《心理统计学》重要知识点

合集下载

心理统计学学习笔记数据整理

心理统计学学习笔记数据整理
E(#)=μ, σx2 =σ2 /n
即#~N(μ, σ2 /n)
Z=(#-μ)σ/n1/2
Eg:一次测验,μ=100 σ=5
从该总体中抽样一个容量为25的简单随机样本,求这一样本均值间于99到101的概率?
解:已知X~N(100,52)
n=25.
则#~N(100,12)
Z=(#-100)/1~N(0,1)
4.定各组限
5.求组值 X=(上限+下限)/2上限——指最高值加或取10的倍数等)
6.归类划记
7.登记次数
例题:99 96 92 90 90(I) R=99-57+1=43
87 86 84 83 83
8282 80 79 78 (II)K=1.87(50-1)。。。≈9
7878 78 77 77
7776 76 76 76
简单平均数:(70+80)/2
三.中(位)数。(Md)
1.原始数据计算法
分:奇、偶。
2.频数分布表计算法(不要求)
3.优点,缺点,适用情况(p42)
四.众数(Mo)
1.理论众数
粗略众数
2.计算方法:Mo=3Md-2#
Mo=Lmo+fa/(fa+fb)*I
计算不要求
3.优缺点
平均数,中位数,众数三者关系。
W(A)=m/n (频率/相对频数)
后验概率:
P(A)=lim m/n
先验概率:不用做试验的
二.概率的性质和运算
1.性质:o≤P≤1
p=1必然可能事件
p=0不可能事件
2.加法。
P(a+b)=P(a)+P(b)
“或”:两互不相克事件和。
推广:“有限个” P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)

心理统计相关知识总结(9)

心理统计相关知识总结(9)

推论统计推论统计(inferential statistics):从总体中随机抽取样本,根据样本数据分析结果推论总体数量性质和特征的统计分析方法。

其理论基础主要是概率论。

主要内容包括:总体参数估计、假设检验、方差分析、回归分析和非参数检验方法等。

参数统计(parametric statistics):如果总体分布形态已知,根据样本信息对总体参数进行估计或假设检验的统计分析方法。

非参数统计(nonparametric statistics):如果总体分布形态未知或知之甚少,根据样本信息对总体性质和特征进行统计推断的统计分析方法。

主要特点有:(1)在利用样本资料对总体进行推断时,不必依赖于总体分布规律,故亦称“自由分布统计”;(2)通常不需对总体参数(如均值、标准差)进行估计或检验;(3)适用于不同测量水平的数据,可用于计数数据或测量数据。

统计规律性(statistical regularity):由大量同类随机现象所呈现出来的整体规律性。

概率论和数理统计就是研究此类规律性的数学分支学科。

在自然界,在生产、生活中,随机现象十分普遍。

同类随机现象大量重复出现时,其总体会呈现一定的统计规律性,这种规律性会随观测次数增多而愈加明显。

如掷硬币,每一次投掷很难判断是哪一面朝上,但是如果多次重复掷这枚硬币,就会越来越清楚地发现两面朝上的次数大体相同。

自由度(degree of freedom):在以样本的统计量估计总体参数时,样本中独立或能自由取值的变量个数。

用df表示。

通常df=n-h,其中n为样本含量,k为被限制的条件数或变量个数。

通常用于抽样分布。

如估计总体平均数时,由于样本中n个数据相互独立,从中抽取任何一个都不影响其他数据,所以其自由度为n;在估计总体方差时,使用样本离差平方和,样本均值就相当于一个限制条件,估计总体方差的自由度为n-1。

稳健统计1(robust statistics):研究当总体假设稍有变化、所采集数据存有一定程度错误或偏差时,统计方法的适应性问题的理论和方法。

心理统计相关知识总结(6)

心理统计相关知识总结(6)

