整数线性规划问题
整数线性规划

分枝定界法的理论基础:
1 2 k , i j (1) max cx max (max cx, max cx, , max cx)
x x1 x 2 x k
(2) 若 i j ,则 max cx max cx
xi xi x
分 枝
给定整数规划问题IP max z C T X
若x 的某个分量 xi 不是整数,
0
0
则将 IP分解为两个子问题
max z C X AX b X 0 X为整数向量 xi [ xi0 ]
T max z C X AX b X 0 X为整数向量 xi [ xi0 ] 1
记 z0 z
x1 4, x1 5
将问题B0分解为两个子问题B1和B2(分枝), 分别解B1,B2得 B1: x1=4, x2=2.10, z1=349 B2: x1=5, x2=1.57, z2=341
max z 40 x1 90 x2 max z 40 x1 90 x2 9 x1 7 x2 56 7 x 20 x 70 1 2 x1 4 B1 x1 , x2 0 9 x1 7 x2 56 7 x 20 x 70 1 2 x1 5 B2 x1 , x2 0
4、几点说明 (1)、如果要求目标的最大值
max z cij xij
令
bij M cij
i
j
其中
M max{ cij }
效率矩阵可变为B,将分配问题转换为一个极 小化问题
min z
'
b x
ij i j
ij
(2)、如果分配问题中,人员数 m 不等于工作数 n 时,可以类似于不平衡运输问题建立模型的 方法,增加虚拟人员或虚拟工作。
运筹学中的整数规划问题分析

运筹学中的整数规划问题分析运筹学是运用数学和定量分析方法,通过对系统的建模和优化,来解决实际问题的学科。
其中整数规划是运筹学中的一个重要分支,它在许多实际情况中得到广泛应用。
本文将对整数规划问题进行分析,并探讨其解决方法与应用领域。
一、整数规划问题定义及特点整数规划是一类线性规划问题的扩展,其目标函数和约束条件中的变量取值限定为整数。
通常,整数规划问题可以形式化表示为:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t.a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + a₂₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ∈ Z其中,Z为目标函数值,x₁, x₂, ..., xₙ为待求解的整数变量,c₁, c₂, ..., cₙ为目标函数的系数,aᵢₙ为约束条件的系数,b₁, b₂, ..., bₙ为约束条件的右端常数。
整数规划问题的特点在于整数约束条件的引入,使其解空间变得有限,增加了问题的复杂性。
与线性规划问题相比,整数规划问题更接近实际情况,能够更准确地描述和解决很多实际问题。
二、整数规划问题的解决方法解决整数规划问题的方法主要有以下几种:穷举法、剪枝法、分支定界法、动态规划法等。
具体使用哪种方法需要根据问题的规模和特点来确定。
1. 穷举法是最简单直观的方法,通过枚举搜索整数解空间中的每一个可能解来寻找最优解。
然而,由于整数解空间往往非常大,这种方法在实际问题中往往是不可行的。
2. 剪枝法是一种通过对解空间进行剪枝操作,减少搜索空间的方法。
通过合理选择剪枝条件,可以避免对明显无解的解空间进行搜索,从而提高求解效率。
3. 分支定界法是一种将整数规划问题不断分解为子问题,并对子问题进行界定的方法。
通过不断缩小问题规模,并计算上下界确定最优解的位置,可以有效地求解整数规划问题。
Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题标题:Matlab求解线性规划和整数规划问题引言概述:Matlab是一种功能强大的数值计算软件,广泛应用于各个领域的数学建模和优化问题求解。
本文将介绍如何使用Matlab求解线性规划和整数规划问题,并结合实例详细阐述求解过程。
一、线性规划问题的求解1.1 定义线性规划问题:线性规划是一种优化问题,目标函数和约束条件均为线性函数。
通常包括最大化或最小化目标函数,并满足一系列约束条件。
1.2 确定决策变量和约束条件:根据问题的实际情况,确定需要优化的决策变量和约束条件。
决策变量表示问题中需要求解的未知量,约束条件限制了决策变量的取值范围。
1.3 使用Matlab求解线性规划问题:利用Matlab提供的优化工具箱,使用线性规划函数linprog()进行求解。
通过设置目标函数系数、约束条件和边界条件,调用linprog()函数得到最优解。
二、整数规划问题的求解2.1 定义整数规划问题:整数规划是在线性规划的基础上,决策变量限制为整数值。
整数规划问题在实际应用中更具有实际意义,例如资源分配、路径选择等。
2.2 确定整数规划问题的特点:整数规划问题通常具有离散性和复杂性,需要根据实际情况确定整数规划问题的特点,如整数变量的范围、约束条件等。
2.3 使用Matlab求解整数规划问题:Matlab提供了整数规划函数intlinprog(),通过设置目标函数系数、约束条件和整数变量的范围,调用intlinprog()函数进行求解。
三、线性规划问题实例分析3.1 实例背景介绍:以某公司的生产计划为例,介绍线性规划问题的具体应用场景。
3.2 定义决策变量和约束条件:确定决策变量,如产品的生产数量,以及约束条件,如生产能力、市场需求等。
3.3 使用Matlab求解线性规划问题:根据实例中的目标函数系数、约束条件和边界条件,调用linprog()函数进行求解,并分析最优解的意义和解释。
整数线性规划及0-1规划 图文

