驻车制动装置的设计

驻车制动装置的设计
驻车制动装置的设计

驻车制动装置的设计

黄键李薇辜振宇

(福州大学机械工程学院福州350002)

摘要:本文比较详细地介绍了驻车制动装置的结构形式和设计方法。

关键词:驻车制动设计

1 前言

驻车制动装置是使汽车在路面(包括斜坡)上停驻时,为防止车辆滑行,以及汽车在坡道上起步时,用以防止车辆后退的装置。驻车制动装置有别于行车制动装置,它们各自有相互独立的操纵装置,驻车制

动装置常采用手操纵机构,所以通常又称为手制动,但驻车制动装置既可以是手操纵也可以是脚操纵。一

般小汽车和轻型卡车采用手操纵机构,而大型车辆则采用脚操纵的驻车制动踏板机构。本文主要介绍手操

纵的驻车制动装置。

2 驻车制动装置的结构

驻车制动装置包括驻车制动器和驻车驱动机构两

部分。驻车制动器按其作用部位分为两种类型,一种是

制动传动轴的中央制动器,另一种是与行车制动器共用

的车轮制动器,目前,多采用作用于后轮的驻车机构。

驻车驱动机构因其对可靠性的要求较高,一般都采用机

械式的驱动机构,但究竟是采用中央制动器驻车还是采

用车轮制动器驻车,其驻车驱动机构有所不同,而不管

是哪一种的驻车类型,制动器都有鼓式和盘式之分,所

以,驻车驱动机构还有所差异。

图 1 为采用盘式中央制动器的驻车制动装置,

在鼓式制动器中利用行车制动器作手制动器使用时,如

图3,一般是在它的后制动蹄上通过固定销装有一个制

动蹄杠杆,在这个杠杆的中间通过一根制动蹄推杆同前

制动蹄连接。驻车制动时,拉紧或摆动手制动操纵杆,

经一系列杠杆和拉绳传动,将驻车制动杠杆的下端向前

拉,使之绕固定销转动,其中间支点推动制动推杆左移,将前制动蹄推向制动鼓。当前制动蹄压靠到制动

鼓上之后,推杆停止移动,此时制动杠杆

绕中间支点继续转动,于是制动杠杆的上

端向右移动,使后制动蹄压靠到制动鼓上,

从而产生驻车制动作用。

对于带有驻车驱动的盘式车轮制动

器,如图 4,驻车时是通过驻车拉索的拉

动使位于制动钳体内的指销推动辅助活塞

移动,辅助活塞进而顶住活塞移动,先使

活塞一侧的制动块压靠到制动盘,接着,

此反作用力则推动制动钳体连同另一侧的

制动块压靠到制动盘,从而产生驻车制动

作用。

3 驻车制动装置的设计

3.1 结构设计

驻车制动装置的设计其实应在行车制动系设计时加以考虑,首先应选择驻车制动装置的类型:轿车上一般

采用驻车与行车制动共用的车轮制动器,而货车上一般采用中央制动器。对于前者,考虑到行车制动与驻车制动的功能合二为一,如果是用鼓式的制动器,那么制动器就要选用领从蹄式或双向增力式的结构,高

级轿车更多的是使用双向增力式的结构;对于后者,由于是中央制动器,行车制动器的选择就不受驻车制

动的影响,而驻车制动器如果是用鼓式的制动器,则大多采用结构简单的领从蹄式或双向增力式。

驻车制动装置的类型确定后,进行驻车驱动机构的设计。采用中央制动器的驻车驱动机构比较简单, 主要考虑手操纵力的大小和手柄的操作空间应符合人体工程。采用车轮制动器的驻车驱动机构除了设计杠 杆增大手作用力外,还应考虑施加给两个后制动器的驻车驱动力应相等,所以,在驻车驱动机构中要设置 均衡器,用来向每个后制动器施加相等的作用力。图 5 是几种常见的均衡器。其中形式(d )通常用于盘 式车轮制动器,其它几种大多用于鼓式车轮制动器。

手制动操纵杆的设计主要根据驾驶 室的空间大小,常见的有拉杆式的(如图 6 中所示),也有摆臂式的(如图 7)。

驻车制动装置的结构形式都确定后, 还应校核以下几项,使其满足要求。

3.2 驻坡效能的验算

驻坡效能是以汽车在良好路面上能 可靠而无时间限制地停驻的最大坡度(%) 来衡量,图 7 为汽车在上坡路上停驻时的 受力情况,根据参考文献 1,可知汽车在 上坡路和下坡路上停驻时的坡度极限倾 角α和α'分别是:

α = arctan ?L 1 ?

L ? h g

α ' =

arctan

? L 1

?

L + h g

式中 ? -------轮胎与地面间的附着系 数, ? =0.7,

如果坡度极限倾角α和α'不小于

16%~20%,则说明汽车满足驻坡效能。

3.3 制动手柄拉力的验算

驻车制动器要能保证产生汽车在坡

路为α的坡道上可靠地 制动力矩为:

T 0

= W r ? ?e

sin α

停车所需的

(1)

式中 r e -------车轮的有效半径,m ; W-------汽车所受重力,N ;

单个后轮驻车制动器的制动力矩上限为:

T 01

= 1 2

? ? W r e

sin

α

(2)

中央驻车制动器的制动力矩上限为:

? ? α T =

W r e

sin (3)

i

式中 i 0-------后驱动桥的主减速比;

设加在手制动操纵杆上的拉力为 P ,对于驻车制动共用后轮制动器时它的制动驱动力 F 为:

1

F = P ληm

(4)

2

95

λ------驻车驱动机构的总杠杆比,

设计技术

ηm ------驻车驱动机构的机械效率,ηm =0.6~0.8, 对于中央驻车制动器,它的制动驱动力 F 为:

F = P λη

(5)

m

在如图 8 的驻车驱动方式中,当车轮有正向滑行趋势时,分别对两个制动蹄进行受力分析,可得:

图 8 驻车制动器简图

(a )制动器简图 (b)受力分析图

? +) F

? ?ρ N

? ρ

= 0

( Q l 13l 1

f 1

1

c

Q l 2 3

= F f

2 ? +ρ

N 2

? ρc

F 其中,f 1

= μ N 1

, F f

2=μ N 2

, μ 为制动蹄与制动鼓间的摩擦系数,

将 N

F

f 1

1

=

μ

N

F f 2

2

=

μ 代入方程组,求得 F f 1 和 F f 2 ,

T = (F + F )ρ

?

