)正态分布的期望与方差

若2

(,)X N μσ:,则X 的期望与方差分别为:EX μ=,2

DX σ=。

要点诠释:

(1)正态分布由参数μ和σ确定。

参数μ是均值,它是反映随机变量取值的平均水平的特征数,可用样本的均值去估计。σ是 标准差,它是衡量随机变量总体波动大小的特征数,可以用样本的标准差去估计。

(2)经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它

就服从或近似服从正态分布.

在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.

要点三、正态曲线及其性质:

1. 正态曲线

如果随机变量X 的概率密度函数为22

()21

()(R)2x f x e x μσπσ

--

=

∈,其中实数μ和σ为参数

(0,σμ>-∞<<+∞),则称函数()f x 的图象为正态分布密度曲线,简称正态曲线。

2.正态曲线的性质:

①曲线位于x 轴上方,与x 轴不相交; ②曲线是单峰的,它关于直线x μ=对称; ③曲线在μ=x 时达到峰值

2πσ

; ④当μx 时,曲线下降.并且当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近.

⑤曲线与x 轴之间的面积为1; ⑥μ决定曲线的位置和对称性;

当σ一定时,曲线的对称轴位置由μ确定;如下图所示,曲线随着μ的变化而沿x 轴平移。

⑦σ确定曲线的形状;

当μ一定时,曲线的形状由σ确定。σ越小,曲线越“高瘦”,表示总体的分布越集中;σ越大,曲线

越“矮胖”,表示总体的分布越分散。如下图所示。

要点诠释:

性质①说明了函数具有值域(函数值为正)及函数的渐近线(x 轴).性质②并且说明了函数具有对称性;性质③说明了函数在x=μ时取最值;性质⑦说明σ越大,总体分布越分散,σ越小,总体分布越集中.

要点四、求正态分布在给定区间上的概率 1. 随机变量取值的概率与面积的关系

若随机变量ξ服从正态分布2

(,)N μσ,那么对于任意实数a 、b (a <b ),当随机变量ξ在区间(a ,b]上取值时,其取值的概率与正态曲线与直线x=a ,x=b 以及x 轴所围成的图形的面积相等.如图(1)中的阴影部分的面积就是随机变量孝在区间(a ,b]上取值的概率.

一般地,当随机变量在区间(-∞,a )上取值时,其取值的概率是正态曲线在x=a 左侧以及x 轴围成图形的面积,如图(2).随机变量在(a ,+∞)上取值的概率是正态曲线在x=a 右侧以及x 轴围成图形的面积,如图(3).

根据以上概率与面积的关系,在有关概率的计算中,可借助与面积的关系进行求解.

2、正态分布在三个特殊区间的概率值:

()0.683P X μσμσ-<≤+=; (22)0.954P X μσμσ-<<+=; (33)0.997P X μσμσ-<≤+=。

上述结果可用下图表示:

要点诠释:

若随机变量X 服从正态分布2

(,)N μσ,则X 落在(3,3)μσμσ-+内的概率约为0.997,落在

(3,3)μσμσ-+之外的概率约为0.003,一般称后者为小概率事件,并认为在一次试验中,小概率事件几

乎不可能发生。

一般的,服从于正态分布2

(,)N μσ的随机变量X 通常只取(3,3)μσμσ-+之间的值,简称为3σ原则。

3、求正态分布在给定区间上的概率方法

(1)数形结合,利用正态曲线的对称性及曲线与x 轴之间面积为1。 ①正态曲线关于直线x μ=对称,与x μ=对称的区间上的概率相等。 例如()()P X P X μσμσ<-=>+; ②()1()P X a P X a <=-≥; ③若b μ<,则1()

()2

P b X b P X b μμ--<<+<=

(2)利用正态分布在三个特殊区间内取值的概率: ①()0.6826P X μσμσ-<≤+=; ②(22)0.9544P X μσμσ-<<+=; ③(33)0.9974P X μσμσ-<≤+=。 【典型例题】

类型一、正态分布的概率密度函数 例1. 下列函数是正态密度函数的是( ).

A .22

()2()2x P x μσπσ

-=

μ,σ(0σ>)都是实数

B .2

22()x P x π-= C .2

(1)4()22x P x π--= D .2

2()e 2x P x π

=

【思路点拨】本题可对照正态密度函数的标准形式判断. 【解析】

正态密度函数为:22

()2()x P x μσ--

=

其中指数部分的σ应与系数的分母处的σ保持一致,系数为正数且指数为负数.

选项A

σ

,指数错为正数.选项C ,从系数可得σ=2,而从指

数处可得σ=

D 中指数为正,错误.所以正确答案为B .

【总结升华】注意函数22

()2()x P x μσ--

=的形式特点是解题的关键.

举一反三:

【变式1

】设一正态总体,它的概率密度曲线是函数2

(10)8()x f x --=的图象,则这个正态总体的均

值与方差分别是( )

A .10与8

B .10与4

C .8与10

D .2与10

【答案】在该正态分布中,μ=10,σ=2,则E(X)=10,D(X)=2

σ=4,故选B 。。 【变式2】.给出下列三个正态总体的函数表达式,请找出其均值μ和标准差σ

(1)),(,21)(2

2

+∞-∞∈=

-

x e

x f x π

(2)),(,221

)(8

)1(2

+∞-∞∈=

--

x e

x f x π

(3)2

2(1)(),(,)x f x x -+=

∈-∞+∞ 【答案】(1) 0,1 (2) 1,2 (3) -1,0.5

【变式3】正态总体为1

,0-==σμ1概率密度函数)(x f 是 ( ) A .奇函数 B .偶函数 C .非奇非偶函数 D .既是奇函数又是偶函数

【答案】B

。因为2

2()x f x -=所以选B 。

【变式4】一台机床生产一种尺寸为10 mm 的零件,现在从中抽测10个,它们的尺寸分别如下(单位:mm ):10.2,10.1,10,9.8,9.9,10.3,9.7,10,9.9,10.1.如果机床生产零件的尺寸X 服从正态分布,求正态分布的概率密度函数式.

【答案】求正态分布的概率密度函数式,只要求出参数μ和σ即可,而μ即样本均值,σ即样本标准差.

依题意得1

(10.210.1109.89.910.39.7109.910.1)1010

μ=

?+++++++++=,

2222221

[(10.210)(10.110)(1010)(9.810)(9.910)10

σ=

?-+-+-++-+- 2

2

2

2

2

(10.310)(9.710)(1010)(9.910)(10.110)]0.03+-+-+-+-+-=. 即10μ=,2

0.03σ=.所以X 的概率密度函数为2

50(10)3

()e 6x x ?π

--

=.

类型二、正态曲线

例2. 如图所示,是一个正态曲线,试根据该图像写出其正态分布的概率密度函数的解析式,求出总体随机变量的期望和方差.

【思路点拨】 由正态曲线的图像可知,该曲线的对称轴为x=20,最大值为

,因此,μ=20,由

22π

πσ

=

可求得σ的值. 【解析】 从给出的正态曲线可知,该正态曲线关于直线x=20对称,最大值是

,所以μ=20.

22πσπ

=,解得2σ=. 于是概率密度函数的解析式是2

(20)4

()e

2x P x π

--

=

,x ∈(-∞,+∞).总体随机变量的期望是μ=20,

方差是22

(2)2σ==.