例3 选课策略
课号
课名
学分
所属类别
先修课要求
1
微积分
5
数学
2
线性代数
4
数学
3
最优化方法
4
数学;运筹学 微积分;线性代数
4
数据结构
3
数学;计算机
计算机编程
5
应用统计
4
数学;运筹学 微积分;线性代数
6
计算机模拟
3
计算机;运筹学
计算机编程
7
计算机编程
2
计算机
8
预测理论
2
运筹学
应用统计
9
数学实验
3
运筹学;计算机 微积分;线性代数
7 计算机编程
计算机
8
预测理论
运筹学
9
数学实验 运筹学;计算机
约束条件
最少2门数学课, 3门运筹学课, 2门计算机课。
xi=1 ~选修课号i 的 课程(xi=0 ~不选)
目标函数 选修课程总数最少
9
Min Z xi i1
x 1x2x3x4x52
x3x5x6x8x93 x4x6x7x92
小型 中型 大型
现有量
钢材(吨)
1.5
3
5
600
劳动时间(小时) 280
250
400
60000
利润(万元)
2
3
4
• 制订月生产计划,使工厂的利润最大。
• 如果生产某一类型汽车,则至少要生产80辆,
那么最优的生产计划应作何改变?
汽车厂生产计划
模型建立
设每月生产小、中、大型 汽车的数量分别为x1, x2, x3
典型的整数线性规划问题

小型 中型 大型
现有量
钢材(吨)
1.5
3
5
600
劳动时间(小时) 280
250
400
60000
利润(万元)
2
3
4
• 制订月生产计划,使工厂的利润最大。
• 如果生产某一类型汽车,则至少要生产80辆,
那么最优的生产计划应作何改变?
汽车厂生产计划
模型建立
设每月生产小、中、大型 汽车的数量分别为x1, x2, x3
模型建立
令xj表示对第j个发展项目的投资数量
n
Max z cj x j j 1 n
s. t. a j xj b j 1
xj 0或1(j=1,2, ,n)
整数 线性 规划 0-1 模型
(IP)
整数线性规划及0-1规划
例1 汽车厂生产计划
汽车厂生产三种类型的汽车,已知各类型每辆车对钢 材、劳动时间的需求,利润及工厂每月的现有量。
方法3:化为非线性规划
x1=0 或 80
x1(x1 80) 0
x2=0 或 80
x2 (x2 80) 0
x3=0 或 80
x3 (x3 80) 0
非线性规划(Non- Linear Programming,简记NLP)
NLP 虽 然 可 用 现 成 的 数 学 软 件 求 解 ( 如 LINGO, MATLAB),但是其结果常依赖于初值的选择。
丙 1’18” 1’07”8 1’24”6 59”4
丁 1’10” 1’14”2 1’09”6 57”2
戊 1’07”4 1’11” 1’23”8 1’02”4
讨论 丁蛙泳c43 =69.675.2,戊自由泳c54=62.4
Matlab求解线性规划和整数规划问题