全距(range):亦称“极差”。

差异量数的一种。

用R表示。

一组数据中极大值与极小值之间的差距。

即极大值减极小值所得数据结果。

主要适用于等距数据、比率数据等有单位的数据,不适用于名称数据和顺序数据。

四分位差(quartile deviation):亦称“内距”、“四分间距”。

差异量数的一种。

一组数据中上四分位数与下四分位数之差。

用Q表示。

四分位数指将若干按递增顺序排列的数据等分为四部分时,位于划分临界点上的数据。

四分位差主要用于测度顺序、等距和比率数据的离散程度,但一般不适合于类别数据。

离差(deviation):亦称“差量”。

差异量数的一种。

一组数据中具体数值与平均数之间的差。

实际使用中一般通过离差平方和来表示数据分布的集中程度。

离差平方和(sum of squares of deviation):差异量数的一种。

一组数据中每个数据离差平方的总和。

一般用来表示数据分布的集中程度。

方差(variance):差异量数的一种。

随机变量§与其数学期望Es的偏差平方的加权平均E(§-Es)²。

用Ds或vars表示。

在概率论和数理统计中,表示随机变量和其数学期望(即均值)之间的偏离程度,即数据和中心偏离的程度。

用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)。

在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。

样本方差(sample variance):与“总体方差”相对。

样本数据的方差。

用S²表示。

当总体方差未知,需要对其进行估计时,通常使用样本方差的修正公式估计总体方差,以保证估计的无偏性。

总体方差(population variance):与“样本方差”相对。

总体数据的方差。

用a²表示。

当总体方差未知时,一般通过样本方差进行估计。

参见“样本方差”。

标准差(standard deviation):亦称“均方差”。

差异量数的一种。

方差的平方根。

《心理统计学》课件

《心理统计学》课件

介绍心理统计学在不同领域的研究中的实际应用,如认知心理学、社会心理学和发展 心理学。
2
心理统计学在临床研究中的应用
探讨心理统计学在临床心理学研究和评估中的关键应用,如治疗效果评估和抗抑郁药 物疗效分析。
3
心理统计学在教育研究中的应用
讨论心理统计学在教育心理学研究中的应用,如学生表现评估和教育干预效果评估。
《心理统计学》PPT课件
# 心理统计学PPT课件大纲
第一部分:介绍心理统计学
心理统计学是研究心理学数据收集、处理和分析的方法和技术。它是心理学 研究中的重要组成部分,为心理学研究提供了可靠的数据支持。
第二部分:基本概念和方法
变量与数据类型
介绍心理统计学中的变量及其不同的数据类 型,如名义变量、顺序变量和
介绍心理统计学在市场营销调研和消费者行为研究中的关键应用,如市场细分和产品 定价。
第四部分:心理统计学的思考
数据伦理和数据管理
探讨心理统计学中的数据伦理 原则和数据管理措施,确保研 究数据的合理使用和保护。
大数据时代的心理统计学
讨论大数据时代对心理统计学 的影响和挑战,如数据量的增 加和数据分析方法的创新。
心理统计学未来的发展 趋势
展望心理统计学未来的发展方 向,如智能化数据分析和统计 学在人工智能中的应用。
结束语
心理统计学在心理学研究中的重要性不可忽视。建议有兴趣的人学习和研究心理统计学,以提升心理学 研究的质量和可信度。 *字数:243*
参数估计和假设检验
讨论心理统计学中的参数估计和假设检验方 法,包括均值差异检验和相关性检验。
描述性统计分析
解释心理统计学中常用的描述性统计方法, 如平均数、标准差和百分位数。
标准误和置信区间

《心理统计学》考点详解-第二、四、五章

《心理统计学》考点详解-第二、四、五章

冷二之前对心理统计学考点进行了分析,将整个统计归纳为43个知识点(戳蓝字直达→),介于心理统计学分值较大(占13分)且不易记忆,我们来逐章节进行梳理。

心理统计学共分5个章节:①(←戳蓝字进入复习)②了解了这些之后就进入第二章——对数据的分布以及总体参数进行一系列的估计【8个知识点】;③对于数据的操作要严谨,只有估计当然是不行的,所以接下来我们需要对数据进行一些假设并通过各种方法进行检验【16个知识点】;④第四章的各种研究设计的方差分析不是考察重点,我们就不过多浪费时间和精力了【1个知识点】;⑤第五章一元线性回归我们需要对几个名词解释考点进行记忆【4个知识点】。

由于第四章只有1个知识点,且在17年考察过,今年不可能重复考察,同时,第五章只有4个知识点,这篇文章中我们就将第二章、第四章和第五章的知识点一起进行梳理吧!第二章数据的分布及总体参数的估计第一节数据分布的特点【简答题-14、18年真题】正态分布的特点(14年)正态分布及曲线(18年)【选择题】正态分布总体的随机样本的关系:算术平均数±1S=68.26%算术平均数±1.645S=90%算术平均数±1.96S=95%算术平均数±2.58S=99%✔【名词解释】标准正态分布均值=0,方差=1的正态分布【选择题】标准分数的公式、二项分布的平均数、标准差(记住公式,以防计算类选择题)【选择题举例】一个班成绩平均分( ̄X)为90分,标准差(S)为3。

已知一个学生的成绩为97.5分,则该生成绩在班里的半分位是多少?解:带入标准分数公式可得:标准分数=(97.5-90)/3=2.5 2.5接近2.58,即该生的分数接近99.5%(即99%+1%÷2)第二节总体参数的估计✔【名词解释-16年真题】抽样分布样本统计量的概率分布✔【名词解释】样本平均数从正态分布的总体中可无限抽取大小为n的样本,所计算的这无限多个平均数的分布,称为样本平均数的分布。

心理统计学常用公式总结

心理统计学常用公式总结

心理统计学常用公式总结心理统计学是心理学中的一个重要分支,它通过应用统计方法和概率理论来研究心理现象,分析和解释心理数据。

在心理统计学中,有许多常用的公式和方程式,用于计算和分析心理测量数据。

下面是一些常用的心理统计学公式总结。

1. 平均数(Mean)平均数是一组数值的总和除以数量的结果。

它是一组数据的集中趋势的一种度量。

平均数计算公式如下:平均数=总和/数量2. 中位数(Median)中位数是一组有序数据的中间值,将数据分为两个等长的部分。

对于一个有奇数个数据的数据集,中位数就是中间的值;对于有偶数个数据的数据集,中位数是中间两个值的平均数。

3. 众数(Mode)众数是一组数据中出现频率最高的值。

一个数据集可以有一个以上的众数,也可以没有众数。

4. 方差(Variance)方差是一组数据离其平均数的距离的平方的平均值。

方差用于衡量数据的离散程度。

方差计算公式如下:方差=Σ(数据-平均数)²/数量5. 标准差(Standard Deviation)标准差是方差的平方根,它是一组数据离其平均数的距离的平均值。

标准差也用于衡量数据的离散程度。

标准差计算公式如下:标准差=√方差6. 相关系数(Correlation Coefficient)相关系数衡量两个变量之间的关系强度和方向。

它是一个介于-1和1之间的值,越接近-1或1表示关系越强,越接近0表示关系越弱。

相关系数计算公式如下:相关系数=协方差/(标准差1*标准差2)7. 正态分布(Normal Distribution)正态分布是在统计学中经常出现的一种分布模式。

它呈钟形曲线,对称分布在平均数周围。

正态分布可以由均值和标准差来完全描述。

8. 标准分数(Standard Scores)标准分数是将原始分数转化为以标准差为单位的分数。

它表示一个分数距离平均数的几个标准差。

标准分数=(原始分数-平均数)/标准差9. 置信区间(Confidence Interval)置信区间是对总体参数的估计范围,常用来估计平均值或比例的范围。

心理统计学公式汇总

心理统计学公式汇总在心理统计学的领域中,各种公式犹如工具,帮助我们理解、分析和解释数据。

下面就为大家汇总一些常见且重要的心理统计学公式。

一、集中趋势的测量1、算术平均数算术平均数是最常用的集中趋势测量指标,其公式为:\\bar{X} =\frac{\sum_{i=1}^{n} X_{i}}{n}\其中,\(\bar{X}\)表示算术平均数,\(X_{i}\)表示第\(i\)个观测值,\(n\)表示观测值的数量。