【总结升华】 利用图像求正态密度函数的解析式,应抓住图像的实质性两点:一是对称轴x=μ,一是最值

2πσ

.这两点确定以后,相应参数纵μ、σ便确定了,代入P (x )中便可求出相应的解析式. 举一反三:

【变式1】 关于正态密度曲线性质的叙述:

①曲线关于直线x=μ对称,整条曲线在x 轴上方; ②曲线对应的正态总体概率密度函数是偶函数;

③曲线在x=μ时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低;

④曲线的对称位置由μ确定,曲线的形状由σ确定,σ越大曲线越“矮胖”,反之,曲线越“高瘦”. 其中叙述正确的有( ).

A .①②③

B .①③④

C .②③④

D .①②③④ 【答案】 B

根据曲线关于直线x=μ对称,只有当μ=0时函数才是偶函数,故②错.利用排除法选B .

4

3

2

1

-1

-4-224

2

1

【变式2】如图,两个正态分布曲线图:

1为)

(

1

,1

x

σ

μ

?,2为)

(

2

2

x

σ

μ

?,

1

μ

2

μ,

1

σ

2

σ(填大于,小于)

【答案】<,>。解析:由正态密度曲线图象的特征知。

【变式3】如图是三个正态分布X~N(0,0.25),Y~N(0,1),Z~N(0,4)的密度曲线,则三个随机变量X,Y,Z对应曲线分别是图中的________、________、________。

【答案】①②③。

【变式4】已知正态总体落在区间()

+∞

,2.0的概率是0.5,那么相应的正态曲线在=

x时达到最高点。

【答案】0.2。

由于正态曲线关于直线xμ

=对称,由题意知0.2

μ=。

类型三、正态分布的计算

例3.已知随机变量ξ服从正态分布N(2,σ2),P(ξ≤4)=0.84,则P(ξ≤0)=()

A.0.16B.0.32

C.0.68 D.0.84

【思路点拨】可画出正态曲线,利用正态曲线的对称性解决。

【解析】∵P(ξ≤4)=0.84,μ=2,∴P(ξ≤0)=P(ξ≥4)

=1-0.84=0.16,故选A.

【总结升华】本题利用了正态密度曲线的性质求概率,其中应注意对称性的运用。

举一反三:

【变式1】(1)(0,1)

X N

:,μ和σ的值各是多少?(2)(1,9)

X N-

:,μ和σ的值各是多少?

【答案】

(1)比照2

(,)

X Nμσ

:(0

σ>),(0,1)

X N

:时,μ=0,σ=1。

(2)比照2

(,)

X Nμσ

:(0

σ>),(1,9)

X N-

:时,μ=-129

σ=,所以μ=-1,σ=3。

【变式2】在某次测量中,测量结果ξ服从正态分布2

(1,)

Nσ(0)

σ>,若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为________。

【答案】0.8

ξ服从正态分布2

(1,)

Nσ,

∴在(0,1)与(1,2)内取值的概率相同,均为0.4。

ξ在(0,2)内取值的概率为0.4+0.4=0.8。

【变式3】设随机变量X ~N (0,1), (1)P(-a <X <0)=P(0<X <a)(a>0); (2)P(X <0)=0.5;

(3)已知P(|X|<1)=0.6826,则P(X <-1)=0.1587; (4)已知P(|X|<2)=0.9544,则P(X <2)=0.9772; (5)已知P(|X|<3)=0.9974,则P(X >-3)=0.9987。 其中正确的有( )

A .2个

B .3个

C .4个

D .5个

【答案】D ;均正确,充分利用正态曲线的对称性及其意义。

例4. 设ξ~N (1,22),试求: (1)P (-1<ξ≤3); (2)P (3<ξ≤5); (3)P (ξ≥5).

【思路点拨】 要求随机变量ξ在某一范围内的概率,只需借助于正态密度曲线的图像性质以及课本中所给的数据进行转化求值.

【解析】 ∵ξ~N (1,22),∴μ=1,σ=2,

(1)P (-1<ξ≤3)=P (1-2<ξ≤1+2)=P (μσ-<ξ≤μσ+)=0.683. (2)∵P (3<ξ≤5)=P (-3<ξ≤-1), ∴P (3<ξ≤5)

1

[(35)(13)]2P P ξξ=-<≤--<≤ 1

[(1414)(1212)]2P P ξξ=-<≤+--<≤+ 1

[(22)()]2P P μσξμσμσξμσ=-<≤+--<≤+ 1

(0.9540.683)0.1362

=?-≈. (3)∵P (ξ≥5)=P (ξ≤-3), ∴1()[1(35]2P P ξξ≥=

--<≤1

[1(1414)]2

P ξ=--<≤+ 1[1(22)]2P μσξμσ=--<≤+1

(10.954)0.0232

=-=. 【总结升华】 在求随机变量ξ在某一范围内的概率时,可以首先把随机变量ξ的取值转化到区间

(,)μσμσ-+、(2,2)μσμσ-+以及(3,3)μσμσ-+,然后利用在(,)μσμσ-+上的概率约为

0.683,在(2,2)μσμσ-+上的概率约为0.954,在(2,2)μσμσ-+上的概率约为0.997.

举一反三:

【变式1】(2,25)X N :,求(1317)P X -<≤。

【答案】(2,25)X N :时,μ=2,σ=5,313μσ-=-,317μσ+=,

∴(1317)0.9974P X -<≤=

【变式2】若η~N (5,1),求P (5<η<7). 【答案】∵η~N (5,1),

∴正态分布密度函数的两个参数为μ=5,σ=1, ∵该正态密度曲线关于x=5对称.

∴11

(57)(37)0.9540.47722

P P ηη<<=

?<<=?= 【变式3】设(0,1)X N :。

(1)求P(-1<X ≤1);(2)求P(0<X ≤2)。 【答案】

(1)(0,1)X N :时,1μσ-=-,1μσ+=,

∴(11)0.6826P X -<≤≈。

(2)22μσ-=-,22μσ+=,正态曲线0,1()x ?关于直线x=0对称,

∴11

(02)(22)0.95440.477222

P X P X <≤=

-<≤≈?=。 类型四、正态分布的应用

例5. 某年级的一次数学测验成绩近似服从正态分布N (70,102),如果规定低于60分为不及格,那么 (1)成绩不及格的人数占多少? (2)成绩在80~90分内的学生占多少?

【思路点拨】 本题考查正态密度曲线对称性及正态变量在三个特殊区间的概率取值规律.因为正态密度曲线关于直线x=μ对称,故本题可利用对称性及特殊值求解. 【解析】(1)设学生的得分情况为随机变量X , 则X ~N (70,102),其中μ=70,σ=10. 成绩在60~80分之间的学生人数的概率为 P (70-10<X <70+10)=0.683, ∴不及格的人数占

1

2

×(1-0.683)=0.1585. (2)P (70-20<X <70+20)=0.954, ∴成绩在80~90分内的学生占

1

2

[P (50<X <90)-P (60<X <80)]=0.1355. 【总结升华】 本题利用了正态密度曲线的性质求概率,其中应注意对称性的运用及正态变量在三个特殊区间的概率取值规律. 举一反三:

【变式1】工厂制造的某机械零件尺寸X 服从正态分布N 1

(4,)9

,问在一次正常的试验中,取1 000个零件时,不属于区间(3,5)这个尺寸范围的零件大约有多少个? 【答案】∵X ~N 1(4,)9,∴μ=4,σ=13

. ∴不属于区间(3,5)的概率为 P (X ≤3)+P (X ≥5)=1-P (3

即不属于区间(3,5)这个尺寸范围的零件大约有3个.