(

)

Q l

?

μ ρ

所以,制动力矩 = ? Q l 1

3 ? l 1

+

2 3

?

f 1 f 2

ρ ? ?μ ρ ρ

+ ?μ ρ ?

c

l

c

?

对制动蹄杠杆进行受力分析,并令

ξ = 2

,可得:

l 1

Q 1

= ?ξ F , Q 2

= (ξ ? ?1) F ,带入上式,则

F l ) (ξ ?1)Fl ?

3 ? l 1

3

式,使T T01[T01见(2)式]或T T0[T0见(3)式],计算出的驻车制动手柄拉力应不大于500N

(轿车)~700N(货车),否则,可通过改变驻车驱动机构的总杠杆比λ或制动蹄杠杆的ξ值进行调整。同理,也可求得当车轮有逆向滑行趋势时的制动力矩为:

96

设计技术

F l) (ξ?1)Fl?

( 3 ?l1+ 3 μρ(7) T = ?ξ

??ρc+ ?μρρc??μρ??

按同样方法进行验算。

3.4 制动手柄行程的验算

制动手柄行程应不大于160~200mm。

制动蹄杠杆端行程一般为8~10mm.,所以制动手柄行程s=λ×\u65288X8~10)mm,可见,为了使制动手柄行程满足要求,实际上λ可选20 或与此数相差不多的数值。

另外,驻车制动操纵装置的安装位置要适当,其操纵装置必须有足够的储备行程,一般应在操纵装置

全行程的三分之二以内产生规定的制动效能,而且驻车驱动机构中要设置调整螺母,以备维修使用。

参考文献

[1] 刘惟信.汽车设计.清华大学出版社,667-718

[2] 小田柿浩三(日).汽车设计.机械工业出版社,151-164

[3] 张洪欣.汽车设计.机械工业出版社,227-P252

[4] JB4019-85.汽车驻车制动性能要求

详解四大驻车制动装置

现代汽车对于电子化的运用越来越广泛,驾校教练口中的“踩刹车、踩离合、脱空档、拉手刹”等等一些列各种组合与连续的动作,在高科技的参与下简化为了踩刹车和踩油门。这里面有很大一部分由自动变速器负责简化,剩下的就是小编今天要讲的刹车系统中的手刹、P 挡、电子手刹与自动驻车,来看看它们有啥区别? ●传统手刹 其实我们通常说的手刹专业称呼应该叫驻车制动器。与行车制动器(我们常说的脚刹)有所不同,从名字就能分辨出来,行车制动是在车辆行驶过程中短时间制动使车辆停稳或者减速的,而驻车制动是在车辆停稳后用于稳定车辆,避免车辆在斜坡路面停车时由于溜车造成事故。 工作原理及结构 手刹属于辅助制动系统,主要借助人力,一般在停车的时候,为了防止车辆自行溜车而设立的。手刹(驻车制动器)主要由制动杆,拉线,制动机构以及回位弹簧组成。是用来锁死传动轴从而使驱动轮锁死的,有些是锁死两只后轮。对于制动杆,其实就利用了杠杆原理,拉到固定位置通过锁止牙进行锁止。 而另一种是在变速器的后方,传动轴的前方,这种又叫做中央驻车制动器。制动原理大体相似,只是安装部位不同。 现在大多数乘用车都是采用四轮盘式制动器,其制动机构就集成在后轮的盘式制动器上。有些超级跑车的后制动盘上有两个卡钳,现在你知道为什么了吧。 如何使用手刹? 进行驻车制动时,踩下行车制动踏板,向上全部拉出驻车制动杆。欲松开驻车制动,同样踩下制动器踏板,将驻车制动杆向上稍微提起,用拇指按下手柄端上的按钮,然后将驻车制动杆放低到最低的位置。 优缺点 与手刹配套使用的还有回位弹簧。拉起手刹制动时,弹簧被拉长;手刹松开,弹簧回复原长。长期使用手刹时,弹簧也会产生相应变形。手刹拉线也同样会产生相应变形会变长。任何零件在长期、频繁使用时,都存在效用降低的现象。 不过这种手刹相对于后面要说到的几种驻车制动结构相对简单,成本低廉。 小结:传统的手刹驻车制动由于结构简单,成本低廉,在目前的汽车市场上还有很大一

制动系统匹配设计计算分解

制动系统匹配设计计算 根据AA车型整车开发计划,AA车型制动系统在参考BB轿车底盘制造平台的基础上进行逆向开发设计,管路重新设计。本计算是以选配C发动机为基础。 AA车型的行车制动系统采用液压制动系统。前、后制动器分别为前通风盘式制动器和实心盘式制动器,制动踏板为吊挂式踏板,带真空助力器,制动管路为双回路对角线(X型)布置,采用ABS。驻车制动系统为机械式手动后盘式制动,采用远距离棘轮拉索操纵机构。因AA车型与参考样车BB的整车参数接近,制动系统采用了BB样车制动系统,因此,计算的目的在于校核前/后制动力、最大制动距离、制动踏板力、驻车制动手柄力及驻坡极限倾角。 设计要符合GB 12676-1999《汽车制动系统结构、性能和试验方法》;GB 13594-2003《机动车和挂车防抱制动性能和试验方法》和GB 7258-2004《机动车运行安全技术条件》的要求,其中的踏板力要求≤500N,驻车制动停驻角度为20%(12),驻车制动操纵手柄力≤400N。 制动系统设计的输入条件 整车基本参数见表1,零部件主要参数见表2。 表1 整车基本参数

表2 零部件主要参数制动系统设计计算 1.地面对前、后车轮的法向反作用力 地面对前、后车轮的法向反作用力如图1所示。 图1 制动工况受力简图由图1,对后轮接地点取力矩得:

式中:FZ1(N):地面对前轮的法向反作用力;G(N):汽车重力;b(m):汽车质心至后轴中心线的水平距离;m(kg):汽车质量;hg(m):汽车质心高度;L(m):轴距;(m/s2):汽车减速度。 对前轮接地点取力矩,得: 式中:FZ2(N):地面对后轮的法向反作用力;a(m):汽车质心至前轴中心线的距离。 2.理想前后制动力分配 在附着系数为ψ的路面上,前、后车轮同步抱死的条件是:前、后轮制动器制动力之和等于汽车的地面附着力;并且前、后轮制动器制动力Fm1、Fm2分别等于各自的附着力,即:

驻车制动装置的设计

驻车制动装置的设计 黄键李薇辜振宇 (福州大学机械工程学院 福州 350002) 摘要:本文比较详细地介绍了驻车制动装置的结构形式和设计方法。 关键词:驻车制动设计 1前言 驻车制动装置是使汽车在路面(包括斜坡)上停驻时,为防止车辆滑行,以及汽车在坡道上起步时,用以防止车辆后退的装置。驻车制动装置有别于行车制动装置,它们各自有相互独立的操纵装置,驻车制动装置常采用手操纵机构,所以通常又称为手制动,但驻车制动装置既可以是手操纵也可以是脚操纵。一般小汽车和轻型卡车采用手操纵机构,而大型车辆则采用脚操纵的驻车制动踏板机构。本文主要介绍手操纵的驻车制动装置。 2驻车制动装置的结构 驻车制动装置包括驻车制动器和驻车驱动机构两 部分。驻车制动器按其作用部位分为两种类型,一种是 制动传动轴的中央制动器,另一种是与行车制动器共用 的车轮制动器,目前,多采用作用于后轮的驻车机构。 驻车驱动机构因其对可靠性的要求较高,一般都采用机 械式的驱动机构,但究竟是采用中央制动器驻车还是采 用车轮制动器驻车,其驻车驱动机构有所不同,而不管 是哪一种的驻车类型,制动器都有鼓式和盘式之分,所 以,驻车驱动机构还有所差异。 图1为采用盘式中央制动器的驻车制动装置, 在鼓式制动器中利用行车制动器作手制动器使用时,如 图3,一般是在它的后制动蹄上通过固定销装有一个制 动蹄杠杆,在这个杠杆的中间通过一根制动蹄推杆同前 制动蹄连接。驻车制动时,拉紧或摆动手制动操纵杆, 经一系列杠杆和拉绳传动,将驻车制动杠杆的下端向前 拉,使之绕固定销转动,其中间支点推动制动推杆左移,将前制动蹄推向制动鼓。当前制动蹄压靠到制动鼓上之后,推杆停止移动,此时制动杠杆 绕中间支点继续转动,于是制动杠杆的上 端向右移动,使后制动蹄压靠到制动鼓上, 从而产生驻车制动作用。 对于带有驻车驱动的盘式车轮制动 器,如图4,驻车时是通过驻车拉索的拉 动使位于制动钳体内的指销推动辅助活塞 移动,辅助活塞进而顶住活塞移动,先使 活塞一侧的制动块压靠到制动盘,接着, 此反作用力则推动制动钳体连同另一侧的 制动块压靠到制动盘,从而产生驻车制动 作用。 3驻车制动装置的设计 3.1 结构设计 驻车制动装置的设计其实应在行车制动系设计时加以考虑,首先应选择驻车制动装置的类型:轿车上一般

制动计算公式 (2)

平板台制动计算公式 一、前轴 1、前轴行车制动率=(最大行车制动力左+最大行车制动力右)÷【(动态轮荷左+动态轮荷右)×0.98】×100% 2、前轴不平衡率=(过程差值大-过程差值小)÷最大行车制动力中大的值×100% 二、后轴 1、后轴行车制动率=(最大行车制动力左+最大行车制动力右)÷【(动态轮荷左+动态轮荷右)×0.98】×100% 2、两种情况算法 (1)后轴行车制动率>60%时 后轴不平衡率=(过程差值大-过程差值小)÷最大行车制动力中大的值×100% (2)后轴行车制动率<60%时 后轴不平衡率=(过程差值大-过程差值小)÷【(动态)轮荷之和×0.98】×100% 滚筒制动台计算公式 一、前轴 1、前轴行车制动率=(最大行车制动力左+最大行车制动力右)÷【(轮荷左+轮荷右)×0.98】×100% 2、前轴不平衡率=(过程差值大-过程差值小)÷最大行车制动力中大的值×100% 二、后轴 1、后轴行车制动率=(最大行车制动力左+最大行车制动力右)÷【(轮荷左+轮荷右)×0.98】×100% 2、两种情况算法 (1)后轴行车制动率>60%时

后轴不平衡率=(过程差值大-过程差值小)÷最大行车制动力中大的值×100% (2)后轴行车制动率<60%时 后轴不平衡率=(过程差值大-过程差值小)÷【轮荷之和×0.98】×100% 注:(1)机动车纵向中心线位置以前的轴为前轴,其他轴为后轴; (2)挂车的所有车轴均按后轴计算; (3)用平板台测试并装轴制动力时,并装轴可视为一轴 整车制动率 整车制动率=最大行车制动力÷(整车轮荷×0.98)×100% 驻车制动率 驻车制动率=驻车制动力÷(整车轮荷×0.98)×100% 台式检验制动率要求(空载) 台式检验制动力要求(加载)

制动系统设计计算报告

制动系统设计计算 报告

文档仅供参考,不当之处,请联系改正。 目录 1 系统概述 .......................................................................... 错误!未定义书签。 1.1 系统设计说明......................................................... 错误!未定义书签。 1.2 系统结构及组成 ..................................................... 错误!未定义书签。 1.3 系统设计原理及规范 ............................................. 错误!未定义书签。 2 输入条件 .......................................................................... 错误!未定义书签。 2.1 整车基本参数......................................................... 错误!未定义书签。 2.2 制动器参数............................................................. 错误!未定义书签。 2.3 制动踏板及传动装置参数 ..................................... 错误!未定义书签。 2.4 驻车手柄参数......................................................... 错误!未定义书签。 3 系统计算及验证 .............................................................. 错误!未定义书签。 3.1 理想制动力分配与实际制动力分配...................... 错误!未定义书签。 3.2 附着系数、制动强度及附着系数利用率 .............. 错误!未定义书签。 3.3 管路压强计算......................................................... 错误!未定义书签。 3.4 制动效能计算......................................................... 错误!未定义书签。 3.5 制动踏板及传动装置校核 ..................................... 错误!未定义书签。 3.6 驻车制动计算......................................................... 错误!未定义书签。 3.7 衬片磨损特性计算 ................................................. 错误!未定义书签。 4 总结.................................................................................. 错误!未定义书签。 5 制动踏板与地毯距离....................................................... 错误!未定义书签。参考文献 ........................................................................... 错误!未定义书签。

