九年级上数学证明(三)复习题
九年级数学期末复习上第三章圆的基本性质试卷(浙教版含解析)

期末复习:浙教版九年级数学学上册第三章圆的基本性质一、单选题(共10题;共30分)1.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A. 点P在⊙O内B. 点P在⊙O上C. 点P在⊙O外D. 无法判断2.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC等于()A. 20°B. 40°C. 60°D. 80°3.如图,AB是圆0的直径,弦CD AB于点E,则下列结论正确的是( )A. OE=BEB.C. △BOC是等边三角形D. 四边形ODBC是菱形4.如图,在⊙O中,点B,O,C和点A,O,D分别在同一条直线上,则图中有()条弦A. 2B. 3C. 4D. 55.如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB等于()A. B. 2 C. 2 D. 36.如图,△ABC内接于⊙O,若∠OAB=28°,则∠C的大小为()A. 28°B. 56°C. 60°D. 62°7.圆锥的主视图与左视图都是边长为4的等边三角形,则圆锥的侧面展开图扇形的圆心角是()A.90°B.120°C.150°D.180°8.如图,AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠BOD等于()A. 30°B. 40°C. 45°D. 50°9.如图,CD为⊙O的直径,CD⊥EF,垂点为G,∠EOD=40°,则∠DCF ()A. 80°B. 50°C. 40°D. 20°10.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A. 80°B. 50°C. 40°D. 20°二、填空题(共10题;共30分)11.如图,在⊙O中,点A,B,C在⊙O上,且∠ACB=110°,则∠α=________.12.如图,AB是⊙O的直径,点C为⊙O上一点,∠AOC=50°,则∠ABC= ________.13.如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M,N分别是AB、BC的中点,则MN长的最大值是________.14.平面直角坐标系中,以点P(0,1)为中心,把点A(5,1)逆时针旋转90°,得到点B,则点B 的坐标为________.15.一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是________°16.如图,点,,,在上,∠,∠,是中点,则∠的度数为________.17.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕点A逆时针旋转得到△AB′C′,AB′与BC相交于点D,当B′C′∥AB时,CD=________.18.如图,⊙O是正方形ABCD的外接圆,点E是上任意一点,则∠BEC的度数为________.19.如图,P是等边三角形ABC中的一个点,PA=2,PB=2,PC=4,则三角形ABC的边长为________20.如图,将n个边长都为1cm的正方形按如图所示摆放,点A1,A2,…,An分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为________三、解答题(共8题;共60分)21.(2017•宁波)在的方格中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)将图2中的△ABC绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.22.如图,已知AB是⊙O的直径,CD⊥AB ,垂足为点E,如果BE=OE ,AB=12,求△ACD 的周长23.已知,AB、AC是圆O的两条弦,AB=AC,过圆心O作OH⊥AC于点H.(1)如图1,求证:∠B=∠C;(2)如图2,当H、O、B三点在一条直线上时,求∠BAC的度数;(3)如图3,在(2)的条件下,点E为劣弧BC上一点,CE=6,CH=7,连接BC、OE交于点D,求BE的长和的值.24.如图所示,△ABC中,AB=AC=10,BC=12,求△ABC外接圆的半径.25.如图,△ABC中,AB=AC,将△ABC绕点A按逆时针方向旋转100°,得到△ADE,连接BD、CE.求证:BD=CE.26.如图,AB为⊙O的直径,CD为弦,且CD⊥AB,垂足为H.(1)若∠BAC=30°,求证:CD平分OB.(2)若点E为弧ADB的中点,连接0E,CE.求证:CE平分∠OCD.(3)若⊙O的半径为4,∠BAC=30°,则圆周上到直线AC距离为3的点有多少个?请说明理由.27.如图,在菱形ABCD中,∠A=110°,点E是菱形ABCD内一点,连结CE绕点C顺时针旋转110°,得到线段CF,连结BE,DF,若∠E=86°,求∠F的度数.28.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,交OA于点F,连接EF并延长EF交AB于G,且EG⊥AB.(1)求证:直线AB是⊙O的切线;(2)若EF=2FG,AB= ,求图中阴影部分的面积;(3)若EG=9,BG=12,求BD的长.答案解析部分一、单选题1.【答案】A【考点】点与圆的位置关系【解析】【解答】解:∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙0内,故选A.【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d 时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.2.【答案】D【考点】圆周角定理【解析】【分析】由⊙O是△ABC的外接圆,若∠ABC=40°,根据圆周角定理,即可求得答案。
九年级数学上学期第三章《图形的相似》综合测试题(含答案)

九年级数学上学期第三章《图形的相似》综合测试题(含答案)一、选择题(本大题共8小题,每小题4分,共32分) 1.已知5a=6b (a ≠0),则下列变形正确的是 ( )A .b 6=5aB .b 5=6a C .ab =56D .a -b b=152.如图1,已知AB ∥CD ∥EF ,BD ∶DF=1∶2,那么下列结论中正确的是 ( )图1A .AC ∶AE=1∶3B .CE ∶EA=1∶3C .CD ∶EF=1∶2 D .AB ∶EF=1∶2 3.C 是线段AB 的黄金分割点,且AB=6cm,则BC 的长为 ( ) A .(3√5-3)cm B .(9-3√5)cmC .(3√5-3)cm 或(9-3√5)cmD .(9-3√5)cm 或(6√5-6)cm4.如图2,在四边形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O ,AD=1,BC=4,则△AOD 与△BOC 的面积之比为( )A.12 B.14 C.18D.116图2 图35.如图3,已知△ABC 与△BDE 都是等边三角形,点D 在边AC 上(不与点A ,C 重合),DE 与AB 相交于点F ,那么与△BFD 相似的三角形是 ( )A .△BFEB .△BDCC .△BDAD .△AFD6.已知△ABC 与△A 1B 1C 1是关于原点为中心的位似图形,且点A 的坐标为(2,1),△ABC 与△A 1B 1C 1的位似比为12,则点A 的对应点A 1的坐标是 ( )A .(4,2)B .(-4,-2)C .(4,2)或(-4,-2)D .(6,3)7.如图4,在△ABC 中,点D 在BC 边上,连接AD ,点G 在线段AD 上,GE ∥BD ,且交AB 于点E ,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.ABAE =AGADB.DFCF=DGADC.FGAC=EGBDD.AEBE=CFDF图4 图58.如图5,在△ABC中,中线BE,CD相交于点O,连接DE,有下列结论:①DEBC =12;②S△DOES△COB=12;③AD AB =OEOB;④S△DOES△ADE=13.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题4分,共24分)9.若△ABC∽△DEF,相似比为3∶2,则对应周长的比值是.10.在比例尺为1∶40000的地图上,某条道路的长为7cm,则该道路的实际长度是_______km.11.若a,b,c,d是成比例线段,其中a=2cm,b=6cm,c=5cm,则线段d= cm.12.如图6,在△ABC中,MN∥BC分别交AB,AC于点M,N.若AM=1,MB=2,BC=3,则MN的长为.图613.在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE= 时,以A,D,E为顶点的三角形与△ABC相似.14.如图7,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高m.(杆的宽度忽略不计)图7三、解答题(本大题共5小题,共44分)15.(6分)如图8所示,AD,BE分别是钝角三角形ABC的边BC,AC上的高.求证:ADBE =AC BC.图816.