【变式2】商场经营的某种包装的大米质量服从正态分布N (10,0.12)(单位:kg )。现进1000袋这种大米,质量不在9.7~10.3 kg 的大米大约有多少袋? 【答案】

由正态分布N (10,0.12),知μ=10,σ=0.1,

∴质量在9.7~10.3 kg 的概率为P(10-3×0.1<X≤10+3×0.1)=0.997 ∴质量不在9.7~10.3 kg 的概率为P=1-0.997=0.003。 ∴质量不在9.7~10.3 kg 的大米大约有1000×0.003=3袋。

【变式3】在某次数学考试中,考生的成绩X 服从一个正态分布,即X ~N(90,100)。

(1)试求考试成绩X 位于区间(70,110)内的概率是多少?

(2)若这次考试共有2000名考生,试估计考试成绩在(80,100)之间的考生大约有多少人?

【答案】∵X ~N(90,100),∴90μ=,10σ==。

(1)μ-2σ=90-2×10=70,μ+2σ=90+2×10=110,

又∵正态分布2

(,)N μσ在区间(2,2)μσμσ-+内取值的概率是0.954, ∴考试成绩X 位于区间(70,110)内的概率约为0.954。 (2)∴μ-σ=90-10=80,μ+σ=90+10=100。

又∵正态分布2(,)N μσ在区间(,)μσμσ-+内取值的概率为0.683, ∴考试成绩X 位于区间(80,100)内的概率约是0.683,

∴这2000名考生中,成绩在(80,100)内的人数大约为2000×0.683≈1366(人)。

正态分布资料

第三章正态分布 一、教学大纲要求 正态分布 正态分布 normal distribution 一种概率分布。正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是遵从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2 )。遵从正态分布的随机变量的概率规律为取μ邻近的值的概率大,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。它的形状是中间高两边低,图像是一条位于x轴上方的钟形曲线。当μ=0,σ2 =1时,称为标准正态分布,记为N(0,1)。μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。 正态分布最早由 A.棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。 生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。例如,在生产条件不变的情况下,产品的强力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量,等等。一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布(见中心极限定理)。从理论上看,正态分布具有很多良好的性质,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。 正态分布应用最广泛的连续概率分布,其特征是“钟”形曲线。 设一组数据x1,x2,x3,…xn,各数据与它们的平均数为X的差的平方分别是(x1-X)2、 (x2-X)2、那么我们用它们的平均数,即用: S2=1/n[(x1-X) 2+(x2-X) 2+(x3-X) 2+…] 来衡量这组数据的波动大小,并把它叫做这组数据的方差,一组数据方差越大,说明这组数据波动越大。为什么要这样定义方差?在表示各数据与其平均数的偏离程度时,为了防止正偏差与负偏差的相互抵消。

正多边形和圆教案

正多边形和圆(一)教案 教材分析 学生在前面已经学习了正多边形的概念,了解正多边形的各边相等、各内角相等以及多边形内角和的运算公式。在本册中学习了圆及圆的有关性质,理解圆中弧与弦的关系,从而为本节课研究正多边形与圆的关系打下了良好的基础,本节课先通过观察美丽的图案,让学生感受到数学来源于生活。接下来研究正多边形和圆的关系,按由特殊到一般的规律,以正五边形为例进行探索和证明,并将结论推广到正n边形。让学生体会到化归思想在研究问题中的重要性。培养学生观察、比较、分析问题的能力,发展了学生合情推理能力和演绎推理能力。 教学目标 知识技能:了解正多边形与圆的关系,了解正多边形的中心、半径、边心距、中心角等概念。能运用正多边形的知识解决圆的有关计算问题。 数学思考;通过正多边形与圆的关系的教学培养学生观察、猜想、推理、迁移的能力。 解决问题:进一步向学生渗透“特殊——一般”再“一般——特殊”的唯物辩证法思想,体会化归思想在研究问题中的重要性,能综合运用所学知识和技能解决问题。 情感态度:学生经历观察、发现、探究等数学活动,感受到数学来源于生活,又服务于生活,体会到事物之间是相互联系,相互作用的。 重点难点 教学重点:探索正多边形与圆的关系,了解正多边形的有关概念,并能进行计算。 教学难点:探索正多边形与圆的关系。 教学过程: 一、观察图案,提出问题 (设计说明:学生通过观看美丽的图案,欣赏生活中正多边形形状的物体,让学生感受到数学来源于生活,从中感受到数学美,并提出本节课所要研究的问题。) 问题l:观看教科书图24。3-1,这些美丽的图案,都是在日常生活中我们经常能看到的,利用正多边形得到的物体。你能从这些图案中找出正多边形来吗? 教师引导学生回忆、理解正多边形的概念。 问题2:菱形,矩形,正方形是正多边形吗? 问题3:通过观察图案,你们知道正多边形和圆有什么关系吗? 问题4:给你一个圆,怎样就能做出一个正多边形来? (教师引导学生观察、思考,学生分组讨论、交流,发表各自见解) 此问题比较抽象,是本节课的难点。教师要求学生观察教材图案,会发现正多边形的边数多给人一种接近圆的印象。教师展示课件:在圆中依次出现几条相等的弦,学生会想到弧相等,教师迸一步引导学生明确只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形。

高三数学 正态分布和线性回归(知识点和例题)

正态分布和线性回归高考要求 1.了解正态分布的意义及主要性质 2.了解线性回归的方法和简单应用 知识点归纳 1.正态分布密度函数: 2 2 () 2 () 2 x f x e μ σ πσ - - =,(σ>0,-∞<x<∞) 其中π是圆周率;e是自然对数的底;x是随机变量的取值;μ为正态分布的均值;σ是正态分布的标准差.正态分布一般记为) , (2 σ μ N 2.正态分布) , (2 σ μ N)是由均值μ和标准差σ唯一决定的分布 例1、下面给出三个正态总体的函数表示式,请找出其均值μ和标准差σ.(1)2 2 2 1 ) ( x e x f- = π ,(-∞<x<+∞) (2) 2 (1) 8 () 22 x f x e π - - =,(-∞<x<+∞) 解:(1)0,1 (2)1,2 3.正态曲线的性质:正态分布由参数μ、σ唯一确定,如果随机变量ξ~N(μ,σ2),根据定义有:μ=Eξ,σ=Dξ。 正态曲线具有以下性质: (1)曲线在x轴的上方,与x轴不相交。 (2)曲线关于直线x =μ对称。 (3)曲线在x =μ时位于最高点。 (4)当x <μ时,曲线上升;当x >μ时,曲线下降。并且当曲线向左、