Matlab求解线性规划和整数规划问题引言概述:Matlab是一种功能强大的数学软件,可以用于求解各种数学问题,包括线性规划和整数规划问题。
本文将介绍如何使用Matlab求解这两类问题,并分析其优点和适用范围。
正文内容:1. 线性规划问题1.1 线性规划问题的定义线性规划问题是指在一定的约束条件下,通过线性目标函数求解最优解的问题。
其数学模型可以表示为:max/min f(x) = c^T * xs.t. Ax <= bx >= 0其中,c是目标函数的系数向量,x是决策变量向量,A是约束条件的系数矩阵,b是约束条件的右侧向量。
1.2 Matlab中的线性规划求解函数Matlab提供了linprog函数来求解线性规划问题。
该函数可以通过设定目标函数系数向量c、约束条件的系数矩阵A和右侧向量b,以及决策变量的上下界,来求解线性规划问题的最优解。
1.3 线性规划问题的应用线性规划问题在实际应用中非常广泛,例如生产计划、资源分配、运输问题等。
通过Matlab求解线性规划问题,可以高效地得到最优解,为实际问题的决策提供科学依据。
2. 整数规划问题2.1 整数规划问题的定义整数规划问题是指在线性规划问题的基础上,决策变量的取值限制为整数。
其数学模型可以表示为:max/min f(x) = c^T * xs.t. Ax <= bx >= 0x为整数其中,c、A、b的定义与线性规划问题相同,x为整数。
2.2 Matlab中的整数规划求解函数Matlab提供了intlinprog函数来求解整数规划问题。
该函数可以通过设定目标函数系数向量c、约束条件的系数矩阵A和右侧向量b,以及决策变量的上下界和整数约束条件,来求解整数规划问题的最优解。
2.3 整数规划问题的应用整数规划问题在实际应用中常见,例如生产调度、投资决策、路径规划等。
通过Matlab求解整数规划问题,可以考虑到决策变量的整数性质,得到更为实际可行的解决方案。
运筹学整数线性规划

Ax b s.t.x 0,i 1,2,...,n
xi为整数,i 1,2,...,p
1 整数线性规划问题举例
•例311 某财团有 B 万元的资金,有 n(n 2) 个可以考
虑的投资项目,假定每个项目最多投资一次。其中
第 j 个项目需投资金额为 b j 万元,将会获得的利润
为 c j 万元,问应如何选择项目才能使得获得的总 利润最大?
2 解整数线性规划问题的困难性
LP的可行集合
费用下降方向 LP问题的最优解
ILP问题的最优解
2 解整数线性规划问题的困难性续
• 最优解不一定在顶点上达到 • 最优解不一定是松弛问题最优解的邻近整数解 • 整数可行解远多于松弛问题的顶点;枚举法不可
取 • 解ILP问题要远难于解松弛的LP问题 • 如果松弛的LP问题无解;显然原ILP问题无解 反
bjxj B
j1
x
j
0或 1;
j
1, 2..., n
旅行售货员问题
• 此外;运筹学还有一个著名的问题:
旅行售货员问题TSP
显示问题
2 解整数线性规划问题的困难性
整数规划
min z c x Ax b
s.t.x 0, x为整数
松弛的线性规划问题
min z c x
s.t. xAห้องสมุดไป่ตู้x
0
b
可行解是松弛问题的可行解 最优值大于等于松弛问题的最优值
第一节 整数线性规划问题
• 整数线性规划问题举例 • 解整数线性规划问题的困难性
整数线性规划问题
• 整数线性规划ILP具有下述形式
min c x
Ax b
s .t .
x
第三章整数线性规划