制动计算公式精选文档

制动计算公式精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

平板台制动计算公式 一、前轴 1、前轴行车制动率=(最大行车制动力左+最大行车制动力右)÷【(动态轮荷左+动态轮荷右)×】×100% 2、前轴不平衡率=(过程差值大-过程差值小)÷最大行车制动力中大的值×100% 二、后轴 1、后轴行车制动率=(最大行车制动力左+最大行车制动力右)÷【(动态轮荷左+动态轮荷右)×】×100% 2、两种情况算法 (1)后轴行车制动率>60%时 后轴不平衡率=(过程差值大-过程差值小)÷最大行车制动力中大的值×100% (2)后轴行车制动率<60%时 后轴不平衡率=(过程差值大-过程差值小)÷【(动态)轮荷之和×】×100% 滚筒制动台计算公式 一、前轴 1、前轴行车制动率=(最大行车制动力左+最大行车制动力右)÷【(轮荷左+轮荷右)×】×100% 2、前轴不平衡率=(过程差值大-过程差值小)÷最大行车制动力中大的值×100% 二、后轴 1、后轴行车制动率=(最大行车制动力左+最大行车制动力右)÷【(轮荷左+轮荷右)×】×100% 2、两种情况算法 (1)后轴行车制动率>60%时 后轴不平衡率=(过程差值大-过程差值小)÷最大行车制动力中大的值×100% (2)后轴行车制动率<60%时 后轴不平衡率=(过程差值大-过程差值小)÷【轮荷之和×】×100% 注:(1)机动车纵向中心线位置以前的轴为前轴,其他轴为后轴;

(2)挂车的所有车轴均按后轴计算; (3)用平板台测试并装轴制动力时,并装轴可视为一轴 整车制动率 整车制动率=最大行车制动力÷(整车轮荷×)×100% 驻车制动率 驻车制动率=驻车制动力÷(整车轮荷×)×100% 台式检验制动率要求(空载) 台式检验制动力要求(加载) 台式检验制动力不平衡率要求(空载和加载)

详解四大驻车制动装置

详解四大驻车制动装置 现代汽车对于电子化的运用越来越广泛,驾校教练口中的“踩刹车、踩离合、脱空档、拉手刹”等等一些列各种组合与连续的动作,在高科技的参与下简化为了踩刹车和踩油门。这里面有很大一部分由自动变速器负责简化,剩下的就是小编今天要讲的刹车系统中的手刹、P 挡、电子手刹与自动驻车,来看看它们有啥区别? ●传统手刹 其实我们通常说的手刹专业称呼应该叫驻车制动器。与行车制动器(我们常说的脚刹)有所不同,从名字就能分辨出来,行车制动是在车辆行驶过程中短时间制动使车辆停稳或者减速的,而驻车制动是在车辆停稳后用于稳定车辆,避免车辆在斜坡路面停车时由于溜车造成事故。 工作原理及结构 手刹属于辅助制动系统,主要借助人力,一般在停车的时候,为了防止车辆自行溜车而设立的。手刹(驻车制动器)主要由制动杆,拉线,制动机构以及回位弹簧组成。是用来锁死传动轴从而使驱动轮锁死的,有些是锁死两只后轮。对于制动杆,其实就利用了杠杆原理,拉到固定位置通过锁止牙进行锁止。 而另一种是在变速器的后方,传动轴的前方,这种又叫做中央驻车制动器。制动原理大体相似,只是安装部位不同。 现在大多数乘用车都是采用四轮盘式制动器,其制动机构就集成在后轮的盘式制动器上。

有些超级跑车的后制动盘上有两个卡钳,现在你知道为什么了吧。 如何使用手刹? 进行驻车制动时,踩下行车制动踏板,向上全部拉出驻车制动杆。欲松开驻车制动,同样踩下制动器踏板,将驻车制动杆向上稍微提起,用拇指按下手柄端上的按钮,然后将驻车制动杆放低到最低的位置。 优缺点 与手刹配套使用的还有回位弹簧。拉起手刹制动时,弹簧被拉长;手刹松开,弹簧回复原长。长期使用手刹时,弹簧也会产生相应变形。手刹拉线也同样会产生相应变形会变长。任何零件在长期、频繁使用时,都存在效用降低的现象。

驻车制动装置的设计.教学提纲

驻车制动装置的设计.

设计技术 驻车制动装置的设计 黄键李薇辜振宇 (福州大学机械工程学院福州 350002) 摘要:本文比较详细地介绍了驻车制动装置的结构形式和设计方法。 关键词:驻车制动设计 1 前言 驻车制动装置是使汽车在路面(包括斜坡)上停驻时,为防止车辆滑行,以及汽车在坡道上起步时,用以防止车辆后退的装置。驻车制动装置有别于行车制动装置,它们各自有相互独立的操纵装置,驻车制 动装置常采用手操纵机构,所以通常又称为手制动,但驻车制动装置既可以是手操纵也可以是脚操纵。一 般小汽车和轻型卡车采用手操纵机构,而大型车辆则采用脚操纵的驻车制动踏板机构。本文主要介绍手操 纵的驻车制动装置。 2 驻车制动装置的结构 驻车制动装置包括驻车制动器和驻车驱动机构两 部分。驻车制动器按其作用部位分为两种类型,一种是 制动传动轴的中央制动器,另一种是与行车制动器共用 的车轮制动器,目前,多采用作用于后轮的驻车机构。 驻车驱动机构因其对可靠性的要求较高,一般都采用机 械式的驱动机构,但究竟是采用中央制动器驻车还是采 用车轮制动器驻车,其驻车驱动机构有所不同,而不管 是哪一种的驻车类型,制动器都有鼓式和盘式之分,所 以,驻车驱动机构还有所差异。 图 1 为采用盘式中央制动器的驻车制动装置, 在鼓式制动器中利用行车制动器作手制动器使用时,如 图 3,一般是在它的后制动蹄上通过固定销装有一个制 动蹄杠杆,在这个杠杆的中间通过一根制动蹄推杆同前 制动蹄连接。驻车制动时,拉紧或摆动手制动操纵杆, 经一系列杠杆和拉绳传动,将驻车制动杠杆的下端向前 拉,使之绕固定销转动,其中间支点推动制动推杆左移,将前制动蹄推向制动鼓。当前制动蹄压靠到制动 鼓上之后,推杆停止移动,此时制动杠杆 绕中间支点继续转动,于是制动杠杆的上 端向右移动,使后制动蹄压靠到制动鼓上, 从而产生驻车制动作用。 对于带有驻车驱动的盘式车轮制动 器,如图 4,驻车时是通过驻车拉索的拉 动使位于制动钳体内的指销推动辅助活塞 移动,辅助活塞进而顶住活塞移动,先使 活塞一侧的制动块压靠到制动盘,接着, 此反作用力则推动制动钳体连同另一侧的 制动块压靠到制动盘,从而产生驻车制动 作用。 3 驻车制动装置的设计 3.1 结构设计 驻车制动装置的设计其实应在行车制动系设计时加以考虑,首先应选择驻车制动装置的类型:轿车上一般