右两边无限延伸时,以x 轴为渐近线,向它无限靠近。 (5)当μ一定时,曲线的形状由σ确定。σ越大,曲线越“矮胖”,表示总体越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中。 五条性质中前三条较易掌握,后两条较难理解,因此应运用数形结合的原则,采用对比教学 4.标准正态曲线:当μ=0、σ=l 时,正态总体称为标准正态总体,其 相应的函数表示式是2 221)(x e x f - = π ,(-∞<x <+∞) 其相应的曲线称为标准正态曲线 标准正态总体N (0,1)在正态总体的研究中占有重要的地位任何正态分布的概率问题均可转化成标准正态分布的概率问题 5.标准正态总体的概率问题: 对于标准正态总体N (0,1),)(0x Φ是总体取值小于0x 的概率, 即 )()(00x x P x <=Φ, 其中00>x ,图中阴影部分的面积表示为概率0()P x x <只要有标准正态 分布表即可查表解决.从图中不难发现:当00

总结正态性检验的几种方法

总结正态性检验的几种方法 1.1 正态性检验方法 1)偏度系数 样本的偏度系数(记为1g )的计算公式为 ()233133 1(1)(2)(1)(2)n i i n n g x x n n s n n s μ==-=----∑, 其中s 为标准差,3μ为样本的3阶中心距,即()331 1n i i x x n μ==-∑。 偏度系数是刻画数据的对称性指标,关于均值对称的数据其偏度系数为0,右侧更分散的数据偏度系数为正,左侧更分散的数据偏度系数为负。 (2)峰度系数 样本的峰度系数(记为2g ),计算公式为 ()2424 122 44(1)(1)3(1)(2)(3)(2)(3)(1)(1)3(1)(2)(3)(2)(3)n i i n n n g x x n n n s n n n n n n n n s n n μ=+-=-------+-=------∑, 其中s 为标准差,4μ为样本的3阶中心距,即()441 1n i i x x n μ==-∑。 当数据的总体分布为正态分布时,峰度系数近似为0,;当分布为正态分布的尾部更分散时,峰度系数为正;否则为负。当峰度系数为正时,两侧极端数据较多,当峰度系数为负时,两侧极端数据较少。 (3)QQ 图 QQ 图可以帮助我们鉴别样本的分布是否近似于某种类型的分布。现假设总体为正态分布()2 ,N μσ,对于样本12,,,n x x x L ,其顺序统计量是(1)(2)(),,,n x x x L 。设()x Φ为标准正 态分布()0,1N 的分布函数,1 ()x -Φ是反函数,对应正态分布的QQ 图是由以下的点 1()0.375,,1,2,,0.25i i x i n n -??-??Φ= ? ?+???? L , 构成的散点图,若样本数据近似为正态分布,在QQ 图上这些点近似地在直线上 y x σμ=+, 附近,此直线的斜率是标准差σ,截距式均值,μ,所以利用正态QQ 图可以做直观的正态性检验。若正态QQ 图上的点近似地在一条直线上,可以认为样本的数据来自正态分布总

九年级数学上册 24.3 正多边形和圆教案 (新版)新人教版

24.3 正多边形和圆 24.3 正多边形和圆(二) 教学内容 正多边形和圆

教学方法 学法:1.思考探索 2.协作学习。 教法:启发式教学,在提出问题的背景下,通过先独立思考,再借助教师的引导和学习伙伴的帮助,充分发挥学生的主动性、积极性,最终达到使学生有效地掌握当前所学知识的目的。 教学过程 一.创设情境 (图片展示)生活中多姿多彩的正多边形 (1)它们的底座分别是什么图形? (2)底座图形的内角、中心角各为多少? (教师活动)展示图片,提出问题。 (学生活动)观察图片,思考问题。 附:由于正多边形在生产、生活实际中有广泛的应用性,所以会画正多边形应是学生必备能力之一。 二.探索新知 问题1:如何用尺规画出正六边形? 方法一:利用圆规将圆周六等分可找到正六边形的六个顶点,连接即可得正六边形。方法二:用圆规先画一个圆,在圆上任取一点,并以该点为起点,依次截取长度等于所作圆半径的弦,可将圆六等分,也可作出正六边形。

问题2:能够通过已知正六边形变换得到正三角形、正十二边形? 答:可以,正六边形中心角为60,正三角形中心角为120,正十二边形中心角为30,所以由正六边形得到正三角形只需连接彼此间隔的两点即可;而要由正六边形变换得到正十二边形只需作每条边的中垂线,得到中垂线与圆的交点,将圆周上所有标出的点连接起来即可得到正十二边形。 (教师活动)引导学生思考如何变换得到相应的图形。 (学生活动)通过在正六边形中不断地尝试、探索,找出怎样得出正三角形等图形的方法。 思考:能否用正六边形得到正二十四边形呢? (练)你能利用尺规作出正四边形吗?并想想能否由正四边形得到正八边形,如果可以,请描述变化的过程;如果不可以,请说明理由。 答:可以,两条互相垂直的线段可将圆均分成四等分,连接四等分点即可得正四边形。正八边形的产生只需先作出正四边形每边的中垂线,找到与圆的相应交点,最后连接所有圆周上所有标出的点,即可得到正八边形。图形如下: 归纳:作正多边形的方法有两种: (1)用圆规等分圆周; (2)用尺规作图法将简单正多边形变化为复杂正多边形。 三.应用提高 某学校在教学楼前的圆形广场中,准备建造一个花园,并在花园内分别种植牡丹、月季和杜鹃三种花卉,为了美观,种植要求如下: (1)种植牡丹的4块面积各自相等,种植月季的4块面积各自相等。 (2)花卉总面积等于广场面积。 (3)花圆边界只能种植牡丹花,杜鹃花种植与牡丹没有公共边。

正态分布的介绍资料

0.1 正态分布,熟悉的陌生人 (2) 0.2 邂逅,正态曲线的首次发现 (4) 0.3 最小二乘法,数据分析的瑞士军刀 (7) 0.4 众里寻她千百度,误差分布曲线的确立 (10) 0.5 曲径通幽处,禅房花木深 (16) 0.5.1 高斯(1809)的推导 (17) 0.5.2 赫歇尔(1850)和麦克斯韦(1860) 的推导 (19) 0.5.3 兰登(1941)的推导 (20) 0.5.4 基于最大娟的推导 (22) 0.6 开疆拓土,正态分布的进一步发展 (24) 0.6.1 论剑中心极限定理 (24) 0.6.2 进军近代统计学 (28) 0.6.3 数理统计三剑客 (32) 0.7 正态魅影 (34) 0.8 大道至简,大美天成 (36) 0.9 推荐阅读 (39) 1

2 神说,要有正态分布,就有了正态分布。 神看正态分布是好的,就让 随机误差服从了正态分布。 创世纪—数理统计 0.1 正态分布,熟悉的陌生人 学过基础统计学的同学大都对正态分布非常熟悉。 这个钟形的分布曲 线不但形状优雅,它对应的密度函数写成数学表达式 f (x ) = 1 e ? √2πσ (x ?μ)2 2σ2 也非常具有数学的美感。 其标准化后的概率密度函数 1 x 2 f (x ) = √2π e 更加的简洁漂亮,两个最重要的数学常量π队e 都出现在这公式之中。 在我 个人的审美之中,它也属于top-N 的最美丽的数学公式之一,如果有人问 我数理统计领域哪个公式最能让人感觉到上帝的存在,那我一定投正态分 布的票。 因为这个分布戴着神秘的面纱,在自然界中无处不在,让你在纷 繁芜杂的数据背后看到隐隐的秩序。 Figure 1: 正态分布曲线 正态分布又通常被称为高斯 分布,在科学领域,冠名权那是一个很高 的荣誉。 2002年以前去过德国的兄弟们还会发现,德国1991年至2001年间 ? 2