2、中位数当数据呈现偏态分布时,中位数比平均数更能代表数据的集中趋势。

对于未排序的数据,首先将其从小到大排序。

如果数据个数\(n\)为奇数,中位数就是位于中间位置的那个数;如果\(n\)为偶数,中位数则是中间两个数的平均值。

3、众数众数是数据中出现次数最多的数值。

二、离散程度的测量1、极差极差是一组数据中最大值与最小值之差,公式为:\(R =X_{max} X_{min}\)。

2、方差方差反映了数据相对于平均数的离散程度,其公式为:\S^2 =\frac{\sum_{i=1}^{n} (X_{i} \bar{X})^2}{n 1}\3、标准差标准差是方差的平方根,公式为:\(S =\sqrt{\frac{\sum_{i=1}^{n} (X_{i} \bar{X})^2}{n 1}}\)。

三、正态分布相关公式1、正态分布的概率密度函数\f(x) =\frac{1}{\sigma \sqrt{2\pi}} e^{\frac{(x \mu)^2}{2\sigma^2}}\其中,\(\mu\)是均值,\(\sigma\)是标准差。

2、标准正态分布若\(X\)服从正态分布\(N(\mu, \sigma^2)\),则\(Z =\frac{X \mu}{\sigma}\)服从标准正态分布\(N(0, 1)\)。

四、相关分析1、皮尔逊积差相关系数用于测量两个连续变量之间的线性关系,公式为:\r =\frac{\sum_{i=1}^{n} (X_{i} \bar{X})(Y_{i} \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_{i} \bar{X})^2 \sum_{i=1}^{n} (Y_{i} \bar{Y})^2}}\2、斯皮尔曼等级相关系数适用于测量两个顺序变量之间的相关性,公式为:\r_s = 1 \frac{6 \sum_{i=1}^{n} d_{i}^2}{n(n^2 1)}\其中,\(d_{i}\)是两个变量的等级差。

心理统计学复习课


➢ 抽样原理与抽样方法
抽样原理 抽样调查的特点和作用:节省人力、物力;节省时间,提高效率;
保证结果的准确性。 抽样的基本原则:随机化原则。保证样本对总体的代表性;可以对
抽样误差的范围进行预测和控制。 抽样方法 简单随机抽样 分层随机抽样 整群抽样(两阶段随机抽样) 等距抽样(系统抽样)
可比性;可加性;明确性;稳定性
应用
(1)比较不同性质的观测值;
(2)计算不同质的观测值的总和或均值;
(3)表示标准测验分数;
(4)异常值的取舍(常采用正负三个标准差)
6、相关分析
相关:正相关、负相关、 零相关、完全相关、不完
n
X i X Yi Y
r
i 1
n
2
n
2
X i X Yi Y
100 %
CVS
S X
100 %
标准分数(standard score):
Zi
Xi
Zi
Xi S
X
5、相对量数:百分位数、标准分数
百分位数:次数分布中对应于某个特定百分点的原始 分数。第m个百分点就是这样一个点,次数分布中有 m%的数据小于等于这个数,有(100-m)%的数据 大于等于这个数。记为Pm
正态分布曲线下,标准差与概率有一定的数量关系:平均 数正负一个、两个、三个标准差内包括的面积(概率)分 别为:68.26%、95.45%、99.73%
➢ 标准正态分布表的编制及其应用
标准正态分布表有三列: Z分数 函数值Y 概率值P。分布密度函数f(x)在Z分数点与平均数之间的面积。 标准正态分布表的使用 已知Z分数求概率 已知概率求Z分数 已知概率值或Z分数求Y值 已知Z分数求原始分数X=μ+Zσ

心理统计学


推断统计的方法有:
(1) 记数资料检验方法。包括:比例检验、卡方检验等; (2) 假设检验的各种方法。包括:大样本的检验方法(z检 验法);小样本的检验方法(t 检验法);方差分析; 回 归分析方法等; (3) 总体特征数(总体参数)的估计方法; (4) 各种非参数的统计方法。
理论统计学:
指统计学的数学原理。它主要研究 统计学的一般理论和统计方法的数学理 论。它是统计学的理论基础。
1.5.2总体、样本、个体
总体(Population):指具有某种特征 的一类事物的全体,又称母体。
个体(Element):构成总体的每个基 本单元。
样本(Sample):从总体中抽取的一
部分个体,即总体的一个子集。
1.5.3 次数、频率、百分比、概率
1、次数(Frequency):也叫频数,落在各类别中 的数据个数。 2、频率:也叫相对次数或比例,一个总体中各个部 分的数量占总体数量的比重。 3、百分比(Percentage):比例乘以100就是百分 比或百分数。 4、比率(Ratio):各不同类别的数量的比值。 5、概率:某一事件发生的可能性大小的量。
区别:
(1)数学研究的是抽象的数量规律,而统计学 是研究具体的、实际现象的数量规律;数学研 究的是没有量纲或单位的抽象的数,而统计学 研究的是有具体实物或计量单位的数据。
(2)二者使用的逻辑方法不同。数学是纯粹的 演绎,而统计学是演绎与归纳相结合。
1.3.2 统计学与其他学科的关系
统计方法可以帮助其他学科探索学科内 在的数量规律性,而对这种数量规律性的解 释并进而研究各学科内在的规律,只能由各 学科的研究来完成。统计方法仅仅是一种有 用的定量分析的工具,它不是万能的,不能 解决我们想要解决的所有问题。