(6分)如图9,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=12CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求平行四边形ABCD的面积.图917.(6分)如图10,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB'C'D',使它与四边形ABCD位似,且位似比为2.(1)在图中画出四边形AB'C'D';(2)试说明△AC'D'是等腰直角三角形.图1018.(12分)为测量操场上旗杆的高度,设计的测量方案如图11所示,标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛距地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,E,C,A三点共线,求旗杆AB的高度.图1119.(14分)如图12,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于点M,连接CM 交DB于点N.(1)求证:BD2=AD·CD;(2)若CD=6,AD=8,求MN的长.图12参考答案1.D [解析] 选项A,b 6=5a ⇒ab=30,故此选项错误;选项B,b 5=6a ⇒ab=30,故此选项错误;选项C,ab =56⇒6a=5b ,故此选项错误;选项D,a -b b=15⇒5(a-b )=b ,即5a=6b ,故此选项正确.故选D .2.A [解析]∵AB ∥CD ∥EF ,BD ∶DF=1∶2,∴AC ∶AE=1∶3,故A 选项正确;CE ∶EA=2∶3,故B 选项错误;CD ∶EF 的值无法确定,故C 选项错误;AB ∶EF 的值无法确定,故D 选项错误.故选A .3.C [解析]∵C 是线段AB 的黄金分割点,且AB=6cm,∴BC=√5-12AB=(3√5-3)cm 或BC=3−√52AB=(9-3√5)cm .故选C .4.D [解析] 在四边形ABCD 中,AD ∥BC ,所以△AOD ∽△COB.又由AD=1,BC=4,根据相似三角形的面积比等于相似比的平方,即可求得△AOD 与△BOC 的面积之比.5.C [解析]∵△ABC 与△BDE 都是等边三角形,∴∠A=∠BDF=60°.又∵∠ABD=∠DBF ,∴△BFD ∽△BDA ,∴与△BFD 相似的三角形是△BDA.6.A [解析]∵△ABC 与△A 1B 1C 1是关于原点为中心的位似图形,A (2,1),△ABC 与△A 1B 1C 1的位似比为12,∴点A 的对应点A 1的坐标是(2×2,1×2),即(4,2). 7.D8.C [解析] 由BE ,CD 均为△ABC 的中线可知,DE 为△ABC 的中位线,所以DE=12BC ,DE ∥BC ,所以DE BC =12,故①正确;由DE ∥BC 可得△DOE ∽△COB ,所以S △DOE S △COB=DE BC2=14,故②错误;由DE ∥BC 可得△ADE ∽△ABC ,△DOE ∽△COB ,所以AD AB =DE BC ,DE BC =OEOB ,所以AD AB =OEOB ,故③正确; 因为DE ∥BC ,所以△ADE ∽△ABC ,所以S △ADE S △ABC=DE BC2=14,设△DOE 的高为h ,DE=a ,则BC=2a ,△BOC 的高为2h ,所以△ABC 的高为6h ,所以△ADE 的高为3h ,所以S △DOES△ADE =12a ℎ12·a ·3ℎ=13,故④正确.故选C .9.3∶2 [解析] 根据相似三角形的周长比等于相似比求解.10.2.8 [解析] 设这条道路的实际长度为x cm,则140000=7x ,解得x=280000,280000cm =2.8km .11.15 [解析]∵a ,b ,c ,d 是成比例线段,∴a b=c d.∵a=2cm,b=6cm,c=5cm,∴26=5d,解得d=15(cm).12.1 [解析]∵MN ∥BC ,∴△AMN ∽△ABC ,∴AM AB =MNBC ,即11+2=MN 3,∴MN=1.13.125或53 [解析] 当AE AD =ABAC 时,∵∠A=∠A ,∴△AED ∽△ABC ,此时AE=AB ·AD AC=6×25=125;当AD AE =ABAC 时,∵∠A=∠A ,∴△ADE ∽△ABC ,此时AE=AC ·AD AB =5×26=53.故答案为125或53. 14.815.证明:∵AD ,BE 是钝角三角形ABC 的高,∴∠ADC=∠BEC=90°.又∵∠DCA=∠BCE ,∴△DAC ∽△EBC , ∴AD BE =ACBC .16.解:(1)证明:∵四边形ABCD 是平行四边形,∴∠A=∠C ,AB ∥CD ,∴∠ABF=∠CEB ,∴△ABF ∽△CEB.(2)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,AB=CD , ∴△DEF ∽△CEB ,△DEF ∽△ABF. ∵DE=12CD ,∴EC=3DE ,AB=2DE ,∴S △DEFS△CEB=DE EC2=19,S △DEF S △ABF=DE AB2=14.∵S △DEF =2,∴S △CEB =18,S △ABF =8, ∴S 四边形BCDF =S △CEB -S △DEF =16,∴S 平行四边形ABCD =S 四边形BCDF +S △ABF =16+8=24.17.解:(1)如图,四边形AB'C'D'即为所求作图形.(2)根据网格的特点,利用勾股定理可以求出AD'=C'D'=2√10,AC'=4√5.利用勾股定理的逆定理可以得出∠AD'C'=90°, 故△AC'D'是等腰直角三角形.18.解:如图,过点E 作EH ⊥AB 于点H ,交CD 于点G ,则EF=DG=BH=1.6m,GH=BD=15m,EG=DF=2m,∴CG=CD-DG=3-1.6=1.4(m). ∵CG ∥AH , ∴△ECG ∽△EAH , ∴CG AH =EGEH ,即1.4AH =22+15,解得AH=11.9(m),∴AB=AH+BH=11.9+1.6=13.5(m).答:旗杆AB 的高度为13.5m . 19.解:(1)证明:∵DB 平分∠ADC ,∴∠ADB=∠BDC.又∵∠ABD=∠BCD=90°, ∴△ABD∽△BCD,∴ADBD =BD CD,∴BD2=AD·CD.(2)∵BM∥CD,∴∠MBD=∠BDC, ∴∠ADB=∠MBD,∴BM=MD.∵∠ABD=90°,∴∠MAB+∠ADB=90°,∠MBA+∠MBD=90°,∴∠MAB=∠MBA,∴BM=AM,∴AM=BM=MD=4.∵BD2=AD·CD,且CD=6,AD=8, ∴BD2=48,∴BC2=BD2-CD2=12,∴MC2=BM2+BC2=28,∴MC=2√7.∵BM∥CD,∴△MNB∽△CND,∴BMCD =MNCN=23,∴MN=4√75.。
2021年九年级数学中考复习分类专题练习:等边三角形的判定与性质(三)

2021年九年级数学中考复习分类专题:等边三角形的判定与性质(三)一.选择题1.如图,等边△ABC中,D、E分别为AC、AB上两点,下列结论:①若AD=AE,则△ADE是等边三角形;②若DE∥BC,则△ADE是等边三角形,其中正确的有()A.①B.②C.①②D.都不对2.如图,D是等边△ABC的边AC上的一点,E是等边△ABC外一点,若BD=CE,∠1=∠2,则对△ADE的形状最准确的是()A.等腰三角形B.直角三角形C.等边三角形D.不等边三角形3.设M,N,P分别是等边三角形ABC各边上的点,AM=BN=CP,则△MNP是()A.等边三角形B.等腰三角形C.直角三角形D.不等边三角形4.已知:如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD、CE相交于点N,则下列五个结论:①AD=BE;②∠BMC=∠ANC;③∠APM=60°;④AN=BM;⑤△CMN是等边三角形.其中,正确的有()A.2个B.3个C.4个D.5个5.如图,在△ABC中,D、E在BC上,且BD=DE=AD=AE=EC,则∠BAC的度数是()A.30°B.45°C.120°D.15°6.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A.25°B.30°C.45°D.60°7.如图,已知△ABC是等边三角形,点D,E,F分明是边AB,BC,AC的中点,则图中等边三角形的个数是()A.2个B.3个C.4个D.5个8.如图,等边三角形ABC中,AD是BC上的高,∠BDE=∠CDF=60°,图中与BD相等的线段有()A.5条B.6条C.7条D.8条9.如图,已知∠ABC=120°,BD平分∠ABC,∠DAC=60°,若AB=2,BC=3,则BD的长是()A.5 B.7 C.8 D.910.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论错误的是()A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°二.填空题11.已知∠AOB=30°,点P在OA上,且OP=2,点P关于直线OB的对称点是Q,则PQ=.12.在△ABC 中,AB =AC =8cm ,∠B =60°,则BC = cm .13.如图,△ABC 是等边三角形,D ,E ,F 分别是AB ,BC ,CA 边上一点,且AD =BE =CF .则△DEF 的形状是 .14.两块完全一样的含30°角的三角板重叠在一起,若绕长直角边中点M 转动,使上面一块的斜边刚好过下面一块的直角顶点.