汽车驻车制动性能等效测试坡台(上)

DP-系列等效坡台研制报告(上) Altie 20190901 一、概述 等效坡台是一种在不具备驻车坡道时,定性测试汽车驻车制动性能的装备,全称“汽车驻车制动性能等效测试坡台”。本文从理论与试验两方面论证了等效坡台的可行性。 本文中,坡道或坡台坡度i≡20%,对应角度θ=11.309932474°;对应三角函数值sinθ=0.196116135,cosθ=0.980580676。选轿车为受力图和试验中的车型,并约定前轮为非驻车轮,后轮为驻车轮。在驻车坡道或等效坡台上,汽车驻停方向分为上坡、下坡两种。 图1、驻车坡道(20%、15%各一条)图2、DP-2Q型等效坡台 二、研制等效坡台的动因 图3、因离去角小试验时大客后部受损图4、重货后下部防护装置试验时触地 图5、主、挂间俯仰角小驻车坡道上不去图6、电子驻车响应慢不能线上检验驻车驻车坡道法短板的存在,促使“公安部重点实验室2015年度开放课题”中建议“借鉴驻车坡道测试驻车制动性能原理研发移动式机动车驻车制动性能测试设备”。新修订的国家

强制性标准GB21861征求意见稿中,把移动式驻车制动检验坡台法列入在附录中。 驻车坡道法的替补方法有等效坡台法和牵引法。前者与驻车坡道法的比较见下面表格: 试用单位反馈:等效坡台具有使用方便、结果可靠、操作安全等技术优势,值得推广。 需要强调:驻车坡道法是评价汽车驻车制动性能的标准方法。其他方法只能是在不具备试验坡道的情况下或者使用驻车坡道无法完成检验过程时的替补方法。 三、驻车坡道法力学分析 1、驻车坡道法汽车驻停受力分析 图7、驻车坡道法上坡受力分析 其中, G___汽车重量,视其为作用在汽车重心处、方向垂直向下的力,又称汽车重力 G∥__汽车重力平行于坡道斜面的切向分力,是汽车沿坡道斜面下行的源动力 G⊥__汽车重力垂直于坡道斜面的法向分力 N f___坡道斜面对非驻车轮支反力 N r___坡道斜面对驻车轮支反力 X p___坡道斜面对驻车轮的驻车制动力 M f __非驻车轮静滚动阻滞力偶,其阻滞作用表达式为(见附录二) M r __驻车轮静滚动阻滞力偶,其阻滞作用表达式为(见附录二) f j ___静滚动阻滞系数

汽车液压制动驱动机构的设计

前言 (4) 1 汽车最小制动力的确定 (5) 2 前后制动器的制动力分配比例。 (6) 3 各轮缸输入力的确定 (8) 3.1前轮盘式制动器的输入力的确定 (9) 3.2后轮鼓式制动器轮缸输入力的计算 (9) 4. 制动轮缸直径d的确定 ................................. 错误!未定义书签。 d ............................. 错误!未定义书签。 4.1对于前轮轮缸直径 1 d的设计计算 .......................... 错误!未定义书签。 5. 制动主缸直径 6. 前轮轮缸主要结构参数的设计计算 ................ 错误!未定义书签。 6.1工作压力P ........................................... 错误!未定义书签。 6.2单位时间内油液通过缸筒有效截面体积的流量;错误!未定 义书签。 6.3缸筒的设计........................................... 错误!未定义书签。 6.3.1缸筒内径 .................................... 错误!未定义书签。 6.3.2 缸筒壁厚 .................................. 错误!未定义书签。 6.3.3 缸盖厚度的确定.......................... 错误!未定义书签。 6.3.4 工作行程的确定.......................... 错误!未定义书签。 6.3.5最小导向长度的确定.................... 错误!未定义书签。 6.3.6 活塞宽度的确定.......................... 错误!未定义书签。 6.3.7 缸体长度的确定.......................... 错误!未定义书签。 6.4 活塞的设计.......................................... 错误!未定义书签。 6.4.1 结构形式 .................................. 错误!未定义书签。 6.4.2 活塞与活塞杆的连接................... 错误!未定义书签。 6.4.3 活塞材料.................................... 错误!未定义书签。 6.5 密封圈............................................... 错误!未定义书签。 6.6 活塞杆............................................... 错误!未定义书签。 6.6.1 活塞杆要在导向套中滑动 .......... 错误!未定义书签。 6.6.2 活塞杆的计算 ............................. 错误!未定义书签。

制动系统匹配计算

打印本文 关闭窗口 制动系统匹配设计计算 作者:杨得新 文章来源:浙江吉奥汽车有限公司 点击数1846 更新时间:2008-9-6 14:43:19 文章录入:waibao 责任编辑:chenyao 只有制动性能良好、制动系统工作可靠的汽车才能充分发挥其动力性能。因此,在整车新产品开发设计中制动系统的匹配计算尤为重要。 概述 根据AA车型整车开发计划, AA车型制动系统在参考BB轿车底盘制造平台的基础上进行逆向开发设计,管路重新设计。本计算是以选配C发动机为基础。 AA车型的行车制动系统采用液压制动系统。前、后制动器分别为前通风盘式制动器和实心盘式制动器,制动踏板为吊挂式踏板,带真空助力器,制动管路为双回路对角线(X型)布置,采用ABS。驻车制动系统为机械式手动后盘式制动,采用远距离棘轮拉索操纵机构。因AA车型与参考样车BB的整车参数接近,制动系统采用了BB样车制动系统,因此,计算的目的在于校核前/后制动力、最大制动距离、制动踏板力、驻车制动手柄力及驻坡极限倾角。 设计要符合GB 12676-1999《汽车制动系统结构、性能和试验方法》;GB 13594-2003《机动车和挂车防抱制动性能和试验方法》和GB 7258-2004《机动车运行安全技术条件》的要求,其中的踏板力要求≤500N,驻车制动停驻角度为20%(12),驻车制动操纵手柄力≤400N。 制动系统设计的输入条件 整车基本参数见表1,零部件主要参数见表2。 表1 整车基本参数