心理学考研之心理统计学笔记

心理学考研之心理统计学笔记The document was prepared on January 2, 2021心理统计学笔记1基本概念总体:具有某些共同的、可观测特征的一类事物的全体,构成总体的每个基本单元称为个体样本:由于不能或没必要对整个总体进行研究,我们只能从总体中选择出一些个体代表总体,这些个体的集合叫样本变量:本身是变化的或者对于不同个体有不同值得特征或条件常量:本身不变且对不同的个体的值也相同参数:描述总体的数值,它可以从一次测量中获得,也可以从总体的一系列测量中推论得到比例:全组中取值为X的比例,p=f/N插值法:一种求两个已知数值之间中间值的方法,其假设所求解点附近数据呈线性变化统计量:描述样本的数值,与参数的获得方式相同随机取样:从总体抽取样本的一种策略,要求总体中的每一个个体被抽到的机会均等取样误差:样本统计量与相应的总体参数之间的差距偏态分布:分数堆积在分布的一端,而另一端成为比较尖细的尾端,其与对称分布对应次数分布:一批数据在某一量度的每一个类目所出现的次数情况离散型变量:由分离的、不可分割的范畴组成,临近范畴之间没有值存在连续型变量:在任何两个观测值之间都存在无限多个可能值,它可被分割成无限多个组成部分2学习建议①将注意放在概念上,心理统计应该是一门概念性的科学,而非纯数学.②一定要将统计方法与心理学研究的情景结合起来学习.③弄懂一个概念再开始学习下一个,心理统计中的概念应用性较差却是之后做题的基础.④做题按照推荐格式能避免出错几率.3统计检验总表数据类型单样本问题独立样本比较相关样本比较多组样本的比较相关问题独立样本重复测量等距型总体正态分布单样本t/z检验独立样本t/z检验相关样本t检验独立样本方差分析重复测量方差分析Pearson积差相关分布形态未知大样本下的相应的t/z检验大样本下的相应的t/z检验大样本下的相应的t检验转化为顺序型转化为顺序型顺序型符号检验法曼-惠特尼维尔克松克-瓦氏单向弗里德曼双向等级SpearmanU检验T检验方差分析方差分析等级相关命名型χ2匹配度检验χ2独立性检验符号检验法χ2独立性检验χ2独立性检验一、描述统计描述统计是指用来整理、概括、简化数据的统计方法,侧重于描述一组数据的全貌,表达一件事物的性质.一统计图表统计表和统计图简单明确、生动直观地表达数量关系,具有一目了然、整洁美观、容易理解等特点.它们是对数据进行初步整理,以简化的形式加以表现的两种最简单的方式.在制定统计图表之前,一般首先要对数据进行以下两种初步整理:①数据排序:按照某种标准,对收集到的杂乱无章的数据按照一定顺序标准进行排列②统计分组:根据被研究对象的特征,将所得到数据划分到各个组别中去1.统计图统计图:用点、线、面的位置、升降或大小来表达统计资料数量关系的一种陈列形式组成:坐标轴、图号、图题、图目、图尺、图形、图例、图注分类:条形图、圆图、线性图、直方图、散点图、茎叶图2.统计表统计表:将要统计分析的事物或指标以表格的形式列出来,以代替烦琐文字描述的一种表现形式组成:隔开线、表号、名称、标目、数字、表注分类:简单表、分组表、复合表二集中量数集中量数又叫集中趋势,是体现一组数据一般水平的统计量.它能反映频数分布中大量数据向某一点集中的情况.1.算数平均数1定义算数平均数:即所有观察值的总和与总频数之商,简称为平均数或均数平均数一般与标准差、方差相结合使用.2特点①在一组数据中每个变量与平均数之差的总和等于零②在一组数据中,每一个数都加上一个常数C,所得的平均数为原来的平均数加常数C③在一组数据中,每一个数都乘以一个常数C,所得的平均数为原来的平均数乘以常数C3意义算数平均数是应用最普遍的一种集中量数,它在大多情况下是真值最好的估计值.4优缺点优点:反应灵敏、计算严密、计算简单、简明易解、适合于进一步用代数方法盐酸、较少受抽样变动的影响缺点:易受极端数据的影响、不能在出现模糊数据时计算2.中数1定义中数:按顺序排列在一起的一组数据中居于中间位置的数,在这组数据中,有一半数据比它大,一般数据比它小,等价于百分位数是50的那个数.2算法①数列总个数为奇数时,第 n+1/2 个数就是中数②数列总个数为偶数时,可取位于中间的两个数的平均数作为中数③分布中有相等的数时,将重复的数字看成一个连续体,利用中间分数的精确上下限使用插值法3优缺点优点:计算简单、容易理解、不受极端值影响、能在有模糊数据情况下使用、可在顺序型数据时使用缺点:代表性低、不够灵敏、稳定性低、需要排序、不能进一步做代数运算3.众数1定义众数:在次数分布中出现次数最多的那个数的数值众数可能不只一个.在正偏态分布时,平均数最靠近尾端,中数位于其与众数之间. 2优缺点优点:能在数据不同质的情况使用,能避免极端值干扰缺点:不稳定、代表性差、不够灵敏、不能做进一步的代数运算三差异量数差异量数就是对一组数据的变异性,即离中趋势特点进行度量和描述的统计量,也称为离散量数.1.离差与平均差离差:分布中的某点到均值得距离,其符号表示了某分属于均值之间的位置关系而数值表示了它们之间的绝对距离离差之和始终为零.平均差:次数分布中所有原始数据与平均数绝对离差的平均值2.方差与标准差和方:每一个离差值平房求和由于离差正负值互相抵消无法代表离中趋势我们引入和方的概念1总体的方差和标准差方差:每个数据与该组数据平均数之差乘方后的均值,即离均差平房后的均数作为样本统计量用符号s2表示,作为总体参数用符号σ2表示,也叫均方.标准差:方差的平方根作为样本统计量用符号s表示,作为总体参数用符号σ表示.2样本的方差和标准差样本的变异性往往比它来自的总体的变异性要小.为了校正样本数据带来的偏差,在计算样本方差时,我们用自由度来矫正样本误差,从而有利于对总体参数更好的无偏差估计:3性质①每一个观测值都加一个相同的常数C之后,计算得到的标准差等于原来的标准差②每一个观测值都乘以一个相同的常数C,所得到的标准差等于原标准差乘以这个常数4意义方差与标准差是表示一组数据离散程度的最好指标,它们是统计描述与统计推断分析中最常用的差异量数,它们的优点有:反应灵敏、计算严谨、计算容易、适合代数运算、受抽样变动影响小、意义简单明了3.变异系数当遇到下列情况时,不能用绝对差异量来比较不同样本的离散程度,而应当使用相对差异量数,最常用的就是差异系数.①两个或两个以上样本所使用的观测工具不同,所测的特质相同②两个或两个以上样本使用的是同种观测工具,所测的特质相同,但样本间水平差异较大差异系数:一种最常用的相对差异量,为标准差对平均数的百分比四相对量数1.百分位数百分位数:在整个分布中,在某一值之下或等于该值的分数的百分比,所对应的分数百分位数和百分等级是同一操作定义的两端.当我们求累计次数占总体的百分比是,所对应的分数和百分比的值分别为百分位数和百分等级.2.百分等级百分等级:常模团体中低于该分数的人所占总体的百分比百分等级一定要对应分数区间的精确上限.百分等级和百分位数都可以由已知数据用差值法求解.3.