如图,∠A =30°,AC =8,则此时两直角顶点C ,C ′间的距离是 .15.如图,已知△ABC 中高AD 恰好平分边BC ,∠B =30°,点P 是BA 延长线上一点,点 O 是线段AD 上一点且OP =OC ,下面的结论:①∠APO +∠DCO =30°;②△OPC 是等边三角形;③AC =AO +AP ;④S △ABC =S 四边形AOCP .其中正确的为 .(填序号)16.如图所示是两块完全一样的含30°角的三角板,分别记作△ABC 和△A 1B 1C 1,现将两块三角板重叠在一起,设较长直角边的中点为M ,绕中点M 转动三角板ABC ,使其直角顶点C 恰好落在三角板A 1B 1C 1的斜边A 1B 1上,当∠A =30°,AC =10时,两直角顶点C ,C 1的距离是 .三.解答题17.如图,已知:边长相等的等边△ABC和等边△DEF重叠部分的周长是6.(1)求证:△FGH和△CHL和△LEK和△KBJ和△JDI和△IAG都是等边三角形.(或证明∠AGF=∠FHC=∠CLE=∠EKB=∠BJI=∠DIA=120°)(2)求等边△ABC的边长.18.如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,且BE=8cm.(1)求∠D的度数;(2)若BC=10cm,求ED的长.19.如图,△ABC是等边三角形,O为△ABC内一点,且∠AOB=120°,∠BOC=120°.求证:由线段AO、BO、CO构成的一个三角形是等边三角形.证明过程如下,请仔细阅读并将证明继续下去:证明:将△ABO绕点A逆时针旋转60°,此时B点与C点重合,O落在O′,连接AO′、OO′、CO′,∴AO=AO′,∠OAO′=60°∴△AOO′是一个等边三角形∴AO=OO′又∵OB=O′C∴线段OA、OB、OC构成了△OCO′请继续:20.如图,等边△ABC中,点D、E、F分别同时从点A、B、C出发,以相同的速度在AB、BC、CA上运动,连结DE、EF、DF.(1)证明:△DEF是等边三角形;(2)在运动过程中,当△CEF是直角三角形时,试求的值.21.已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.(1)【特殊情况,探索结论】如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”、“<”或“=”).(2)【特例启发,解答题目】如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AE DB(填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC 于点F.(请你完成以下解答过程).(3)【拓展结论,设计新题】在等边三角形ABC中,点E在直线AB上,点D在线段CB的延长线上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出相应图形,并直接写出结果).参考答案一.选择题1.解:∵△ABC为等边三角形,∴∠A=60°,∵AD=AE,∴△ADE是等边三角形;所以①正确;∵△ABC为等边三角形,∴∠C=∠B=60°,∵DE∥BC,∴∠ADE=∠C=∠B=∠AED=60°,∴△ADE是等边三角形,所以②正确.故选:C.2.解:∵三角形ABC为等边三角形,∴AB=AC,∵BD=CE,∠1=∠2,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE=60°,∴△ADE是等边三角形.故选:C.3.解:∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°,∵AM=BN=CP,∴BM=CN=AP,在△AMP,△BNM和△CPN中,,∴△AMP≌△BNM≌△CPN(SAS),∴PM=MN=NP,∴△MNP是等边三角形.4.解:∵△ABC和△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,∴△BCE≌△ACD(SAS),∴AD=BE,故选项①正确;∵∠ACB=∠ACE=60°,由△BCE≌△ACD得:∠CBE=∠CAD,∴∠BMC=∠ANC,故选项②正确;由△BCE≌△ACD得:∠CBE=∠CAD,∵∠ACB是△ACD的外角,∴∠ACB=∠CAD+∠ADC=∠CBE+∠ADC=60°,又∠APM是△PBD的外角,∴∠APM=∠CBE+∠ADC=60°,故选项③正确;在△ACN和△BCM中,,∴△ACN≌△BCM,∴AN=BM,故选项④正确;∴CM=CN,∴△CMN为等腰三角形,∵∠MCN=60°,∴△CMN是等边三角形,故选项⑤正确;故选:D.5.解:设∠B=x∵BD=AD则∠B=∠BAD=x,∠ADE=2x,∵AD=AE∴∠AED=∠ADE=2x,∵AE=EC,∠AED=∠EAC+∠C∴∠EAC=∠C=x又BD=DE=AD,由直角三角形斜边的中线等于斜边的一半,知∠BAE=90°,则∠B+∠AED=x+2x=90°得x=30°∴∠BAC=180°﹣2x=120°故选:C.6.解:△ABC沿CD折叠B与E重合,则BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选:B.7.解:∵D,E,F分明是边AB,BC,AC的中点,∴AD=BD=BE=EC=CF=FA=DF=DE=EF=AB=AC=∴等边三角形有:△ABC、△ADF、△BDE、△CEF、△DEF共5个,故选:D.8.解:如图,连接EF.∵等边△ABC中,AD是BC边上的高,∴∠BAD=∠CAD=30°,∵∠BDE=∠CDF=60°,∴∠ADE=∠ADF=30°,△AEF、△BDE、△CDF、△DEF都是全等的等边三角形,∴∴BD=DC=DE=BE=AE=AF=FC=FD,即图中与BD相等的线段有7条.故选:C.9.解:在CB的延长线上取点E,使BE=AB,连接AE,∵∠ABC=120°,∴∠ABE=180﹣∠ABC=60°,∵BE=AB,∴△ABE为等边三角形,∴AE=AB,∠BAE=∠E=60°,∵∠DAC=60°,∴∠DAC=BAE,∵∠BAD=∠BAC+∠DAC,∠EAC=∠BAC+∠BAE,∴∠BAD=∠EAC,∵BD平分∠ABC,∴∠ABD=∠ABC=60°,∴∠ABD=∠E,在△ABD和△AEC中,,∴△ABD≌△AEC(ASA),∴BD=CE,∵CE=BE+BC=AB+BC=3+2=5,∴BD=5,故选:A.10.解:∵△ABC是等边三角形,∴∠ABC=60°,∵△BQC≌△BPA,∴∠BPA=∠BQC,BP=BQ=4,QC=PA=3,∠ABP=∠QBC,∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°,∴△BPQ是等边三角形,∴PQ=BP=4,∵PQ2+QC2=42+32=25,PC2=52=25,∴PQ2+QC2=PC2,∴∠PQC=90°,即△PQC是直角三角形,∵△BPQ是等边三角形,∴∠BOQ=∠BQP=60°,∴∠BPA=∠BQC=60°+90°=150°,∴∠APC=360°﹣150°﹣60°﹣∠QPC=150°﹣∠QPC,∵∠PQC=90°,PQ≠QC,∴∠QPC≠45°,即∠APC≠135°,∴选项A、B、C正确,选项D错误.故选:D.二.填空题(共6小题)11.解:如图,连OQ,∵点P关于直线OB的对称点是Q,∴OB垂直平分PQ,∴∠POB=∠QOB=30°,OP=OQ,∴∠POQ=60°,∴△POQ为等边三角形,∴PQ=PO=2.故答案为2.12.解:∵在△ABC中,AB=AC=8cm,∠B=60°,∴△ABC是等边三角形,∴BC=8cm.故答案为:8.13.解:∵△ABC为等边三角形,且AD=BE,∴AF=BD,∠A=∠B=60°,∴在△ADF与△BED中,,∴△ADF≌△BED(SAS).同理证得△ADF≌△CFE(SAS),∴△ADF≌△BED≌△CFE(SAS),∴DF=ED=EF,∴△DEF是一个等边三角形.故答案是:等边三角形.14.解:如图,连接CC',∵点M是AC中点,∴AM=CM=AC=4,∵旋转,∴CM=C'M,AM=A'M∴A'M=MC=C'M=4,∴∠A'=∠A'CM=30°∴∠CMC'=∠A'+∠MCA'=60°,且CM=C'M∴△CMC'是等边三角形∴C'C=CM=4故答案为:415.解:①连接OB,如图1,∵△ABC中高AD恰好平分边BC,即AD是BC垂直平分线,∴AB=AC,BD=CD,∴OB=OC=OP,∴∠APO=∠ABO,∠DBO=∠DCO,∵∠ABC=∠ABO+∠DBO=30°,∴∠APO+∠DCO=30°.故①正确;②△OBP中,∠BOP=180°﹣∠OPB﹣∠OBP,△BOC中,∠BOC=180°﹣∠OBC﹣∠OCB,∴∠POC=360°﹣∠BOP﹣∠BOC=∠OPB+∠OBP+∠OBC+∠OCB,∵∠OPB=∠OBP,∠OBC=∠OCB,∴∠POC=2∠ABD=60°,∵PO=OC,∴△OPC是等边三角形,故②正确;③如图2,在AC上截取AE=PA,∵∠PAE=180°﹣∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=PA,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE,∵OP=CP,在△OPA和△CPE中,,∴△OPA≌△CPE(SAS),∴AO=CE,∴AC=AE+CE=AO+AP;故③正确;④如图3,作CH⊥BP,∵∠HCB=60°,∠PCO=60°,∴∠PCH=∠OCD,在△CDO和△CHP中,,∴△CDO≌△CHP(AAS),∴S△OCD =S△CHP∴CH=CD,∵CD=BD,∴BD=CH,在Rt△ABD和Rt△ACH中,,∴Rt△ABD≌Rt△ACH(HL),∴S △ABD =S △AHC ,∵四边形OAPC 面积=S △OAC +S △AHC +S △CHP ,S △ABC =S △AOC +S △ABD +S △OCD∴四边形OAPC 面积=S △ABC .