表2 零部件主要参数 制动系统设计计算 1.地面对前、后车轮的法向反作用力 地面对前、后车轮的法向反作用力如图1所示。 图1 制动工况受力简图 由图1,对后轮接地点取力矩得:

驻车制动装置的检修

汽车中级工实训项目车轮制动器的检修-----驻车制动装置的检修一、主要内容及目的 (1)能熟练分解驻车制动器并能正确装配调整。 (2)熟练主要零件的检修方法。 二、技术标准及要求 (1)制动蹄衬片铆钉头埋入深度不小于 0.50,无裂纹、油污及烧焦等现象。 (2)制动蹄及制动鼓无裂纹,表面无油污。 (3)制动蹄回位弹簧无裂纹及弹力明显下降现象。 (4)手制动操作杆从放松的极限位置往上拉,应具有二响的自由行程,第三响开始有制动,第五响汽车应能在规定的坡道上停车。 三、实训器材 (1)驻车制动器总成1个,变速器二轴凸缘盘螺母专用拆装工具。 (2)弓形内径规、制动蹄回位弹簧试验机个1。 (3)游标卡尺、开口扳手、梅花扳手、套筒扳手、手锤、鲤鱼钳、一字起子各1。 四、操作步骤及工作要点 1.驻车制动装置的检修 (1)手制动器杆的支承销孔、扇形齿磨损严重时可堆焊修复。锁扣弹簧过软或折断应变换。(2)检查制动盘或制动鼓,磨损起槽超过0.50mm,应光磨。 (3)检查制动蹄与摩擦片结合面以及制动蹄衬片,应符合要求。 (4)检查制动蹄销与制动蹄销孔或蹄臂销孔的配合间隙,不大于0.20mm。检查制动蹄臂销衬套与销的配合间隙,不大于 0.20mm。 2.驻车制动器的调整 (1)以桑塔纳为例介绍鼓式车轮驻车制动器的调整步骤: ①松开驻车制动手柄,用力踩一下制动踏板,使后轮制动器具有正确的蹄鼓间隙; ②将驻车制动手柄拉紧2齿; ①旋转如图3-3-22所示的调整螺母23和限位垫圈20,直至用于手不能转动后轮为止; ②松开驻车制动操纵手柄,支起后桥车轮应能自由转动。 (2)以CA1091为例介绍盘式驻车制动器的调整: ①如图3-3-23所示,拧紧调整螺钉13和调整螺钉6,使制动蹄7与制动盘5接触;

盘式制动器制动计算

制动计算 制动系统方面的书籍很多,但如果您由于某事需要找到一个特定的公式,你可能很难找到。本文面将他们聚在一起并作一些的解释。他们适用于为任何两轴的车辆,但你的责任就是验证它们。并带着风险使用..... 车辆动力学 静态车桥负载分配 相对重心高度 动态车桥负载(两轴车辆) 车辆停止 制动力 车轮抱死 制动力矩 制动基本原理 制动盘的有效半径 夹紧力 制动系数 制动产生 系统压力 伺服助力 踏板力 实际的减速度和停止距离 制动热 制动耗能 动能 转动能量 势能 制动功率 干式制动盘温升 单一停止式温升 逐渐停止式温升 斜面驻车 车桥负荷 牵引力 电缆操纵制动的损失 液压制动器 制动液量要求 制动基本要求 制动片压缩性 胶管膨胀 钢管膨胀 主缸损失 制动液压缩性 测功机惯性

车辆动力学 静态车桥负载分配 这里:Mf=静态后车桥负载(kg);M=车辆总质量(kg);Ψ=静态车桥负载分配系数注:对于满载和空载的车辆的变化往往是不同的。 相对重心高度 这里: h=重心到地面的垂直距离(m);wb=轴距;X=相对重心高度; 动态车桥负载(仅适用于两轴车辆) 制动过程中车桥负载的变化与哪个车桥制动无关。它们只依赖于静态负载条件和减速度大小。 这里:a=减速度(g);M=车辆总质量(kg);Mfdyn=前桥动态负载(kg); 注:前桥负荷不能大于车辆总质量。后桥负荷是车辆质量和前桥负荷之间的差值,并不能为负数。它可能脱离地面。(摩托车要注意)! 车辆停止 制动力 总制动力可以简单地用牛顿第二定律计算。 这里:BF=总制动力(N);M=车辆总质量(kg);a=减速度(g);g=重力加速度(s/m2);车轮抱死 如果车轮不抱死只能产生制动力,因为轮子滑动摩擦力比滚动摩擦力低得多。在车轮抱死前特定车轴可能的最大制动力计算公式如下: 这里:FA=车桥可能的总制动力(N);Mwdyn=动态车桥质量(kg);g=重力加速度(s/m2);μf=轮胎与地面间摩擦系数; 制动力矩 决定了哪个车轮需要制动来产生足够的制动力,每个车轮扭矩的要求需要确定。对于某些规则,前部和后部制动器之间的分配是确定的。这可能是通过不同的刹车片大小或更容易使

制动器设计的计算过程

制动器设计的计算过程 钳盘式制动器在液力助力下制动力大且稳定,而且空气直接通过盘式制动盘,故盘式制动器的散热性很好,在各种路面都有良好的制动表现。将越来越多地应用于轮式装载机的制动系统设计中。 目前,轮式装载机制动系统的设计有两大发展有两大发展趋势。其一是行车制动起向封闭式湿式全盘式发展。这种制动器全封闭防水防尘,制动性能稳定,耐磨损使用寿命长,不需调整。散热效果良好,摩擦副温度显著降低。不增大径向尺寸的前提下改变摩擦盘数量,可调节制动力矩,实现系列化标准化。其二是制动传动装置由气推油向全液压动力制动发展。这种制动装置的制动踏板直接操纵制动液压阀,可省去气动元件,结构简单紧凑,冬季不会冻结,不需放水保养,阀和管路不会锈蚀,制动可靠性提高。所以在轮式装载机的制动系统中被越来越多地得到应用。本文对此系统的设计计算方法和步骤简单介绍。 1 假设条件和制动性能要求 1.1 假设条件 忽略空气阻力,并假定四轮的制动器制动力矩相等且同时起作用;驻车制动器制动力矩作用于变速器的输出端或驱动桥的输入端。 1.2 制动性能要求 1.2.1 对制动距离的要求