标准分数1定义标准分数:以标准差为单位表示一个原始分数在团体中所处位置的相对位置量数,也叫Z 分数离平均数有多远,即表示原始分数在平均数以上或以下几个标准差的位置.2性质①Z分数无实际单位,是以平均数为参照点,以标准差为单位的一个相对量②一组原始分数转换得到的Z分数可正可负,所有原始分数的Z分数之和为零③原始数据的Z分数的标准差为1④若原始分数呈正态分布,则转换得到的所有Z分数均值为0,标准差为1的标准正态分布3优点①可比性——不同性质的成绩,一经转换为标准分数,就可在同一背景下比较②可加性——不同性质的原始数据具有相同的参照点,因此可相加③明确性——知道了标准分数,利用分布寒暑表就能知道其百分等级④稳定性——转换成标准分数之后,规定了标准差为1,保证了不同性质分数在总分数中权重一样4应用①比较几个分属性质不同的观测值在各自数据分布中相对位置的高低②计算不同质的观测值得总合或平均值,以表示在团体中的相对位置③若标准分数中有小数、负数等不易被人接受的问题,可通过 Z'=aZ+b 的线性公式将其转化成新的分数如韦氏成人智力量表五相关量数由于实验法适用范围的限制,有的时候我们只能对变量间进行相关研究,也就是看两者是否有互相跟随的变化关系.相关研究所得到的是一种描述统计,我们仅仅能用其描述两个变量互相跟随的程度大小,至于他们之间是否有因果关系或者是共变关系则不可妄下定论.相关系数:两列变量间相关程度的数字表现形式作为样本的统计量用r表示,作为总体参数一般用ρ表示.正相关:两列变量变动方向相同负相关:两列变量中有一列变量变动时,另一列变量呈现出与前一列变量方向相反的变动零相关:两列变量之间没有关系,各自按照自己的规律或无规律变化1.积差相关也就是Pearson相关.1前提①数据要成对出现,即若干个体中每个个体都有两种不同的观测值,并且每队数据与其它对子相互独立②两列变量各自总体的分布都是正态的,至少接近正态③两个相关的变量是连续变量,也即两列数据都是测量数据④两列变量之间的关系应是直线性的2公式r也就等于X和Y共同变化的程度除以X和Y各自变化的程度.2.等级相关也就是Spearman相关1适用范围①当研究考察的变量为顺序型数据时,若原始数据为等比货等距,则先转化为顺序型数据②当研究考察的变量为非线性数据时2公式将原始数据转化为顺序型数据,仍然用Pearson相关公式计算即可.3.肯德尔等级相关1肯德尔W系数也叫肯德尔和谐系数,原始数据资料的获得一般采用等级评定法,即让K个被试对N件实物进行等级评定.其原理是评价者评价的一致性除以最大变异可能性.代表评价对象获得的K个等级之和RiN代表等级评定的对象的树木K代表等级评定者的数目2肯德尔U系数其与肯德尔W系数所处理的问题相同,但评价者采用对偶比较法,即将N件事物两两配对分别进行比较为对偶比较记录表中i>j格中的择优分数rij4.点二列相关与二列相关1点二列相关适用于一列数据为等距正态变量,另一列为离散型二分变量.X是与二分称名变量的一个值对应的连续变量的平均数pX是与二分称名变量的另一个值对应的连续变量的平均数qp与q是二分称名变量两个值各自所占的比率s是连续变量的标准差t2二列相关适用于两列变量都是正态等距变量,但其中一列变量被人为地分成两类.y为标准正态曲线中p值对应的高度,查正态分布表能得到5.Ф相关适用于两个变量都是只有两个点值或只表示某些质的属性.其中a、b、c、d分别为四格表中左上、右上、左下、右下的数据二、推断统计推论统计就是指运用一系列的数学方法,将从样本数据中获得的结果推广到样本所在的总体.进行推论统计的关键在于所抽取的样本要能够尽量接近所要研究的总体.一推断统计的数学基础1.概率概率:表明随即时间出现可能性大小的客观指标概率的定义包含以下两种,当观测次数够多时他们是相等的.后验概率:对随机事件进行n次观察,某一事件A出现的次数m与观测次数n的比值在n趋近无穷时所稳定在的常数p先验概率:在满足试验可能结果数有限且每一种结果出现的可能性相等的条件下,随机事件包含的结果数除以结果总数2.正态分布当样本量足够大时,我们会发现生活中许多变量的分布都近似于正态曲线,因此有“上帝偏爱正态分布”一说.1特点①正态曲线的形状就像一口挂钟,呈对称分布,其均值、中数、众数实际上对应于同一个数值②大部分的原始分数都集中分布在均值附近,极端值相对而言比较少③曲线两端向靠近横轴处不断延伸,但始终不会与横轴向交④正态分布曲线转化为z分数后人以z分数与零点对应曲线下面积固定2用法①依据Z分数求概率,即已知标准分数求面积②从概率求Z分数,即从面积求标准分数值③已知概率或Z值,求概率密度,即正态曲线的高3.二项分布二项分布:对于一个事件有两种可能A和B,但我们对这一事件观察n次,事件A发生的总次数的概率分布就是二项分布μ=二项分布的均值为pnσ=方差公式为2npq标准差的公式为σ=4.抽样原理与抽样方法1抽样原理抽样的基本原则是随机性原则,所谓随机性原则,是指在进行抽样时,总体中每一个个体是否被抽选的概率完全均等.由于随机抽样使每个个体有同等机会被抽取,因而有相当大的可能使样本保持和总体有相同的结构,或者说,具有最大的可能使总体的某些特征在样本中得以发现,从而保证由样本推论总体.2抽样方法①简单随机取样法②系统随机取样法③分层随机取样法④多段随机取样法5.抽样分布样本分布:样本统计量的分布,是统计推论的重要依据1正态分布及渐近正态分布样本统计量为正态分布或者接近正态分布的情况都可根据正态分布的概率进行统计推论.总体分为正态或接近正态,方差已知,样本平均数和方差的分布为正态分布①样本平均数分布的平均数和方差与母体的平均数和方差有如下关系:②样本的方差及标准差的分布也渐趋于正态分布,其分布的平均数与标准差和总体有如下关系:2t 分布t 分布是一种与方差无关而与自由度有关的分布,很类似正态分布,我们可以将正态分布看作t 分布当自由度为正无穷时的特例.总体分布为正态,方差未知时,样本平均数的分布为t 分布:X σ= 其中1n s -= 3χ2分布χ2分布的构造是从一个服从正态分布的总体中每次抽去n 个随机变量,计算其平方和之后标准化的一个分布.分布曲线下的面积都是1,但伴随着n 取值的不同,自由度改变,曲线分布形状不同,而当自由度趋近于正无穷时χ2分布即为正态分布,因此其于t 分布一样都是一族分布,而正态分布都是其中的特例.4F 分布如果有两个正态分布的总体,我们从其中各自取出两个样本,各自计算出χ2,则: 更多情况下,我们所计算的F 两样本取自相同总体,此时可将上式化简为:二参数估计当在研究中从样本获得一组数据后,如何通过这组信息,对总体特征进行估计,也就是如何从局部结果推论总体的情况,称为总体参数估计.总体参数估计问题可以分为点估计与区间估计.1.点估计、区间估计与标准误良好估计量的标准①无偏性——用多个样本的统计量估计总体参数的估计值,其偏差的平均数为零②有效性——当总体参数的无偏估计不止一个统计量时,无偏估计变异小者有效性高,变异大者有效性低,即方差越小越好③一致性——当样本容量无限增大时,估计值应能够越来越接近它所估计的总体参数④充分性——样本的统计量是否充分地反映了全部n个数据所反映总体的信息点估计:用样本统计量来估计总体参数,因为样本统计量为数轴上某一点值,估计结果也以一个点的数值表示区间估计:根据估计量以一定可靠程度推断总体参数所在的区间范围,这个区间就叫做置信区间,相应的概率成为置信度,这两个量是共通变化的,置信区间越大,置信度越高;区间估计是用数轴上的一段距离表示未知参数可能落入的范围及落入该范围的概率.