故④正确.故答案为:①②③④.16.解:如图,连接CC 1,∵两块三角板重叠在一起,较长直角边的中点为M ,∴M 是AC 、A 1C 1的中点,AC =A 1C 1,∴CM =A 1M =C 1M =AC =5,∵∠A =30°,∴∠A 1=∠A 1CM =30°,∴∠CMC 1=60°,∴△CMC 1为等边三角形,∴CC 1=CM =5,∴CC 1长为5.故答案为5.三.解答题(共5小题)17.解:(1)∵△ABC和△DEF都是等边三角形,∴∠F=60°,FG=FH,FD=BC,∴△FGH是等边三角形,同理△CHL、△LEK、△KBJ、△JDI、△TAG都是等边三角形;(2)∵△FGH是等边三角形,∴GH=FG.同理,IJ=ID,HL=CL,JK=KB,∴重叠部分的周长为:FD+BC=6,∴FD=BC=3,即等边△ABC的边长是 3.18.解:(1)延长ED交BC于点F,延长AD交BC于H,如图.∵∠EBC=∠E=60°,∴△BEF是等边三角形,∴EF=BF=BE=8,∠EFB=60°.∵AB=AC,AD平分∠BAC,∴AH⊥BC,即∠AHC=90°,∴∠HDF=30°,∴∠ADE=∠HDF=30°;(2)∵BC=10,∴FC=2.∵AB=AC,AD平分∠BAC,∴BH=CH=BC=5,∴HF=5﹣2=3.在Rt△DHF中,∵∠HDF=30°,∴DF=2HF=6,∴DE=8﹣6=2.∴ED的长为2cm.19.证明:将△ABO绕点A逆时针旋转60°,此时B点与C点重合,O落在O′,连接AO′、OO′、CO′,∴AO=AO′,∠OAO′=60°,∴△AOO′是一个等边三角形,∴AO=OO′,又∵OB=O′C,∴线段OA、OB、OC构成了△OCO′,∵∠AOB=120°,∠BOC=120°.∴∠AOC=120°,∠AO′C=120°∵△AOO′是一个等边三角形,∴∠AOO′=∠AO′O=60°,∴∠O′OC=∠OO′C=60°,∴△OCO′是等边三角形,∴线段AO、BO、CO构成的一个三角形是等边三角形.20.(1)证明:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA,∵AD=BE=CF,∴BD=EC=AF,在△ADF、△BED和△CFE中∴△ADF≌△BED≌△CFE,∴DE=EF=FD,∴△DEF是等边三角形;(2)解:∵△ABC和△DEF是等边三角形,∴△DEF∽△ABC,∵DE⊥BC,∴∠BDE=30°,∴BE=BD,即BE=BC,CE=BC,∵EF=EC•sin60°=BC•=BC,∴=()2=()2=.21.解:(1)当E为AB的中点时,AE=DB;(2)AE=DB,理由如下,过点E作EF∥BC,交AC于点F,证明:∵△ABC为等边三角形,∴△AEF为等边三角形,∴AE=EF,BE=CF,∵ED=EC,∴∠D=∠ECD,∵∠DEB=60°﹣∠D,∠ECF=60°﹣∠ECD,∴∠DEB=∠ECF,在△DBE和△EFC中,,∴△DBE≌△EFC(SAS),∴DB=EF,则AE=DB;(3)点E在AB延长线上时,如图所示,同理可得△DBE≌△EFC,∴DB=EF=2,BC=1,则CD=BC+DB=3.故答案为:(1)=;(2)=。
新版九年级数学(上)中考题同步试卷:相似三角形判定定理的证明

北师大新版九年级(上)中考题同步试卷:4.5 相似三角形判定定理的证明(01)一、选择题(共9小题)1.在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图1;将AB折成正三角形,使点A、B重合于点P,如图2;建立平面直角坐标系,平移此三角形,使它关于y轴对称,且点P的坐标为(0,2),PM的延长线与x轴交于点N(n,0),如图3,当m=时,n的值为()A.4﹣2B.2﹣4C.﹣D.2.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A.B.C.D.3.若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似.如图,如果扇形AOB与扇形A1O1B1是相似扇形,且半径OA:O1A1=k(k为不等于0的常数).那么下面四个结论:①∠AOB=∠A1O1B1;②△AOB∽△A1O1B1;③=k;④扇形AOB与扇形A1O1B1的面积之比为k2.成立的个数为()A.1个B.2个C.3个D.4个4.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4B.9:16C.9:1D.3:15.如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1;还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D2014E2014到BC的距离记为h2015.若h1=1,则h2015的值为()A.B.C.1﹣D.2﹣6.如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是()A.=B.=C.=D.=7.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD 于M、N两点.若AM=2,则线段ON的长为()A.B.C.1D.8.如图,在△ABC中,DE∥BC,=,则下列结论中正确的是()A.=B.=C.=D.=9.如图为两正方形ABCD、BEFG和矩形DGHI的位置图,其中G、F两点分别在BC、EH 上.若AB=5,BG=3,则△GFH的面积为何?()A.10B.11C.D.二、填空题(共10小题)10.如图,在△ABC中,DE∥BC,AD:DB=1:2,DE=2,则BC的长是.11.如图,直线l1、l2、…l6是一组等距的平行线,过直线l1上的点A作两条射线,分别与直线l3、l6相交于点B、E、C、F.若BC=2,则EF的长是.12.已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推….若A1C1=2,且点A,D2,D3,…,D10都在同一直线上,则正方形A9C9C10D10的边长是.13.如图,在△ABC中,DE∥BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE的长为.14.如图,菱形ABCD的边长为1,直线l过点C,交AB的延长线于M,交AD的延长线于N,则+=.15.如图,在△ABC中,DE∥BC,,DE=6,则BC的长是.16.如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为.17.如图,在矩形ABCD中,BC=AB,∠ADC的平分线交边BC于点E,AH⊥DE于点H,连接CH并延长交边AB于点F,连接AE交CF于点O.给出下列命题:①∠AEB=∠AEH;②DH=2EH;③HO=AE;④BC﹣BF=EH其中正确命题的序号是(填上所有正确命题的序号).18.设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB 的面积记为S2;…,依此类推,则S n可表示为.(用含n的代数式表示,其中n 为正整数)19.如图,正方形ABCB1中,AB=1.AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4,…,依此规律,则A2014A2015=.三、解答题(共11小题)20.如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点.过点B作BE∥AD,交⊙O于点E,连接ED(1)求证:ED∥AC;(2)若BD=2CD,设△EBD的面积为S1,△ADC的面积为S2,且S12﹣16S2+4=0,求△ABC的面积.21.如图,⊙O的半径为5,点P在⊙O外,PB交⊙O于A、B两点,PC交⊙O于D、C 两点.(1)求证:P A•PB=PD•PC;(2)若P A=,AB=,PD=DC+2,求点O到PC的距离.22.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EF A;(2)若AB=12,BM=5,求DE的长.23.如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.(1)若=,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC 有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.24.如图1,在正方形ABCD中,延长BC至M,使BM=DN,连接MN交BD延长线于点E.(1)求证:BD+2DE=BM.(2)如图2,连接BN交AD于点F,连接MF交BD于点G.若AF:FD=1:2,且CM =2,则线段DG=.25.如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,AD=3,AB=5,求的值.26.