根据GB8532-87(与ISO 3450-85等效),非公路行驶机械的制动距离的(水平路面)要求如表1。 表1 非公路行驶机械的制动距离最高车速 (km/h) 最大质量 (kg) 行车制动系统的制动距离 (m) 辅助制动系统的制动距离 (m) ≥32 / θ≤32000 V2/68+(V2/124).(G/32000) V2/39+(V2/130).(G/32000) ≥32000 V2/44 V2/30 ≤32 / θ≤32000 V2/68+(V2/124).(G/32000)+0.1(32-V) V2/39+(V2/130).(G/32000)+0.1(32-V) ≥32000 V2/44+0.1(32-V) V2/30+0.1(32-V) * V——制动初速度(Km/h) G——整机工作质量(kg) 1.2.2 对行车系统的性能要求 除了满足制动距离要求外,还要求行车制动系统能满足装载机空载在25%(14.0)的坡度上停住。 1.2.3 对辅助制动系统的性能要求 满载时,应在15%(8.5)的坡道上驻车无滑移;空载时,应在18%(10.2)的坡道上无滑移。行车制动系统失效时,应能作为紧急制动。 2 制动力矩计算

自动变速器换挡驻车机构的设计及验证

10.16638/https://www.360docs.net/doc/9014205753.html,ki.1671-7988.2018.16.063 自动变速器换挡驻车机构的设计及验证 徐友良 (南京邦奇自动变速箱有限公司,江苏南京210038) 摘要:换挡驻车机构是自动变速器乃至整车的重要组件,对驻车可靠性和使用寿命要求较高,但又要求结构简单和操作简便,因此换挡驻车机构设计时需要平衡上述各者之间的关系。文章研究了该机构的功能需求和结构设计的关系,并对关键零件的设计要点及机构的试验方法进行了介绍。旨在对自动变速器换挡驻车机构的设计开发提供帮助。 关键词:自动变速器;换挡驻车机构;设计关系;试验 中图分类号:U463.5 文献标识码:B 文章编号:1671-7988(2018)16-180-03 Design and Validation for the Shifting and Parking Mechanism of Automatic Transmission Xu Youliang ( Nanjing Punch Powertrain Co., Ltd., Jiangsu Nanjing 210038 ) Abstract: The shifting and parking mechanism is an important component of automatic transmission and even the whole vehicle. It requires high reliability and service life, but it requires simple structure and easy operation. Therefore, the relationship between the above parties should be balanced when the shifting and parking mechanism is designed. This paper defines the relationship between the functional requirements and structural design of the mechanism, and the key points of the key parts and the testing methods of the mechanism are introduced. Aiming at providing help for the design and development of the shifting and parking mechanism of the automatic transmission. Keywords: automatic transmission; shifting and parking mechanism; design relationship; testing CLC NO.: U463.5 Document Code: B Article ID: 1671-7988(2018)16-180-03 前言 随着人们对汽车驾驶舒适性要求的不断提高,越来越多的汽车配置驾驶简单和操作方便的自动变速器。相比较手动变速器选换挡操纵系统,自动变速器也有一套换挡操纵机构来控制汽车的前进和后退、以及动力临时中断[1];由于自动变速器的动力传递需要液压系统工作,使得汽车在驻车时,无法通过齿轮来保证汽车可靠且长时间的停驻在一定位置甚至坡道上,因此自动变速器的换挡机构要求同时具备驻车锁止功能[2],来保证汽车的安全。由于自动变速器内部结构不同,导致其换挡驻车机构的结构也不尽相同,本文介绍了一种无级自动变速器的换挡驻车机构。1 换挡驻车机构的性能要求 自动变速器的换挡驻车机构的性能要求有以下几个方面:1.1汽车换挡操作的安全性。该机构要保证汽车的挡位清晰,当汽车处于某一挡位时,要可靠的实现挡位的保持,不能自行脱出,即跳挡。 1.2 安全的停车速度。保证汽车高速行驶时不会因为用户误操作而挂入驻车挡;同时要求汽车在以≤4km/h的速度行驶时,该机构能够在短时间内实现安全驻车,而且不会损坏变速器内部零件。 1.3可靠的汽车的驻车性能,特别是在坡道上的驻车需求[3],并保证该机构具有一定的使用寿命。即要求该结构在车辆许用使用范围内轻松实现驻车需求,在车辆挂入P挡后,车辆的滚动距离不超过3cm;为了满足汽车的使用需求,要求该 作者简介:徐友良(1984-),男,工程硕士,工程师,主要从事汽车底盘设计、机械设计。 180

最新汽车制动系统毕业设计

摘要 Formula SAE比赛由美国车辆工程师学会(SAE)于1979年创立,每年在世界各地有600余支大学车队参加各个分站赛,2011年将在中国举办第一届中国大学生方程式赛车,本设计将针对中国赛程规定进行设计。 本说明书主要介绍了大学生方程式赛车制动的设计,首先介绍了汽车制动系统的设计意义、研究现状以及设计目标。然后对制动系统进行方案论证分析与选择,主要包括制动器形式方案分析、制动驱动机构的机构形式选择、液压分路系统的形式选择和液压制动主缸的设计方案,最后确定方案采用简单人力液压制动双回路前后盘式制动器。除此之外,还根据已知的汽车相关参数,通过计算得到了制动器主要参数、前后制动力矩分配系数、制动力矩和制动力以及液压制动驱动机构相关参数。最后对制动性能进行了详细分析。 关键字:制动、盘式制动器、液压