标准误:样本平均数分布的标准差总体方差未知时用估算的总体方差计算标准误.2.总体平均数的估计当总体方差未知时,则使用t分布对应置信度3.标准差与方差的区间估计1标准差的区间估计2方差的区间估计三假设检验可以说,每一个实验的存在,仅仅是为了给事实一个反驳虚无假设的机会. ——1.假设检验的原理假设检验:统计学中的一种推论过程,通过样本统计量得出的差异作为一般性结论,判断总体参数之间是否存在差异假设检验的实质是对可置信性的评价,是对一个不确定问题的决策过程,其结果在一定概率上正确的,而不是全部.1两类假设对于任何一种研究而言,其结果无外乎有两种可能,即是否符合我们预期.一般来说证伪一件事情比证实一件事容易,在行为科学的研究中,由于我们无法了解总体中除样本以外的个体情况,因此尝试拒绝虚无假设的方法优于证明备择假设.备则假设:因变量的变化、差异却是是由于自变量的作用往往是我们对研究结果的预期,用H1表示.虚无假设:实际上什么也没有发生,我们所预计的改变、差异、处理效果都不存在观察到的差异只是随机误差在起作用,用H0表示.2小概率原理小概率原理:小概率事件在一次试验中几乎是不可能发生的至于什么就算小概率事件,那就是我们在计算前明确的决策标准,也就是显着性水平α.在检验过程中,我们假设虚无假设是真实的,同时计算出观测到的差异完全是由于随机误差所致的概率.之后将其与我们实现界定好的显着性水平比较,从而考虑是否依据小概率原理来拒绝虚无假设.3两类错误本部分内容请参照实心信号检测论对照来看. ——MJ注Ⅰ型错误:当虚无假设正确时,我们拒绝了它所犯的错误,也叫α错误研究者得出了处理有效果的结论,而实际上并没有效果,即所谓“无中生有”Ⅱ型错误:当虚无假设是错误的时候,我们没有拒绝所犯的错误,也叫β错误假设检验未能侦查到实际存在的处理效应,即所谓“失之交臂”两类检验的关系①α+β不一定等于1②在其他条件不变的情况下,α与β不可能同时减小或增大4检验的方向性单侧检验:强调某一方向的检验,显着性的百分等级为α双侧检验:只强调差异不强调方向性的检验,显着性百分等级为α/2对于同样的显着性标准,在某一方向上,单侧检验的临界区域要大于双侧检验,因此如果差异发生在该方向,单侧检验犯β错误的概率较小,我们也说它的检验效力更高.5假设检验的步骤①根据问题要求,提出虚无假设和备择假设②选择适当的检验统计量③确定检验的方向性并规定显着性水平④计算检验统计量的值⑤将统计量的值与临界值对比做出决策2.样本与总体平均数差异的检验1总体正态分布且方差已知obs X X z μσ-=其中X σ=0μ和0σ分别为总体的平均数和方差2总体正态分布而方差未知0obs X X t s μ-=其中X s =S =S 为用样本和方估算出的总体方差3.两样本平均数差异的检验12obs obs D X X X Z t σ-==这是两样本平均数检验的通用公式,所不同的仅在于标准误的计算1总体方差已知①独立样本②相关样本D X σ=r 为两组变量之间的相关系数2总体方差未知①独立样本方差差异不显着时②相关样本a.相关系数未知:D X σ=其中d 为每一对对应数据之差b.相关系数已知:D X σ=4.方差齐性检验1样本方差与总体方差当从正态分布的总体中随机抽取容量为n 的样本时,其样本方差与总体方差比值服从χ2分布:2220ns χσ=由自由度1df n =-查χ2表,依据显着性水平判断2两个样本方差之间①独立样本22s F s =大小其中当两样本自由度相差不大时可用n s 代替n-1s查表时11221,1df n df n =-=-②相关样本22t =其中2df n =-5.相关系数的显着性检验①积差相关a.当ρ=0时:t =其中2df n =-b.当ρ≠0时:先通过查表将r 和ρ转化为费舍Z r 和Z ρ然后进行Z 检验②等级相关和肯德尔W 系数在总体相关系数为零时:查各自的相关系数表,判定样本相关显着四方差分析1.方差分析的原理与基本过程1方差分析的概念方差分析的目的是推断多组资料的总体均数是否相同,也即检验多组数据之间的均数差异是否有统计意义.当我们用多个t 检验来完成这一过程时,相当于从t 分布中随机抽取多个t 值,这样落在临界范围之外的可能大大增加,从而增加了Ⅰ型错误的概率.我们可以把方差分析看作t 检验的增强版.2方差的可分解性方差分析依据的基本原理就是方差的可加性原则.作为一种统计方法,方差分析把实验数据的总变异分解为若干个不同来源的分量.数据的变异由两部分组成:组内变异:由于实验中一些希望加以控制的非实验因素和一些未被有效控制的未知因素造成的变异,如个体差异、随机误差组内变异是具体某一个处理水平之内的,因此在对总体变异进行估计的时候不涉及研究的处理效应.组间差异:不仅包括组内变异的误差因素,还包括了是不同组所接受的实验处理不同造成的影响如果研究数据的总变异是由处理效应造成的,那么组间变异在总变异中应该占较大比例.B MS 表示组间方差,B B B SS MS df =,1B df k =-,k 表示实验条件的个数 W MS 表示组内方差,W W WSS MS df =,()1W df k n =-,n 表示每种实验条件中的被试个数 3方差分析的基本假定①样本必须来自正态分布的总体②每次观察得到的几组数据必须彼此独立③各实验处理内的方差应彼此无显着差异为了满足这一假定,我们可采用最大F 比率法2max max2min s F s =,求出各样本中方差最大值与最小值的比,通过查表判断.4方差分析的基本步骤Ⅰ 求平方和①总平方和是所有观测值与总平均数的离差的平方总和 ()22T G SS X N =-∑其中G 表示所有数据的总合,N 表示总共的数据个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页共9页 《心理统计学》重要知识点 第二章统计图表 简单次数分布表的编制: Excel数据透视表 列联表(交叉表):两个类别变量或等级变量的交叉次数分布, Excel数据透视表 直方图(histogram ):直观描述连续变量分组次数分布情况,可用 Excel图表向导的柱形图来绘制 散点图(Scatter plot):主要用于直观描述两个连续性变量的关系状况和变化趋向。 条形图(Bar chart):用于直观描述称名数据、类别数据、等级数据的次数分布情况。 简单条形图:用于描述一个样组的类别(或等级)数据变量次数分布。 复式条形图:用于描述和比较两个或多个样组的类别 (或等级)数据的次数分布。 圆形图(circle graph )、饼图(pie graph ):用于直观描述类别数据或等级数据的分布情况。 线形图(line graph ):用于直观描述不同时期的发展成就的变化趋势;