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.27.如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE.(1)求证:D是BC的中点;(2)若DE=3,BD﹣AD=2,求⊙O的半径;(3)在(2)的条件下,求弦AE的长.28.如图1,四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tan A=.(1)求CD边的长;(2)如图2,将直线CD边沿箭头方向平移,交DA于点P,交CB于点Q(点Q运动到点B停止).设DP=x,四边形PQCD的面积为y,求y与x的函数关系式,并求出自变量x的取值范围.29.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.30.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.北师大新版九年级(上)中考题同步试卷:4.5 相似三角形判定定理的证明(01)参考答案一、选择题(共9小题)1.A;2.D;3.D;4.B;5.D;6.C;7.C;8.C;9.D;二、填空题(共10小题)10.6;11.5;12.;13.3.6;14.1;15.18;16.5;17.①③;18.;19.2()2014;三、解答题(共11小题)20.;21.;22.;23.;24.;25.;26.;27.;28.;29.;30.;北师大新版九年级(上)中考题同步试卷:4.5 相似三角形判定定理的证明(06)一、选择题(共15小题)1.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A.B.C.D.2.如图,∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,则CD的长为()A.B.C.2D.33.如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED 的值为()A.1:3B.2:3C.1:4D.2:54.如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.5.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=,则△CEF的面积是()A.B.C.D.6.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE 并延长交DC于点F,则DF:FC=()A.1:4B.1:3C.2:3D.1:27.如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE 平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2C.3D.48.如图,直角梯形ABCD中,AB∥CD,∠C=90°,∠BDA=90°,AB=a,BD=b,CD =c,BC=d,AD=e,则下列等式成立的是()A.b2=ac B.b2=ce C.be=ac D.bd=ae9.如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?()A.甲>乙,乙>丙B.甲>乙,乙<丙C.甲<乙,乙>丙D.甲<乙,乙<丙10.如图,在△ABC中,M,N分别是边AB,AC的中点,则△AMN的面积与四边形MBCN 的面积比为()A.B.C.D.11.直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为()A.B.C.D.12.如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为()A.a B.C.D.a13.如图,在平行四边形ABCD中,E为AD的中点,△DEF的面积为1,则△BCF的面积为()A.1B.2C.3D.414.如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC 的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11B.10C.9D.815.如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD 相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC 于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有()A.5个B.4个C.3个D.2个二、填空题(共9小题)16.如图,AC⊥CD,垂足为点C,BD⊥CD,垂足为点D,AB与CD交于点O.若AC=1,BD=2,CD=4,则AB=.17.在平行四边形ABCD中,E在DC上,若DE:EC=1:2,则BF:BE=.18.如图,△ABC中,E、F分别是AB、AC上的两点,且,若△AEF的面积为2,则四边形EBCF的面积为.19.如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形A n B n D n E n的边长是.20.如图,正方形ABCD的边长为4,E、F分别是BC、CD上的两个动点,且AE⊥EF.则AF的最小值是.21.如图,在边长为10cm的正方形ABCD中,P为AB边上任意一点(P不与A、B两点重合),连结DP,过点P作PE⊥DP,垂足为P,交BC于点E,则BE的最大长度为cm.22.如图,在△ABC中,∠C=90°,BC=1,AC=2,四边形CA1B1C1、A1A2B2C2、A2A3B3C3…都是正方形,且A1、A2、A3…在AC边上,B1、B2、B3…在AB边上.则线段B n∁n的长用含n的代数式表示为.(n为正整数)23.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=..24.如图,AB是⊙O的直径,,AB=5,BD=4,则sin∠ECB=.三、解答题(共6小题)25.如图l,在△ABC中,∠BAC=90°,AB=AC,AO⊥BC于点0,F是线段AO上的点(与A,0不重合),∠EAF=90°,AE=AF,连结FE,FC,BE,BF.(1)求证:BE=BF;(2)如图2,若将△AEF绕点A旋转,使边AF在∠BAC的内部,延长CF交AB于点G,交BE于点K.①求证:△AGC∽△KGB;②当△BEF为等腰直角三角形时,请你直接写出AB:BF的值.26.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.27.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC 与∠ACN的数量关系,并说明理由.28.如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上).(1)若以C、E、F为顶点的三角形与以A、B、C为顶点的三角形相似.①当AC=BC=2时,AD的长为;②当AC=3,BC=4时,AD的长为;(2)当点D是AB的中点时,△CEF与△CBA相似吗?请说明理由.29.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F 在边AB上,点G在边BC上.(1)求证:△ADE≌△BGF;(2)若正方形DEFG的面积为16cm2,求AC的长.30.如图,在△ABC中,以BC为直径作半圆O,交AB于点D,交AC于点E,AD=AE.(1)求证:AB=AC(2)若BD=4,BO=2,求AD的长.北师大新版九年级(上)中考题同步试卷:4.5 相似三角形判定定理的证明(06)参考答案一、选择题(共15小题)1.B;2.B;3.A;4.C;5.A;6.D;7.D;8.A;9.D;10.B;11.A;12.C;13.D;14.D;15.B;二、填空题(共9小题)16.5;17.3:5;18.16;19.;20.5;21.;22.()n;23.;24.;三、解答题(共6小题)25.;26.;27.;28.;1.8或2.5;29.;30.;北师大新版九年级(上)中考题同步试卷:4.5 相似三角形判定定理的证明(07)一、选择题(共1小题)1.如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(共9小题)2.如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为.3.如图,矩形ABCD的边AB上有一点P,且AD=,BP=,以点P为直角顶点的直角三角形两条直角边分别交线段DC,线段BC于点E,F,连接EF,则tan∠PEF=.4.劳技课上小敏拿出了一个腰长为8厘米,底边为6厘米的等腰三角形,她想用这个等腰三角形加工成一个边长比是1:2的平行四边形,平行四边形的一个内角恰好是这个等腰三角形的底角,平行四边形的其它顶点均在三角形的边上,则这个平行四边形的较短的边长为.5.梯形ABCD中,AB∥CD,AB=3,CD=8,点E是对角线AC上一点,连接DE并延长交直线AB于点F,若=2,则=.6.正方形ABCD中,AC、BD相交于点O,点E是射线AB上一点,点F是直线AD上一点,BE=DF,连接EF交线段BD于点G,交AO于点H.若AB=3,AG=,则线段EH的长为.7.