高中数学正态分布知识点+练习

正态分布 要求层次 重难点 正态分布 A 利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义. (一) 知识内容 1.概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上面的折线所接近 的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则这条曲线称为X 的概率密度曲线. 曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. 2.正态分布 ⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布. 服从正态分布的随机变量叫做正态随机变量,简称正态变量. 正态变量概率密度曲线的函数表达式为22 ()2()2πx f x e μσσ --=?,x ∈R , 其中μ,σ是参数,且0σ>,μ-∞<<+∞. 式中的参数μ和σ分别为正态变量的数学期望和标准差.期望为μ、标准差为σ的正态分布通常记作 2(,)N μσ. 正态变量的概率密度函数的图象叫做正态曲线. ⑵标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布. 例题精讲 高考要求 正态分布 x=μ O y x

⑶重要结论: ①正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是68.3%,95.4%,99.7%. ②正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则. (二)典例分析: 【例1】 已知随机变量X 服从正态分布2(3)N a , ,则(3)P X <=( ) A .1 5 B . 1 4 C .1 3 D . 12 【例2】 在某项测量中,测量结果X 服从正态分布() ()210N σσ>,,若X 在()01, 内取值的概率为0.4,则X 在()02, 内取值的概率为 . 【例3】 对于标准正态分布()01N , 的概率密度函数()2 2 x f x -=,下列说法不正确的是( ) A .()f x 为偶函数 B .()f x C .()f x 在0x >时是单调减函数,在0x ≤时是单调增函数 D .()f x 关于1x =对称 【例4】 已知随机变量X 服从正态分布2(2)N σ, ,(4)0.84P X =≤,则(0)P X =≤( ) A .0.16 B .0.32 C .0.68 D .0.84 【例5】 某种零件的尺寸服从正态分布(04)N ,,则不属于区间(44)-,这个尺寸范围的零件约占总数 的 . 【例6】 已知2(1)X N σ-, ~,若(31)0.4P X -=≤≤-,则(31)P X -=≤≤( ) A .0.4 B .0.8 C .0.6 D .无法计算 【例7】 设随机变量ξ服从正态分布(29)N ,,若(2)(2)P c P c ξξ>+=<-,则_______c =.

资料的正态性检验汇总

资料的正态性检验汇总 作者:huaxie 来源:【整理】发布时间:2009-4-22 浏览: 567 访问者: 58.23.96.242 摘要提示:本文汇总了通常在对资料进行正态性检验时遇到的问题,比如Kolmogorov-Smirnov检验(简称K-S检验),还是Shapiro-Wilk检验, SPSS里面用哪个过程,SAS程序等。 SPSS和SAS常用正态检验方法 如何在spss中进行正态分布检验 一、图示法 1、P-P图 以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。 2、Q-Q图 以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。 以上两种方法以Q-Q图为佳,效率较高。 3、直方图 判断方法:是否以钟形分布,同时可以选择输出正态性曲线。 4、箱式图 判断方法:观测离群值和中位数。 5、茎叶图 类似与直方图,但实质不同。 二、计算法 1、偏度系数(Skewness)和峰度系数(Kurtosis) 计算公式: g1表示偏度,g2表示峰度,通过计算g1和g2及其标准误σg1及σg2然后作U 检验。两种检验同时得出U0.05的结论时,才可以认为该组资料服从正态分布。由公式可见,部分文献中所说的“偏度和峰度都接近0……可以认为……近似服从正态分布”并不严谨。 2、非参数检验方法 非参数检验方法包括Kolmogorov-Smirnov检验(D检验)和Shapiro- Wilk(W 检验)。 SAS中规定:当样本含量n≤2000时,结果以Shapiro – Wilk(W检验)为准,当样本含量n >2000时,结果以Kolmogorov – Smirnov(D检验)为准。 SPSS中则这样规定:(1)如果指定的是非整数权重,则在加权样本大小位于3和50之间时,计算Shapiro-Wilk统计量。对于无权重或整数权重,在加权样

八年级数学正多边形和圆弧长和扇形面积教学设计

八年级数学 正多边形和圆、弧长和扇形面积(精品教学设计) 一、目标认知 学习目标 1.了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用正多边形和圆的有关知识画正多边形. 2.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长和扇形 面积的计算公式,并应用这些公式解决问题. 3.了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,并会应用公式解决问题. 重点 1.正多边形半径和边长、边心距、中心角之间的关系. 2.n°的圆心角所对的弧长,扇形面积及它们的应用. 3.圆锥侧面积和全面积的计算公式. 难点与关键 1.正多边形半径和边长、边心距、中心角之间的关系 2.弧长和扇形面积公式的应用;由圆的周长和面积迁移到弧长和扇形面积公式的过程.3.圆锥侧面积和全面积的计算公式. 二、知识要点透析 知识点一、正多边形的概念 各边相等,各角也相等的多边形是正多边形. 要点诠释: 判断一个多边形是否是正多边形,必须满足两个条件:(1)各边相等;(2)各角相等;缺一不可.如菱形的各边都相等,矩形的各角都相等,但它们都不是正多边形(正方形). 知识点二、正多边形的重要元素 1.正多边形的外接圆和圆的内接正多边形 正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆. 2.正多边形的有关概念 (1)一个正多边形的外接圆的圆心叫做这个正多边形的中心. (2)正多边形外接圆的半径叫做正多边形的半径. (3)正多边形每一边所对的圆心角叫做正多边形的中心角. (4)正多边形的中心到正多边形的一边的距离叫做正多边形的边心距. 3.正多边形的有关计算