第三章集中量数 集中趋势和离中趋势是数据分布的两个基本特征。 集中趋势:就是数据分布中大量数据向某个数据点集中的趋势。 集中量数:描述数据分布集中趋势的统计量数。 离中趋势:是指数据分布中数据分散的程度。 差异量数:描述数据分布离中趋势(离散程度)的统计量数 常用的集中量数有:算术平均数、众数( MO )、中位数(Md)

x. 1算术平均数(简称平均数, M、X、Y ): X - Excel统计函数 AVERAGE

n

算术平均数的重要特性: (1) 一组数据的离均差(离差)总和为 0,即7 (X. -x) =0 (2) 如果变量X的平均数为X,将变量X按照公式|y二a bx转换为Y变量后, 那么,变量Y的平均数Y =a FX 2 .中位数(median , Md):在一组有序排列的数据中,处于中间位置的数值。中位数上下的数据 出现次数各占50%。 3. 众数(mode, MO): 一组数据中出现次数最多的数据。 第2页共9页

6.调和平均数(harmonic mean , M H ): 一组数值倒数的平均数的倒数。 (1)用于描述同一个体(或一组个体)不同时间段的平均学习速度、平均工作效率。 (2 )用于描述不同能力水平个体的平均学习速度、平均工作效率。

(2)用于计算平均学习进步速度、平均发展速度(平均发展倍数) ,即环比的几何平均

数。

M g =・』仝x冬X乞…X( X1> x2、…、xn为各个时间段的成果数据)

X1 平均增长率: X2 X3 Xn 二 ,X1

Mg -1

第四章差异量数

差异量数:描述一组数据离散程度(离中趋势)的统计量数。差异量数较大,说明数据分布得比 较分散,数据之间的差异较大;差异量数较小,说明数据分布的比较集中,数据间的差异较小。 差异量数还能反映平均数对一组数据的代表性。差异量数越小,平均数的代表性越好;差异量数 越大,平均数的代表性越差。 常用的差异量数是标准差、方差、差异系数

差异系数(又称变异系数、离散系数、相对标准差) :CV =鱼 X

(1) 用于比较不同观测工具测量结果(数据单位不同)的离散程度,例如,身高离散程度大,还 是体重离散程度大? (2) 用于比较用同一观测工具测得的、均数差异较大的不同样本数据的离散程度。例如: 7岁组 儿童和13组岁儿童的体重离散程度,哪个较大? 标准差的重要特性: 如果变量X的标准差为SX ,将变量X按照公式|y = a • bx转换为Y变量后, 那么,变量 Y的标准差SY = bSx