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为.8.如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=.9.如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为cm.10.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是(写出所有正确结论的序号).三、解答题(共7小题)11.在矩形ABCD中,DC=2,CF⊥BD分别交BD、AD于点E、F,连接BF.(1)求证:△DEC∽△FDC;(2)当F为AD的中点时,求sin∠FBD的值及BC的长度.12.在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.13.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE 上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.14.已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△AQP∽△ABC;(2)当△PQB为等腰三角形时,求AP的长.15.将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图②中,若AP1=2,则CQ等于多少?(3)如图③,在B1C上取一点E,连接BE、P1E,设BC=1,当BE⊥P1B时,求△P1BE 面积的最大值.16.如图,AD是△ABC的角平分线,以点C为圆心,CD为半径作圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,EF:FD=4:3.(1)求证:点F是AD的中点;(2)求cos∠AED的值;(3)如果BD=10,求半径CD的长.17.如图,点B在线段AC上,点D、E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE 于点Q;(i)当点P与A、B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)北师大新版九年级(上)中考题同步试卷:4.5 相似三角形判定定理的证明(07)参考答案一、选择题(共1小题)1.D;二、填空题(共9小题)2.7;3.;4.2.4cm或cm;5.或;6.或;7.(2,4﹣2);8.12;9.5;10.①②④;三、解答题(共7小题)11.;12.;13.;14.;15.;16.;17.;。
2021年九年级数学中考一轮复习——几何专题:全等三角形性质与判定(三)

2021年九年级数学中考复习——几何专题:全等三角形性质与判定(三)1.如图,在△ABC中,AB=AC,∠A=108°,BE平分∠ABC交AC于点E,求证:BC=AB+CE.2.如图2,△ABC中,∠B=∠C,若∠A=70°,求∠B的度数.3.如图,在△ABC中,AD⊥BC于点D,AD=BD,点E是线段AD上一点,且ED=CD,连接BE交AC于点F.(1)求证:∠CBF=∠DAC;(2)若BD=3,BF=,求△BAF的周长.4.如图,△ABC中,AD既是中线,又是角平分线,DE⊥AB于点E,DF⊥AC于点F.(1)求证:△BDE≌△CDF;(2)你认为AD还是△ABC的高吗?如果是,请给出证明;如果不是,请说明理由.5.已知:D,A,E三点都在直线m上,在直线m的同一侧作△ABC,使AB=AC,连接BD,CE.(1)如图①,若∠BAC=90°,BD⊥m,CE⊥m,求证:△ABD≌△ACE;(2)如图②,若∠BDA=∠AEC=∠BAC,请判断BD,CE,DE三条线段之间的数量关系,并说明理由.6.已知:如图,点A、B、C、D在一条直线上,AE∥DF,AE=DF,AB=CD.(1)求证:∠E=∠F;(2)若∠D=28°,∠ECA=100°,求∠F的度数.7.如图1,在△ABC中,AE⊥BC于点E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由.8.已知,在△ABC中,D是AC上一点,BF交AC于点E,连接DF.(1)如图1,BE=EF,AB∥DF.求证:AE=DE;(2)如图2,点D与点C重合,∠A=90°,∠ACB=∠ECF,∠F=∠AEB.若CE=3,BC=5,求AC的长.9.如图,AB=CD,AE⊥BC于E,DF⊥BC于F,AE=DF.求证:(1)CE=BF;(2)AB∥CD.10.如图,在△ACD和△BCE中,AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,AD与BE相交于点P,求∠ACB的度数.参考答案1.证明:如图,在BC上取BA′=BA,连接EA′,∵∠A=108°,AB=AC,∴∠ABC=∠ACB=36°,∵BE平分∠ABC,∴∠ABE=∠CBA=18°,在△ABE与△A′BE中,,∴△ABE≌△A′BE(SAS),∴∠BA′E=∠A=108°,∴∠EA′C=72°,∴∠A′EC=72°,∴∠A′EC=∠CA′E,∴CE=CA′,∴BC=BA′+EC=AB+EC=AC+EC.2.(1)证明:∵C是线段AB的中点,∴AC=CB,在△ACD和△CBE中,∵,∴△ACD≌△CBE(SSS);(2)解:△ABC中,∠A+∠B+∠C=180°,∵∠B=∠C,∴70°+∠B+∠B=180°,∴∠B=55°.3.解:(1)证明:∵AD⊥BC,∴∠ADC=∠ADB=90°,在△ACD和△BED中,,∴△ACD≌△BED(SAS),∴∠DAC=∠CBF;(2)∵AD⊥BC,AD=BD=3,∴AB==3,∵∠DAC=∠CBF,∴∠DAC+∠C=∠CBF+∠C=90°,∴∠AFB=90°,∴AF==2,∴△BAF的周长为:AB+BF+AF=3++2.4.(1)证明:∵AD既是中线,又是角平分线,DE⊥AB,DF⊥AC,∴BD=CD,DE=DF,∠DEB=∠DFC=90°,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL);(2)AD还是△ABC的高,证明:由(1)△BDE≌△CDF,∴∠B=∠C,∵AD既是中线,又是角平分线,∴BD=CD,∠BAD=∠CAD,在△BAD和△CAD中,,∴△BAD≌△CAD(AAS),∴∠ADB=∠ADC,∵∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°,即AD还是△ABC的高.5.解:(1)证明:如图①,∵D,A,E三点都在直线m上,∠BAC=90°,∴∠BAD+∠CAE=90°,∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(AAS);(2)DE=BD+CE.理由是:如图②,∵∠BDA=∠AEC=∠BAC,∴由三角形内角和及平角性质,得:∠BAD+∠ABD=∠BAD+∠CAE=∠CAE+∠ACE,∴∠ABD=∠CAE,∠BAD=∠ACE,在△ABD和△ACE中,,∴△ABD≌△ACE(ASA),∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE.6.(1)证明:∵AE∥DF,∴∠A=∠D,∵AB=CD,∴AB+BC=CD+BC,∴AC=DB,在△EAC和△FDB中,,∴△EAC≌△FDB(SAS),∴∠E=∠F;(2)解:由(1)得:△EAC≌△FDB,∴∠ECA=∠FBD=100°,∴∠F=180°﹣∠D﹣∠FBD=180°﹣28°﹣100°=52°.7.解:(1)BD=AC,BD⊥AC,理由:延长BD交AC于F.∵AE⊥BC,∴∠AEB=∠AEC=90°,在△BED和△AEC中,,∴△BED≌△AEC(SAS),∴BD=AC,∠DBE=∠CAE,∵∠BED=90°,∴∠EBD+∠BDE=90°,∵∠BDE=∠ADF,∴∠ADF+∠CAE=90°,∴∠AFD=180°﹣90°=90°,∴BD⊥AC;(2)结论不发生变化,理由是:设AC与DE相交于点O,∵∠BEA=∠DEC=90°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC(SAS),∴BD=AC,∠BDE=∠ACE,∵∠DEC=90°,∴∠ACE+∠EOC=90°,∵∠EOC=∠DOF,∴∠BDE+∠DOF=90°,∴∠DFO=180°﹣90°=90°,∴BD⊥AC.8.(1)证明:∵AB∥DF,∴∠A=∠EDF,在△ABE和△DFE中,,∴△ABE≌△DFE(AAS),∴AE=DE;(2)解:过B作BH∥DF交CA的延长线于点H,∴∠HBE=∠F=∠AEB,∠H=∠ACF=ACB,∴BH=EH=BC=5,∵CE=3,∴CH=HE+CE=8,又∠BAD=90°,∴CA=HA=CH=4.9.(1)证明:∵AE⊥BC,DF⊥BC,∴∠AEB=∠DFC=90°,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF(HL),∴BE=CF,∴BE﹣EF=CF﹣EF,∴CE=BF;(2)∵Rt△ABE≌Rt△CDF,∴∠B=∠C,∴AB∥CD.10.解:在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴∠ACD=∠BCE,∴∠ACD﹣∠ACE=∠BCE﹣∠ACE,即∠DCE=∠ACB,∴∠ACB=(∠BCD﹣∠ACE)=(155°﹣55°)=50°.。