Abstract Formula SAE race was founded in 1979 by the American cars institute of Engineers every year more than 600 teams participate in various races around the world,China will hold the first Formula one for Chinese college students,the design will be for design of the provisions of the Chinese calendar. This paper mainly introduces the design of breaking system of the Formula Student.First of all,breaking system's development,structure and category are shown,and according to the structures,virtues and weakness of drum brake and disc brake analysis is done. At last, the plan adopting hydroid two-backway brake with front disc and rear disc.Besides, this paper also introduces the designing process of front brake and rear break,braking cylinder,parameter's choice of main components braking and channel settings and the analysis of brake performance. Key words:braking,braking disc,hydroid pressure

驻车制动设计计算

219 式中?——该车所能遇到的最大附着系数; q——制动强度 e r ——车轮有效半径。 一个车轮制动器应有的最大制动力矩为按上列公式计算结果的半值。 奥龙、德御系列车采用的是斯太尔前轴、后桥,制动器采用的是斯太尔领从蹄鼓式制动器,如图13.5所示,制动器的规格为前φ420×160/后φ420×185,制动器结构参数及制动力矩见表13.1、表13.2,由于奥龙、德御车制动系统中没有安装气压感载调节阀,所以整车制动力不可调节,对同一系列车,整车制动力分配系数为定值,所以,实际制动力分配曲线与理想的制动力分配曲线相差较大,制动效率较低,前轮可能因抱死而丧失转向能力,后轮也可能抱死使汽车有发生后轴侧滑的危险。 图13.5 领从蹄鼓式制动器结构示意图 因此,对奥龙、德御系列车来说,可以通过调整轴荷分配来调整重心位置,使车辆满载情况下的同步附着系数接近可能遇到的路面附着系数,才能获得稳定的制动工况。 表13.1 斯太尔前、后制动器结构参数 表13.2 斯太尔前、后制动器在各种制动气压下的制动力矩 4.驻车计算 图13.6为汽车在上坡路上停驻时的受力情况,由此可得出汽车上坡停驻时的后轴车轮的附着力为: 结构参数 STEYR (前) STEYR (后) L(mm) 155mm 155mm a(mm) 160mm 160mm M(mm) 38mm 38mm 摩擦片包角0β 95° 110° 摩擦片起始角 29°8′ 21°39′ 制动臂长l(mm) 122 145 摩擦片宽b(mm) 160 185 制动鼓半径(mm) 210 210 ()a MP P 0 0.5 0.6 0.7 0.8 m N M u ??/)(1前 10811 12974 15135 17299 m N M u ??/)(2后 13573 16287 19002 21717

汽车理论课程设计制动性能计算

序号:汽车理论课程设计说明书题目:汽车制动性计算 班级: 姓名: 学号: 序号: 指导教师:

目录 1.题目要求 (3) 2.计算步骤 (4) 3.结论 (8) 4.改进措施 (9) 5.心得体会 (9) 6.参考资料 (9)

1. 题目要求 汽车制动性计算 数据: 1 ) 根据所提供的数据,绘制:I 曲线,β线,f 、r 线组; 2) 绘制利用附着系数曲线;绘制出国家标准(GB 12676-1999汽车制动5) 对制动性进行评价。 6) 此车制动是否满足标准GB 12676-1999的要求如果不满足需要采取什么附加措施(要充分说明理由,包括公式和图) 注: 1、 符号中下标a 标示满载,如m a 、h ga 分别表示满载质量和满载质心高度 2、 符号中下标0标示空载,如m 0、h g0分别表示空载质量和空载质心高度

2. 计算步骤 1)由前后轮同时抱死时前后制动器制动力的关系公式: 绘出理想的前后轮制动器制动力分配曲线,即I曲线 由β曲线公式 绘出β曲线,由于空载时和满载时β相同,则β曲线相同。 f线组:当前轮抱死时, 得: r线组:当后轮抱死时, 得: 空载时,将G=3980*,h=,L=3.950m,a=2.200m,b=1.750m,φ=,,,,,,带入公式放在一个坐标系内,绘出空载时r,f曲线: 图1 空载时r,f,I线组 满载时,将G=9000*,h=1.170m,L=3.950m,a=2.95m,b=1m,φ=,,,,,,带入公式放 在一个坐标系内,绘出空载时r,f曲线:

图2 满载时r,f,I线组2)前轴利用附着系数 后轴利用附着系数 将数据带入可绘出利用附着系数与制动强度关系曲线:

电子驻车系统毕业设计论文

目录 摘要 (3) 1 绪论 (5) 1.1 引言 (5) 1.2 电子驻车制动系统国内外发展现状综述 (5) 1.3 研究的意义和主要内容 (7) 1.3.1 传统机械式驻车制动系统存在的问题 (7) 1.3.2 研究的意义 (8) 1.3.3 研究的主要内容 (8) 2 电子驻车制动系统原理和设计分析 (9) 2.1传统驻车制动系统的组成与结构 (9) 2.2 电子驻车制动系统概述 (10) 2.2.1 电子驻车制动系统的原理 (11) 2.2.2 电子驻车制动系统的优点 (11) 2.2.3 电子驻车制动系统需要面对的问题 (13) 2.3 驻车系统的国家标准 (13) 2.4 本章小结 (14) 3 机械结构设计与优化 (15) 3.1 汽车电子驻车制动系统典型机械结构 (15) 3.2 汽车电子驻车制动执行机构的总体结构设计 (19) 3.3 汽车电子驻车制动系统执行机构的各部件设计 (20) 3.3.1 驱动电机的设计 (20) 3.3.2 减速器设计 (21) 3.3.3运动转换装置设计 (24) 3.3.4 制动器设计 (24) 3.4 汽车电子驻车制动系统执行机构方案对比 (25) 3.5 本章小结 (27) 4 电子驻车制动系统相关参数计算 (28) 4.1 参数采集模块设计研究 (28) 4.1.1 车速计算方法 (28) 4.1.2 驻车制动盘压力的计算方法 (30) 4.2 电子驻车制动系统执行机构参数确定 (31) 4.2.1 滑动丝杠的计算与选型 (31) 4.2.2 电机的计算与选型、传动比的设计与计算 (33) 4.2.3 同步带的计算 (34) 4.2.4 减速器设计与计算 (36) 5 电子驻车控制系统设计 (38) 5.1 常规驻车制动控制策略 (38) 5.1.1 实施驻车制动 (38) 5.1.2 解除驻车制动 (39) 5.2 扩展功能的控制策略设计 (40) 6结论 (42) 谢辞 (43)

相关文档
最新文档