(1) 一组数据中少部分偏大 数据的集中趋势。

(或偏小),数据分布呈偏态时,几何平均数比算术平均数更能反

7.几何平均数(geometric mean , Mg )是指n个观察值连乘积的 n次方根

Excel统计函数GEOMEAN

MH J 1 1 ) n 、、

Excel统计函数HARMEAN

Xi X2 Xi

标准差s: s = x (Xi -X)2 标准差Sn-1 : x (Xi -X)2

方差s2: s2 n -1 x (Xi -X)2

Excel统计函数STDEVP (给定样本总体的标准偏差) Excel统计函数STDEV (给定样本的标准偏差) Excel统计函数VARP (给定样本总体的方差) 2 x (Xi -X)2 Sn1 n -1

Excel统计函数VAR (给定样本的方差) 第3页共9页

相对位置量数:反映个体(数据)在团体中相对位置的统计量数。 主要有标准分数及其线性转换分数( Z分数、T分数)、百分等级(PR)、正态化标准分数等。 Xi -X Xi -k 1 •标准分数的计算与应用: Z - 或:Z亠

S G

T =10Z 50 , CEEB =100Z 500 Z分数的特点:Z分数的平均数为 0,即JZ =0,标准差为1,即匚Z =1 T分数的平均数 7=50,标准差为 6=10 CEEB分数的平均数 = ___________ ?,标准差= ____________ ?

(1) 可用于比较个体各方面水平高低(横向比较,个体内差异评价) 。 (2) 对被试多方面的测量结果进行综合,如对高考各科成绩的综合,各分测验分数的综合。 (3) 可用于对个体或样组某方面水平进行前后比较(纵向比较) ,判断其水平是提高了,退 步了,还是没有变化。 2 •原始分数X的百分等级的含义与计算

第五章相关关系 相关关系的描述方法 (1) 相关散点图:适用于直观描述两个连续性数值变量(等距数据、比率数据)之间的关系。 可用Excel图表向导中的 “XY散点图”绘制。 (2) 双向次数分布表 (交叉表、列联表):适用于描述两个等级变量 (或称名变量、类别变量 ) 之间的关系。可用 Excel数据透视表编制列联表)。 (3) 相关系数(相关关系的特征值)。 相关系数:描述两个变量相关关系的统计量数,在 -1.00~1.00之间取值,绝对值越大,越接近 1, 说明两个变量之间的关系程度越密切;绝对值越小,越接近 0,说明两个变量的关系程度越低。 常用的相关系数:

1. 积差相关:r = (Xi ~X)(Yi ~y) Excel 统计函数 CORREL n SxSy

适用条件:(1) X、Y两个变量都是连续性变量(等距数据或比率数据) ;

(2) X、Y两个变量总体上为正态分布或接近正态分布。 2 •斯皮尔曼等级相关: 是一对(两列)名次变量的积差相关。对数据变量的分布形态没有要求。 (1 )等级积差相关法(名次积差相关法) 。

. (RX _RX)(RY _RY) Excel 统计函数 CORREL R NSRX S

RY

公式中的RX和RY是分别代表两变量中每个数据在变量中的名次。

根据简单次数分布表计算: PRX 二

0.5 f Fb

N 100

根据分组次数分布表计算: X PRX 二 -L

b

Fb

100 第4页共9页

(2)等级差数法(名次差数法) 如果每个等级(即名次)变量中没有相同的等级名次,可用下面公式计算:

如果等级(即名次)变量中有相同的等级名次,需用下面校正公式计算: 等级差数法校正公式: 2 2 2 Tx Ty D

——2 — 2

Sc - —二,Yx、龙y计算方法参见教材 125页

3 •肯德尔 W系数(肯德尔和谐系数) :描述多个名次变量一致性程度的统计量数。 适用于描述和分析不同评价者(如主考、阅卷者)对同一组个体(考生或答卷)评价结果(名 次)的一致性程度,在心理测量与教育评价中称为 评分信度。例如,5位阅卷老师对10篇论文评分 排名的一致性。如果评价者给出的不是个体的水平名次,而是分数 (或等第、符号),可先将其转换 成名次,然后再计算 W系数。 、R2 丿 R)2

2

校正公式:W N -------- 、T「卫

1 2 3 12 K2(N3 -N) -' T 12

公式中: n为每个名次变量中相同名次的数目。 4. 点二歹U相关 (point-biserialcorrelation ): 用于描述一列续性变量和一列真正二分变量 (或非正态二分变量)之间的相关。 真正二变量:指按某种性质或标准将个体划分为两种结果的变量,如对、错,男、女等。 Xp -Xq

rpb pq Excel 统计函数 CORREL

st

5. 二列相关(biserial correlation):用于描述由一个正态连续变量人为划分成的二分变量与另外一个 正态连

续变量之间的相关。或者说,用于描述一正态二分变量与一正态连续变量之间的相关。

及格,80分以上和80分以下;按中考(或高考)成绩,将考生区分为录取、 未录取。 正态二分变量?如果二分变量是根据正态连续变量转换而来,那么,可称之为正态二分变量。 X p —Xq pq rb :

st y

y为将正态分布面积画分为 p、q两部分的纵线的高度。 y的计算方法:利用 Excel统计函数计算 标准正态分布区间点函数 NORMSINV( p值) T区间点Z值 正态分布函数 NORMDIST(区间点Z值,0,1,0 ) F 值的概率密度 y |ad —bc| 「:.:•: 寸(a +b)(c + d)(a +c)(b +d)

用于描述两个真正二分变量的相关程度,也用于描述一个人为二分变量和真正二分变量的相关。 注意: ①相关计算公式是由皮尔逊积差相关计算公式转换来的。 因此,如果两列二分变量转换

为0、1 (或1、2)的数值变量时,可以用 Excel统计函数 CORREL计算①系数。

等级差数法简化公式: 6R2 N(N2 -1)

1 2 3

捫(N

3_N)

人为二分变量?是指由连续变量转换而来的二分变量, 例如,将测验或考试分数区分为及格和不 6.①相关(①系数)

「R

相关文档
最新文档