初三数学上学期第三章证明(三)试题

1-3】(2004、重庆北碚,10分)如图1-已知四边形ABCD是等腰梯形,AB=DC,AD PB=PC.求证:PA=PD..已知:如图 l -3-6,E 是□MABCD 的对角线上的两点,A E =CF .求证:(1)△ABE ≌△CDF ;(2)BE ∥DF ..如图1-3-8,已知等腰梯形ABCD ,AD ∥为梯形内一点,且 EA=ED ,求证:EB=EC.在梯形ABCD中,AB∥CD,E、F、G、BC、CD、DA边上的中点,当梯形___________条件时,四边形EWIH是菱形.-3-13,边长为3的正方形ABCD.已知:如图1-3-l5,在矩形ABCD中,点边上,且BE=CF,AF、DE交于点AM=DM。
年新课标中考题一网打尽★★★)在备用图中,画出满足上述条件的图形,记为图⑵试用刻度尺在图1-3-17⑴⑵中量得AQ的长度,估计AQ、B Q间的关系,并填入下表.由上表可猜测AQ、BQ间的关系是______________.2)上述问)中的猜测AQ,BQ间的关系成立吗?3】(2005、温州,8分)如图1-3-ABCD是平行四边形,对角线AC、BD过点O画直线EF,分别交AD、BC于点OE=OF.【回顾4】(2005、南充,3分)如图1-3-21是边长为1的菱形ABCD对角线AC上一个动点绕正方形ABCDFC=HB:EC,顺次连结四边形ABCD各要使四边形EFGH为矩形,90°D、33【备考7】如图l-3-28,在□ABCD中,E为DC边的中点,AE交BD于点O.若SΔDOE= 9,则SΔAOB等于()A.18 B.27 C.36 D.45【备考10】如图l-3-30,在□ABCD中,AB=10AD=6,E是AD的中点,在AB上取一点F,使△CBF∽△CDE,则BF的长是()A.5 B.8.2 C.6.4 D.1.8【备考14】(动手操作题)在给定的锐角三角形中,求作一个正方形DEFG,使D、E落在F、G分别落在AC、AB边上,作法如下:第一步:画一个有三个顶点落在△ABC15】(探究题)如图l-3-35,矩形ABCDAC与BD的交点,过O点的直线EF与的延长线分别交于E、F.(l)求证:△BOE≌△)当EF与AC满足什么条件时,四边形。
2021年九年级数学中考复习分类压轴大题专题:四边形综合(三)
2021年九年级数学中考复习分类压轴大题专题:四边形综合(三)1.问题探究:小红遇到这样一个问题:如图1,△ABC中,AB=6,AC=4,AD是中线,求AD的取值范围.她的做法是:延长AD到E,使DE=AD,连接BE,证明△BED≌△CAD,经过推理和计算使问题得到解决.请回答:(1)小红证明△BED≌△CAD的判定定理是:;(2)AD的取值范围是;方法运用:(3)如图2,AD是△ABC的中线,在AD上取一点F,连结BF并延长交AC于点E,使AE =EF,求证:BF=AC.(4)如图3,在矩形ABCD中,=,在BD上取一点F,以BF为斜边作Rt△BEF,且=,点G是DF的中点,连接EG,CG,求证:EG=CG.2.点P是平行四边形ABCD的对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F.点O为AC的中点.(1)如图1,当点P与点O重合时,线段OE和OF的关系是;(2)当点P运动到如图2所示的位置时,请在图中补全图形并通过证明判断(1)中的结论是否仍然成立?(3)如图3,点P在线段OA的延长线上运动,当∠OEF=30°时,试探究线段CF、AE、OE之间的关系.3.在矩形ABCD的CD边上取一点E,将△BCE沿BE翻折,使点C恰好落在AD边上点F处.(1)如图1,若BC=2BA,求∠CBE的度数;(2)如图2,当AB=5,且AF•FD=10时,求BC的长;(3)如图3,延长EF,与∠ABF的角平分线交于点M,BM交AD于点N,当NF=AN+FD时,求的值.4.在正方形ABCD中,线段EF交对角线AC于点G.(1)如图1,若点E、F分别在AB、CD边上,且AE=CF,求证:FG=EG;(2)如图2,若点E在AB边上,点F在BC边的延长线上,且AE=CF.(1)中结论是否依然成立?请说明理由;(3)在(2)的条件下,连结DG并延长交BC于点H,若BH=5,BE=12.求正方形ABCD 的面积.5.如图1,将矩形OABC放在直角坐标系中,O为原点,点C在x轴上,点A在y轴上,OA =4,OC=8.把矩形OABC沿对角线OB所在直线翻折,点C落到点D处,OD交AB于点E.(1)求点E坐标.(2)如图2,过点D作DG∥BC,交OB于点G,交AB于点H,连接CG,试判断四边形BCGD 的形状,并说明理由.(3)在(2)的条件下,点M是坐标轴上一点,直线OB上是否存在一点N,使以O、D、M、N为顶点的四边形是平行四边形?若存在,请直接写出点N坐标;若不存在,请说明理由.6.如图①,在菱形ABCD中,∠ABC=60°,P、Q是对角线BD上的两个动点,点P从点D 出发沿BD方向以1cm/s的速度向点B运动,运动终点为B;点Q从点B出发沿着BD的方向以2cm/s的速度向点D运动,运动终点为D.两点同时出发,设运动时间为x(s),以A、Q、C、P为顶点的图形面积为y(cm2),y与x的函数图象如图②所示,根据图象回答下列问题:(1)BD=,a=;(2)当x为何值时,以A、Q、C、P为顶点的图形面积为4cm2?(3)在整个运动的过程中,若△AQP为直角三角形,请直接写出符合条件的所有x的值:.7.在矩形ABCD中,连结AC,点E从点B出发,以每秒1个单位的速度沿着B→A的路径运动,运动时间为t(秒).以BE为边在矩形ABCD的内部作正方形BEHG.(1)如图,当四边形ABCD为正方形且点H在△ABC的内部,连结AH,CH,求证:AH=CH;(2)经过点E且把矩形ABCD面积平分的直线有条;(3)当AB=9,BC=12时,若直线AH将矩形ABCD的面积分成1:3两部分,求t的值.8.在数学的学习中,有很多典型的基本图形.(1)如图①,△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为D、E.试说明△ABD≌△CAE:(2)如图②,△ABC中,∠BAC=90°,AB=AC,点D、A、F在同一条直线上,BD⊥DF,AD=3,BD=4.则菱形AEFC面积为;(3)如图③,分别以Rt△ABC的直角边AC、AB向外作正方形ACDE和正方形ABFG,连接EG,AH是△ABC的高,延长HA交EG于点I,若AB=6,AC=8,求AI的长度.9.定义:如果四边形的一条对角线的中点到另外两个顶点的距离都等于这条对角线的长一半,那么我们称这样的四边形为“等距四边形”.(1)在下列图形中:①等腰梯形、②矩形、③菱形,是“等距四边形”的是.(填序号)(2)如图1,在菱形ABCD中,AB=4,∠A=60°,BE⊥CD于点E,点F是菱形ABCD边上的一点,顺次连接B、E、D、F,若四边形BEDF为“等距四边形”,求线段EF的长.(3)如图2,已知等边△ABC边长为4,点P是△ABC内一点,若过点P可将△ABC恰好分割成三个“等距四边形”,求这三个“等距四边形”的周长和.10.▱ABCD中,AE⊥BC于E,且AD=AE.(1)如图1,连结DE,过A作AF⊥AB交ED于F,在AB上截取AG=AF,连结DG,点H 为GD中点,连接AH,求证:4AH2+DF2=2AF2;(2)如图2,连结BD,把△ABD沿直线BD方向平移,得到△A′B′D′,若CD=,EC=2,求在平移过程中A'C+B'C的最小值.参考答案1.解:(1)∵AD是中线,∴BD=CD,又∵∠ADC=∠BDE,AD=DE,∴△BED≌△CAD(SAS),故答案为:SAS;(2)∵△BED≌△CAD,∴AC=BE=4,在△ABE中,AB﹣BE<AE<AB+BE,∴2<2AD<10,∴1<AD<5,故答案为:1<AD<5;(3)如图2,延长AD至H,使AD=DH,连接BH,∵AD是△ABC的中线,∴BD=CD,又∵∠ADC=∠BDH,AD=DH,∴△ADC≌△HDB(SAS),∴AC=BH,∠CAD=∠H,∵AE=EF,∴∠EAF=∠AFE,∴∠H=∠BFH,∴BF=BH,∴AC=BF;(4)如图3,延长CG至N,使NG=CG,连接EN,CE,NF,∵点G是DF的中点,∴DG=GF,又∵∠NGF=∠DGC,CG=NG,∴△NGF≌△CGD(SAS),∴CD=NF,∠CDB=∠NFG,∵=,=,∴tan∠ADB=,tan∠EBF=,∴∠ADB=∠EBF,∵AD∥BC,∴∠ADB=∠DBC,∴∠EBF=∠DBC,∴∠EBC=2∠DBC,∵∠EBF+∠EFB=90°,∠DBC+∠BDC=90°,∴∠EFB=∠BDC=∠NFG,∠EBF+∠EFB+∠DBC+∠BDC=180°,∴2∠DBC+∠EFB+∠NFG=180°,又∵∠NFG+∠BFE+∠EFN=180°,∴∠EFN=2∠DBC,∴∠EBC=∠EFN,∵=,且CD=NF,∴∴△BEC∽△FEN,∴∠BEC=∠FEN,∴∠BEF=∠NEC=90°,又∵CG=NG,∴EG=NC,∴EG=GC.2.解:(1)∵四边形ABCD是平行四边形,∴AO=CO,又∵∠AEO=∠CFO=90°,∠AOE=∠COF,∴△AEO≌△CFO(AAS),∴OE=OF,故答案为:OE=OF;(2)补全图形如图所示,结论仍然成立,理由如下:延长EO交CF于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠EAO=∠GCO,∵点O为AC的中点,∴AO=CO,又∵∠AOE=∠COG,∴△AOE≌△COG(AAS),∴OE=OG,∵∠GFE=90°,∴OE=OF;(3)点P在线段OA的延长线上运动时,线段CF、AE、OE之间的关系为OE=CF+AE,证明如下:如图,延长EO交FC的延长线于点H,由(2)可知△AOE≌△COH,∴AE=CH,OE=OH,又∵∠OEF=30°,∠HFE=90°,∴HF=EH=OE,∴OE=CF+CH=CF+AE.3.