正态分布表资料

正态分布的应用 1、用Z 的公式将原始分数转换成标准分数 条件是原始分数的分布是正态的。 例如:已知某班期末考试中语文的平均分为76,标准差为10,数学的平均分为83,标准差为15。某学生在这次期 末考试的语文成绩为79,数学成绩为87,问该生这两科成绩哪一个更好一些? 答:该考生的语文成绩更好一些。 2、确定录用分数线 在选拔兴或竞赛性的考试中,录取或授奖的人数(或比赛)往往是事先确定的。这就是用标准分数的作用发挥。假定为正态分布,可将录取或授奖的人数比率作为正态分布中分线右侧,即上端的面积,由此找出相应标准分数Z 值,然后根据Z 公式计算出原始分数X. 例如:在某年的高考中某省的平均分为420,标准差为100,分数呈正态分布,某考生得了456分。设当年的该省的 录取率为40%,问该生的成绩是否上线? 解:根据Z 分数的计算公式,得 当P=0.40时,0.5-0.40=0.10 然后查附表,找到对应的Z=0.25 因为0.36>0.25, 所以该考生上线了。 又如:某年某市参加数学竞赛的学生有850人,考试的平均分为68,标准差为9。而这次计划只给最优秀的5%颁 奖,问授奖分数线为多少?某个考生在这次考试中得了76分,问这位考生是否获奖? 解:根据0.05的P 值计算差表,得Z=1.65 因为82.85>76, 所以该考生不可能获奖。 例.某区拟对参加数学竞赛的2000人中的前500人予以奖励,考试的平均分数为75分,标准差为9 分,问授奖的分数线是多少?(授奖分数线为81.03分。) 例:某考试2500人参加,成绩服从正态分布,μ=80 σ2=25,求分数在88分以上的人数。 解: n =N·P =2500×0.0548=137(人) 例:某招生考试,选拔20%,考生成绩服从正态分布,μ=70 σ=10,录取标准应划在哪里? 解 Z =0.84 X =10×0.84+70=78.4 分数线为78.4 例:某地13岁女孩118人的身高(cm)资料,估计该地13岁正常女孩身高在135厘米以下及155 厘米以上者各占正常女孩总人数的百分比。 身高(X )~N (μ,σ2),但μ和σ未知,只知来自该总体的样本的身高均数x =144.29(cm)和标准差s =5.41(cm),由于样本含量n=118很大,所以可以用x 和s 估计μ和σ来计算u 值。 身高(X )小于135(cm)的概率为:()()11135u U P x X P <==< 00()0.20(0)0.3 p Z Z p Z Z >=?<<=

spss_数据正态分布检验方法及意义

spss 数据正态分布检验方法及意义判读 要观察某一属性的一组数据是否符合正态分布,可以有两种方法(目前我知道这两种,并且这两种方法只是直观观察,不是定量的正态分布检验): 1:在spss里的基本统计分析功能里的频数统计功能里有对某个变量各个观测值的频数直方图中可以选择绘制正态曲线。具体如下:Analyze-----Descriptive S tatistics-----Frequencies,打开频数统计对话框,在Statistics里可以选择获得各种描述性的统计量,如:均值、方差、分位数、峰度、标准差等各种描述性统计量。在Charts里可以选择显示的图形类型,其中Histograms选项为柱状图也就是我们说的直方图,同时可以选择是否绘制该组数据的正态曲线(With nor ma curve),这样我们可以直观观察该组数据是否大致符合正态分布。如下图: 从上图中可以看出,该组数据基本符合正态分布。 2:正态分布的Q-Q图:在spss里的基本统计分析功能里的探索性分析里面可以通过观察数据的q-q图来判断数据是否服从正态分布。 具体步骤如下:Analyze-----Descriptive Statistics-----Explore打开对话框,选择Plots选项,选择Normality plots with tests选项,可以绘制该组数据的q-q 图。图的横坐标为改变量的观测值,纵坐标为分位数。若该组数据服从正态分布,则图中的点应该靠近图中直线。 纵坐标为分位数,是根据分布函数公式F(x)=i/n+1得出的.i为把一组数从小到大排序后第i个数据的位置,n为样本容量。若该数组服从正态分布则其q-q图应该与理论的q-q图(也就是图中的直线)基本符合。对于理论的标准正态分布,其q-q图为y=x直线。非标准正态分布的斜率为样本标准差,截距为样本均值。 如下图:

人教版高中数学(理科)选修正态分布(一)

正态分布(一) 教学目的: 1 掌握正态分布在实际生活中的意义和作用 2.结合正态曲线,加深对正态密度函数的理理 3.通过正态分布的图形特征,归纳正态曲线的性质 教学重点:正态分布曲线的性质、标准正态曲线N(0,1) 教学难点:通过正态分布的图形特征,归纳正态曲线的性质 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 内容分析: 1.在实际遇到的许多随机现象都服从或近似服从正态分布在上一节课我们研究了当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口正态分布在统计学中是最基本、最重要的一种分布 2.正态分布是可以用函数形式来表述的其密度函数可写成: 2 () 2 (),(,) x f x x μ σ - - =∈-∞+∞,(σ>0) 由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的常把它记为) , (2 σ μ N 3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x轴,但永不与x轴相交,因此说曲线在正负两个方向都是以x轴为渐近线的 4.通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特征 5.由于正态分布是由其平均数μ和标准差σ唯一决定的,因此从某种意义上说,正态分布就有好多好多,这给我们深入研究带来一定的困难但我们也发现,许多正态分布中,重点研究N(0,1),其他的正态分布都可以通过) ( ) ( σ μ - Φ = x x F转化为N(0,1),我们把N(0,1)称为标准正态分布,其密度函数为 2 2 1 2 1 ) (x e x F- = π ,x∈(-∞,+∞),从而使正态分布的研究得以简化 6.结合正态曲线的图形特征,归纳正态曲线的性质正态曲线的作图较难,教科书没做要求,授课时可以借助几何画板作图,学生只要了解大致的情形就行了,关键是能通过正态曲线,引导学生归纳其性质教学过程: 一、复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.

正多边形与圆教案

正多边形和圆 一、学习目标: 1知识与技能: (1)了解正多边形的中心、半径、边心距、中心角等概念。 (2)能运用正多边形的知识解决圆的有关计算问题。 2过程与方法: (1)学生在探讨正多边形有关计算过程中,体会到要善于发现问题,解决问题,发展学生的观察、比较、分析、概括及归纳的逻辑思维能力和逻辑推理能力。 (2)在探索正多边形有关过程中,学生体会化归思想在解决问题中的重要性,能综合运用所学的知识和技能解决问题。 3情感、态度与价值观: ' (1)学生经历观察、发现、探究等数学活动,感受到数学来源于生活,又服务于生活,体会到事物之间是相互联系,相互作用的。 (2)运用已有的正多边形的知识解决问题的活动中获得成功的体验,建立学习自信心。 二、教学重难点: 教学重点:理解正多边形和圆中心正多边形半径、中心角、边心距、边长之间的关系,并能进行有关计算。 教学难点:理解正多边形和圆中心正多边形半径、中心角、边心距、边长之间的关系以及把正多边形的计算问题转化为解直角三角形的问题。 三、教学方法:引导学生采用自主合作探究的方式进行学习 四、教学准备:PPT课件、圆规、直尺 五、教学过程: 导入: 前面我们学习了许多图形与圆的关系,如:点和圆、直线和圆、四边形和圆以及圆与圆的关系,还有什么图形我们没有与圆联系上呢(多边形)那么今天我就和同学们一起来探讨正多边形与圆。看看它们之间有怎样的联系,又给我们带来什么样的知识。 / (一)自习交流: 1.带着以下问题自主预习教材105页至106页的内容,勾画你认为重要的地方和有 疑问的地方。 ①什么是多边形多边形的内角和与外角怎么计算的 ②正多边形和圆有什么关系 ③结合图形说说正多边形的中心、中心角、边心距、半径,并结合以前的知 识说说它们的特点 ④结合图形说一说如何计算正多边形的中心角、边心距、半径、周长和面 积 2.师生交流重要知识点: (1)正多边形:各边相等,各角也相等的多边形叫做正多边形。 如正五边形:AB=BC=CD=DE=EA ∠A=∠B=∠C=∠D=∠E (