割平面法
IP LP xl*
Yes xI* = xl*
判别是否整数解
No 加入割平面条件 用对偶单纯型方法继续求解
§3.3 分枝定界方法
分枝定界方法的基本思想 分枝定界方法的实现——例题
1 分枝定界方法的基本思想
如果松弛问题(P0)无解,则(P)无解;
如果(P0)的解为整数向量,则也是(P)的解;
min -(x1 x2 ) s.t.-4x1 2 x2 1 (P1 ) 4x1 2 x2 11 x1 1 x1 , x2 0, Integer
P2
约束 x1 1, x1 2 (它们将x1=3/2排除在外),得到两个子问题:
min -(x1 x2 ) s.t.-4x1 2 x2 1 (P2 ) 4x1 2 x2 11 x1 2 x1 , x2 0, Integer
运筹 帷幄之中
决胜 千里之外
运 筹 学
主讲教师
赵玉英
62338357(O) yuyingzhao@
北京林业大学理学院
第3章 整数线性规划
整数线性规划问题 Gomory割平面方法(1958) 分枝定界方法(Land doig and Dakin 1960’s) 0-1规划
3
(3/2,10/3)
3
x1
3 整数线性规划问题的求解
思路2:由于纯整数线性规划的可行集合就是一些离散 的格点,可否用穷举的方法寻找最优解? 当格点个数较少时,这种方法可以; 对一般的ILP问题,穷举方法无能为力。
3 整数线性规划问题的求解
目前,常用的求解整数规划的方法有: 割平面法和分枝定界法; 对于特别的0-1规划问题采用隐枚举法和匈牙利法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 整数线性规划(ILP)具有下述形式
min c x
Ax b
s.t .
x
0,
x为
整数
❖ 0-1整数线性规划模型
min c x
Ax b
s.t.
xi
0或1; i
1,2,...,
n
❖ 混合整数线性规划
min c x
Ax b s.t.x 0,i 1,2,...,n
xi为整数,i 1,2,...,p
LP的可行集合
费用下降方向 LP问题的最优解
ILP问题的最优解
2. 解整数线性规划问题的困难性续
• 最优解不一定在顶点上达到 • 最优解不一定是松弛问题最优解的邻近整数解 • 整数可行解远多于松弛问题的顶点,枚举法不
可取
• 解ILP问题要远难于解松弛的LP问题 • 如果松弛的LP问题无解,显然原ILP问题无解。
1. 整数线性规划问题举例
❖ 例 某3.财1.团1有 B 万元的资金,有 n(n 2) 个可以考
虑的投资项目,假定每个项目最多投资一次。其中
第 j 个项目需投资金额为 b j 万元,将会获得的利润
为 c j 万元,问应如何选择项目才能使得获得的总 利润最大?
例3.1.1 投资决策问题
❖ 分析
• 变量—每个项目是否投资 x j 0或1 j 1,2...,n
• 约束—总金额不超过限制
bjxj B
j 1
• 目标—总收益最大
n
max c j x j j 1
例3.1.1 投资决策问题
❖ 数学模型
n
maxz c j x j j 1
s.t.
0
n
bj x j
j 1
B
x
j
0或1; j
1, 2..., n
旅行售货员问题
❖ 此外,运筹学还有一个著名的问题:
旅行售货员问题(TSP)
显示问题
旅行售货员问题(TSP)
2. 解整数线性规划问题的困难性
整数规划
min z c x Ax b
s.t.x 0, x为整数
松弛的线性规划问题
min z c x
s.t. xA x
0
b
可行解是松弛问题的可行解 最优值大于等于松弛问题的最优值
2. 解整数线性规划问题的困难性
反之,不一定成立。
• 如果松弛的LP问题无界呢?可以证明原ILP问题 也无界