高考数学百大经典例题 正态分布

借助于标准正态分布表求值 例 设ξ服从)1,0(N ,求下列各式的值: (1));35.2(≥ξP (2));24.1(-<ξP (3)).54.1(<ξP 分析:因为ξ用从标准正态分布,所以可以借助于标准正态分布表,查出其值.但由于表中只列出)()(,0000x x P x Φ=<≥ξ的情形,故需要转化成小于非负值0x 的概率,公式:);()()();(1)(a b b a P x x Φ-Φ=<<Φ-=-Φξ和)(1)(00x P x P <-=≥ξξ有其用武之地. 解:(1);0094.09906.01)35.2(1)35.2(1)35.2(=-=Φ-=<-=≥ξξP P (2);1075.08925.01)24.1(1)24.1()24.1(=-=Φ-=-Φ=-<ξP (3))54.1()54.1()54.154.1()54.1(-Φ-Φ=<-=<ξξP P .8764.01)54.1(2)]54.1(1[)54.1(=-Φ=Φ--Φ= 说明:要制表提供查阅是为了方便得出结果,但标准正态分布表如此简练的目的,并没有给查阅造成不便.相反其简捷的效果更突出了核心内容.左边的几个公式都应在理解的基础上记住它,并学会灵活应用. 求服从一般正态分布的概率 例 设η服从)2,5.1(2N 试求: (1));5.3(<ηP (2));4(-<ηP (3));2(≥ηP (4)).3(<ηP 分析:首先,应将一般正态分布)2,5.1(N 转化成标准正态分布,利用结论:若),(~2σμηN ,则由)1,0(~N σμηξ-=知:,)(?? ? ??-Φ=<σμηx x P 其后再转化为非负标准正态分布情况的表达式,通过查表获得结果. 解:(1);8413.0)1(25.15.3)5.3(=Φ=??? ??-Φ=<ηP

正态性检验的一般方法汇总

正态性检验的一般方法 姓名:蓝何忠 学号:1101200203 班号:1012201 正态性检验的一般方法 【摘要】:正态分布是自然界中一种最常见的也是最重要的一种分布.因此,人们在实际使用统计分析时,总是乐于正态假定,但该假定是否成立,牵涉到正态性检验.在一般性的概率统计教科书中,只是把这个

问题放在一般性的分布拟合下作简短处理,而这种万精油式的检验方法,对正态性检验不具有特效.鉴于此,该文从不同角度出发介绍正态性检验的几种常见的方法,并且就各种方法作了优劣比较, 【引言】一般实际获得的数据,其分布往往未知。在数据分析中,经常要判断一组数据的分布是否来自某一特定的分布,比如对于连续性分布,常判断数据是否来自正态分布,而对于离散分布来说,常判断是否来自二项分布.泊松分布,或判断实际观测与期望数是否一致,然后才运用相应的统计方法进行分析。 几种正态性检验方法的比较。 2?一、拟合优度检验: (1)当总体分布未知,由样本检验总体分布是否与某一理论分布一致。 H0: 总体X的分布列为p{X=}=,i=1,2,…… H1:总体 X. 的分布不为 构造统计量 为真时H0发生的理为为样本中发生的实际频数,其中论频数。2)检验原理(2?意味着对于,=,观测频数与期望频数完全一致,若=0,则即完全拟合。 2?观察频数与期望频数越接近,则值越小。 2?当原假设为真时,有大数定理,与不应有较大差异,即值应较小。

2?若值过大,则怀疑原假设。 2?拒绝域为R={d} ,判断统计量是否落入拒绝域,得出结论。 二、Kolmogorov-Smirnov正态性检验: Kolmogorov-Smirnov检验法是检验单一样本是否来自某一特定它的 检验方法是以样本数比如检验一组数据是否为正态分布。分布。. 据的累积频数分布与特定理论分布比较,若两者间的差距很小,则推论该样本取自某特定分布族。即对于假设检验问题: H0:样本所来自的总体分布服从某特定分布 H1:样本所来自的总体分布不服从某特定分布 统计原理:Fo(x)表示分布的分布函数,Fn(x)表示一组随机样本的累计概率函数。 #}n1,2,,x{x?,i?i?)F(x n n : x)差距的最大值,定义如下式Fn为Fo(x)与(D设 D=max|Fn(x)-Fo(x)| P{Dn>d}=a. a,对于给定的位健康男性在未进食前的血糖浓度如表所示,试测验这组35例如: =6的正态分布,标准差数据是否来自均值μ=80σ87 77 92 68 80 78 84 77 81 80 80 77 92 86 76 80 81 75 77 72 81 90 84 86 80 68 77 87 76 77 78 92 75 80 78 n=35 检验过程如下:健康成人男性血糖浓度服从正态分布 H0:假设健康成人男性血糖浓度不服从正态分布 H1: 计算过程如表:

高中数学必修2-3第二章2.4正态分布

2.4 正态分布 1.问题导航 (1)什么是正态曲线和正态分布? (2)正态曲线有什么特点?曲线所表示的意义是什么? (3)怎样求随机变量在某一区间范围内的概率? 2.例题导读 请试做教材P 74练习1题. 1.正态曲线 函数φμ,σ(x )=1 2πσ e -(x -μ)2 2σ2,x ∈(-∞,+∞),其中实数μ和σ(σ>0)为参数, φμ,σ(x )的图象为__________________正态分布密度曲线,简称正态曲线. 2.正态分布 一般地,如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=??a b φ μ,σ (x)d x , 则称随机变量X 服从正态分布.正态分布完全由参数________μ和________σ确定,因此正态分布常记作____________N(μ,σ2),如果随机变量X 服从正态分布,则记为________X ~N (μ,σ2). 3.正态曲线的性质 正态曲线φμ,σ(x)=1 2πσ e -(x -μ)22σ2,x ∈R 有以下性质: (1)曲线位于x 轴________上方,与x 轴________不相交; (2)曲线是单峰的,它关于直线________x =μ对称; (3)曲线在________x =μ处达到峰值________1 σ2π ; (4)曲线与x 轴之间的面积为________1; (5)当________σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移,如图①; (6)当μ一定时,曲线的形状由σ确定,σ________越小,曲线越“瘦高”,表示总体的分布越集中;σ________越大,曲线越“矮胖”,表示总体的分布越分散,如图②. 4.正态总体在三个特殊区间内取值的概率值

初中数学_正多边形和圆教学设计学情分析教材分析课后反思

四教学设计 (一)教学目标 知识与技能 1.了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长,边心距,中心角之间的关系. 2.会进行相关的计算. 过程与方法 (二)、教学重、难点 重点:讲清正多边形和圆中心,正多边形半径,中心角,弦心距,边长之间的关系. 难点探索正多边形和圆的关系. (三)、教学准备 多媒体课件 (四)、教学方法 分组讨论,讲练结合 三学情分析 学生圆的性质掌握的不牢固,课堂上注意力不持久,对数学问题缺乏兴趣。需要教师激发学生学习数学的兴趣,帮助学生树立信心,逐步养成良好的学习习惯,提高学生分析问题解决问题的能力. 效果分析

进一步巩固圆的性质,巩固垂径定理的应用.让学生进一步体会垂径定理在生活中的应用的广泛性,将正多边形问题转化为三角形问题. 八.观课记录 记录人:时春雷 本节课根据学生年龄特征,认知规律及已有的数学知识水准进行教学,所以,根据教学内容和学生实际水平,我认为教师采用了以下的教学方法: 1、教师点拨、引导,充分发挥学生的主观能动性,调动学生的理解和分析能力,让学生联系实际,动脑分析,充分体现出教为主导,学为主体的教育原则。 2、采用实验讨论法,让学生在讨论实践的过程中找出应吸取的经验教训,并联系现实,使学生在尝试学习中自主地得出结论,并使结论为现实服务。 3、采用尝试教学法,指导学生自学,让学生动手寻找问题答案,使学生的思维能力和实践创造能力得到提高。 课堂中教师为每一个学生提供参与学习活动的机会,在活动中培养他们的综合能力和合作意识,把课堂还给学生充分体现教师为辅学生为主的原则。对本节课的学习,学生的热情程度高。动手操作和课件辅助教学提高了学生的兴趣,使学生的注意力集中,全神贯注。学生学习态度认真,求知欲高。从整体来说这节课是非常成功的. 二、教材分析: 本节课是在学生学习了圆的性质后学习,这些知识为本节的学习起着铺垫作用。本节内容正多边形和圆也是今后进一步研究圆的性质

24.3 正多边形与圆 教学设计

24.3 正多边形和圆 一、【教学目标】 知识与能力:了解正多边形与圆的关系,以及正多边形的中心、半径、边心距、中心角等概念.经历探索正多边形与圆的关系过程,学会运用圆的有关知识解决问题,并能运用正多边形的知识解决圆的有关计算问题. 过程与方法:学生在探讨正多边形和圆的关系的学习过程中,体会到要善于发现和解决问题,提升学生的观察、比较、分析、概括及归纳的思维能力和推理能力. 情感态度与价值观:学生经历观察、发现、探究等数学活动,感受到数学来源于生活,又应用于生活,体会到事物之间是相互联系,相互作用的. 重点:了解正多边形与圆的关系,了解正多边形的有关概念. 难点:探索正多边形与圆的关系. 二、【教学过程】 一、巩固基础,复习回顾 问题1:什么是多边形? 问题2:多边形的内角和、外角和分别是多少? 问题3:什么样的多边形是正多边形? 问题4:正多边形都有哪些性质?(数量关系和对称性) 教师演示课件,提出问题,引导学生观察、思考. 学生独立思考,发表各自见解. 二、情景引入,探索新知 1、提出问题 你知道正多边形与圆的关系吗? 正多边形和圆的关系非常密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆. 例题:以圆内接正五边形为例证明:如图,把⊙O分成相等的5段弧,依次连接 各分点得到正五边形ABCDE. 问题:如果将圆n等分,依次连接各分点得到一个n边形,这n边形一定是正n边形吗? 定义:把圆分成n(n≥3)等份:依次连结各分点所得的多边形是这个圆的内 接正多边形. 教师演示课件,把圆分成相等的5段弧,依次连接各个分点得到五边形. 教师引导学生从正多边形的定义入手,证明多边形各边都相等,各角都相等,引导学生观察、分析.

正态性检验

利用SPSS检验数据是否符合正态分布 1.下面我们来看一组数据,并检验“期初平均分”数据是否呈正态分布(此数据已在SPSS 里输入好) 2.在SPSS里执行“分析—>描述统计—>频数统计表”(菜单见下图,英文版的可以找到相 应位置),然后弹出左边的对话框,变量选择左边的“期初平均分”,再点下面的“图表” 按钮,弹出图中右边的对话框,选择“直方图”,并选中“包括正态曲线”

3.设置完后点“确定”,就后会出来一系列结果,包括2个表格和一个图,我们先来看看 最下面的图,见下图, 4.上图中横坐标为期初平均分,纵坐标为分数出现的频数。从图中可以看出根据直方图绘 出的曲线是很像正态分布曲线。如何证明这些数据符合正态分布呢,光看曲线还不够,还需要检验: 检验方法一:看偏度系数和峰度系数 我们把SPSS结果最上面的一个表格拿出来看看(见下图): 偏度系数Skewness=-0.333;峰度系数Kurtosis=0.886;两个系数都小于1,可认为近似于正态分布

检验方法二:单个样本K-S检验 若有分组,先分组,“数据”-“拆分文件”,“分组方式”中移入组别变量。 在SPSS里执行“分析—>非参数检验—>单个样本K-S检验,弹出对话框,检验变量选择“期初平均分”,检验分布选择“正态分布”,然后点“确定”。

检验结果为: 从结果可以看出,K-S检验中,Z值为0.493,P值 (sig 2-tailed)=0.968>0.05,因此数据呈近似正态分布 检验方法三:Q-Q图检验 在SPSS里执行“图表—>Q-Q图”,弹出对话框,见下图: 变量选择“期初平均分”,检验分布选择“正态”,其他选择默认,然后点“确定”,最后可以得到Q-Q图检验结果,结果很多,我们只需要看最后一个图,见下图。

高中正态分布经典练习题

正 态分布 一、选择题 1.已知随机变量ξ服从正态分布)9,2(N ,若)1()1(-<=+>c P c P ξξ,则c 等于() A.1 B.2 C.3 D.4 2.已知随机变量ξ服从正态分),2(2σN ,且8.0)4(=<ξP ,则)20(<<ξP 等于() A.0.6 B.0.4 C.0.3 D.0.2 3.已知随机变量ξ服从正态分布),2(2σN ,(4)0.84P ξ=≤,则(0)P ξ≤等于() A.0.16 B.0.32 C.0.68 D.0.84 4.已知随机变量X 服从正态分布),2(2σN ,8.0)40(=<X P 等于() A .0.1B.0.2C.0.4D.0.6 5.已知随机变量ξ服从正态分布),3(2σN ,且3.0)2(=<ξP ,则)42(<<ξP 等于() A.0.5 B.0.2 C.0.3 D.0.4 6.已知随机变量ξ服从正态分布),3(2σN ,(4)0.842P ξ=≤,则(2)P ξ≤等于() 7.已知随机变量X 服从正态分布)1,3(N ,且6826.0)42(=<X P 等于() A.0.1588 B.0.158 C.0.1586 D.0.1585 8.已知随机变量X 服从正态分布),0(2σN ,若023.0)2(=>X P ,则(22)P X -≤≤等于() A.0.477 B.0.628 C.0.954 D.0.977 9.在某次联考数学测试中,学生成绩ξ服从正态分布2(100,)(0)σσ>,若ξ在(80,120)内的概率为0.8,则落在(0,80)内的概率为() A.0.05 B.0.1 C.0.15 D.0.2 10.已知随机变量X 服从正态分布2(,)N μσ,且(22)0.9544P X μσμσ-<<+=,()0.6826P X μσμσ-<<+=,若4,1μσ==,则(56)P X <<=() A.0.1358 B.0.1359 C.0.2716 D.0.2718 11.某商场经营的一种袋装的大米的质量服从正态分布)1.0,10(2N (单位kg ),任选一袋这种大米,其质量在9.8~10.2kg 的概率为() A.0.0456 B.0.6826 C.0.9544 D.0.9974 12.一批电池的使用时间X (单位:小时)服从正态分布)4,36(2N ,在这批灯泡中任取一个“使用时间不小于40小时”的概率是() C.0.3174 D.0.1587 二、填空题

相关文档
最新文档