解:(1)∵四边形ABCD是矩形,∴∠C=90°,∵将△BCE沿BE翻折,使点C恰好落在AD边上点F处,∴BC=BF,∠FBE=∠EBC,∠C=∠BFE=90°,∵BC=2AB,∴BF=2AB,∴∠AFB=30°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFB=∠CBF=30°,∴∠CBE=∠FBC=15°;(2)∵将△BCE沿BE翻折,使点C恰好落在AD边上点F处,∴∠BFE=∠C=90°,CE=EF,又∵矩形ABCD中,∠A=∠D=90°,∴∠AFB+∠DFE=90°,∠DEF+∠DFE=90°,∴∠AFB=∠DEF,∴△FAB∽△EDF,∴,∴AF•DF=AB•DE,∵AF•DF=10,AB=5,∴DE=2,∴CE=DC﹣DE=5﹣2=3,∴EF=3,∴DF===,∴AF==2,∴BC=AD=AF+DF=2=3.(3)过点N作NG⊥BF于点G,∵NF=AN+FD,∴NF=AD=BC,∵BC=BF,∴NF=BF,∵∠NFG=∠AFB,∠NGF=∠BAF=90°,∴△NFG∽△BFA,∴,设AN=x,∵BN平分∠ABF,AN⊥AB,NG⊥BF,∴AN=NG=x,AB=BG=2x,设FG=y,则AF=2y,∵AB2+AF2=BF2,∴(2x)2+(2y)2=(2x+y)2,解得y=x.∴BF=BG+GF=2x+x=x.∴=.4.(1)证明:∵四边形ABCD是正方形,∴AB∥CD,∴∠EAG=∠FCG,又∵∠FGC=∠AGE,AE=CF,∴△CFG≌△AEG(AAS),∴FG=EG;(2)(1)中结论依然成立.理由如下:如图2,过点E作EM⊥AB交AC于点M,∵四边形ABCD是正方形,∴∠CAB=45°,∠ABC=90°,∴∠MAE=∠AME=45°,∴AE=EM,又∵AE=FC,∴EM=CF,∵∠AEM=∠ABC,∴ME∥CF,∴∠MEG=∠GFC,又∵∠MGE=∠FGC,∴△MEG≌△CFG(AAS),∴EG=FG;(3)解:如图3,连接DE,DF,EH,∵正方形ABCD中,∠DAE=∠DCB=90°,DC=AD,∴∠DAE=∠DCF=90°,又∵AE=CF,∴△ADE≌△DCF(SAS),∴DE=DF,由(2)知EG=GF,∴DG⊥EF,∴DH是EF的中垂线,∴EH=FH,∵BE=12,BH=5,∴EH===13,∴FH=13,设AE=x,则CF=x,∴AB=CB=12+x,∴CH=7+x,∴FH=CF+CH=x+7+x=2x+7,∴2x+7=13,解得x=3,∴AB=15,∴正方形ABCD的面积为225.5.解:(1)如图1中,∵四边形OABC是矩形,∴AB=OC=8,AB∥OC,∴∠ABO=∠BOC,由翻折可知,∠BOC=∠BOD,∴∠EOB=∠EBO,∴EO=BE,设AE=x,则EB=EO=8﹣x,在Rt△OAE中,∵∠OAE=90°,∴OA2+AE2=OE2,∴42+x2=(8﹣x)2,∴x=3,∴E(3,4).(2)如图2中,四边形BCGD是菱形.∵DG∥BC,∴∠DGB=∠CBG,由翻折的性质可知,∠CBG=∠DBG,BC=BD,∴∠DGB=∠DBG,∴DG =BD =BC ,∵DG ∥BC ,∴四边形BCGD 是平行四边形,∵BD =BC ,∴四边形BCGD 是菱形.(3)当点N 与G 重合,点M 与A 重合,四边形DM 1ON 1是平行四边形, ∵DH ==,∴EH ===, ∴AH =3+=,∴D (,),N 1(,), 当四边形ODN 1M 是平行四边形时,N 1(,), 当四边形ODN 2M 2是平行四边形时,N 2(), 当四边形ODM 1N 3是平行四边形时,N 3((﹣,﹣), 当四边形ODM 4N 4是平行四边形时,N 4(﹣,﹣)综上所述,满足条件的点N的坐标为N1(,),N2(,),N3((﹣,﹣),N4(﹣,﹣).6.解:(1)如图①中,连接AC交BD于点O.由题意:点N的实际意义表示x=3时,点Q运动到点D,∴BD=2×3=6,∵四边形ABCD是菱形,∠ABC=60°,∴∠ABD=∠ADB=30°,OB=OD=3,∴OA=OC=,AB=2AO=2,∴S菱形ABCD=×BD×AC=×6×2=6.∴a=6,故答案为:6,6;(2)设x秒后P,Q相遇.则3x=6,x=2,∴M(2,0),∴直线EM的解析式为:y=﹣3x+6,当y=4时,x=,∵N(3,3),F(6,6),∴直线NF的解析式为y=x,当y=4时,x=4,综上所述,满足条件的x的值为s或4s;(3)a:当0≤x≤3时,PQ=(6﹣3x)2,AQ2=3+(3﹣2x)2,AP2=3+(3﹣x)2,①当∠PAQ=90°时,PQ2=AP2+AQ2,(6﹣3x)2=3+(3﹣x)2+3+(3﹣2x)2,解得x=或(舍去),②当∠APQ=90°时,AP2+PQ2=AQ2,即3+(3﹣x)2+(6﹣3x)2=3+(3﹣2x)2,解得x=2或x=3,③当∠AQP=90°时,AP2=PQ2+AQ2,即3+(3﹣x)2=(6﹣3x)2+3+(3﹣2x)2,解得:x=2(不合题意,舍去),x=,b:3<x≤6时,此时Q已经到达终点,所以,AQ2=(2)2=12,此时PQ2=x2,AP2=3+(x﹣3)2,此时,∠AQP=30°,∴当∠APQ=90°时,AQ2=AP2+PQ2,即12=x2+3+(x﹣3)2,解得:x=3或0(舍去)当∠PAQ=90°时,PQ2=AP2+AQ2,即x2=12+3+(x﹣3)2,解得:x=4,综上所述,满足条件的x的值为或或3或4,故答案为:或或3或4.7.(1)证明:∵四边形ABCD、四边形BEHG是正方形,∴AB=BC,BE=BG=EH=GH,∠B=∠BEH=∠BGH=90°,∴AB﹣BE=BC﹣BG,∠AEH=∠CGH=90°,∴AE=CG,在△AEH和△CGH中,,∴△AEH≌△CGH(SAS),∴AH=CH;(2)解:连接BD交AC于O,如图1所示:作直线OE,则直线OE矩形ABCD面积平分,即经过点E且把矩形ABCD面积平分的直线有1条,故答案为:1;(3)解:分两种情况:①如图2所示:连接AH交BC于M,∵四边形ABCD是矩形,∴△ABC的面积=△ADC的面积,∵直线AH将矩形ABCD的面积分成1:3两部分,∴△ABM的面积=△ACM的面积,∴BM=CM=BC=6,由题意得:BE=BG=EH=GH=t,则AE=9﹣t,GM=6﹣t,∵△ABM的面积=△AEH的面积+正方形BEHG的面积+△GHM的面积,∴×6×9=x(9﹣t)+t2+t(6﹣t),解得:t=;②如图3所示:连接AH交CD于M,交BC的延长线于K,∵四边形ABCD是矩形,∴∠MCK=∠B=∠D=∠BCD=90°,AD=BC=12,CD=AB=9,△ABC的面积=△ADC的面积,∵直线AH将矩形ABCD的面积分成1:3两部分,∴△ADM的面积=△ACM的面积,∴DM=CM=CD=,在△KCM和△ADM中,,∴△KCM≌△ADM(ASA),∴CK=DA=12,∴BK=BC+CK=24,由题意得:BE=BG=EH=GH=t,则AE=9﹣t,GK=24﹣t,∵△ABK的面积=△AEH的面积+正方形BEHG的面积+△GHK的面积,∴×24×9=t(9﹣t)+t2+t(24﹣t),解得:t=;综上所述,若直线AH将矩形ABCD的面积分成1:3两部分,t的值为或.8.(1)证明:∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD在△ABD 和△CAE 中,,∴△ABD ≌△CAE (AAS );(2)解:连接CE ,交AF 于O ,如图②所示:∵四边形AEFC 是菱形,∴CE ⊥AF ,∴∠COA =∠ADB =90°,同(1)得:△ABD ≌△CAO (AAS ),∴OC =AD =3,OA =BD =4,∴S △AOC =OA •OC =×4×3=6,∴S 菱形AEFC =4S △AOC =4×6=24,故答案为:24;(3)解:过E 作EM ⊥HI 的延长线于M ,过点G 作GN ⊥HI 于N ,如图③所示:∴∠EMI =∠GNI =90°,∵四边形ACDE 和四边形ABFG 都是正方形,∴∠CAE=∠BAG=90°,AC=AE=8,AB=AG=6,同(1)得:△ACH≌△EAM(AAS),△ABH≌△GAN(AAS),∴EM=AH=GN,在△EMI和△GNI中,,∴△EMI≌△GNI(AAS),∴EI=GI,∴I是EG的中点,∵∠CAE=∠BAG=∠BAC=90°,∴∠EAG=90°,在Rt△EAG中,由勾股定理得:EG===10,∵I是EG的中点,∴AI=EG=×10=5.9.解:(1)①等腰梯形对角线相等,但一条对角线的中点到另外两个顶点的距离的和大于另一条对角线,不符合题意;②矩形的对角线相等且互相平分,一条对角线的中点到另外两个顶点的距离等于这条对角线的一半,符合题意;③菱形的对角线互相平分,对角线不一定相等,因此一条对角线的中点到另外两个顶点的距离不等于另一条对角线的一半,不符合题意;故答案为:②;(2)根据等距四边形的定义,当点F在AD上且BF⊥AD时,四边形BFDE是等距四边形,如图1,取BD的中点O,连接OF,OE,EF,∵BF⊥AD,BE⊥DC,∴∠BFD=∠BED=90°,∴OF=OE=BD,∴四边形BFDE是等距四边形,在菱形ABCD中,AB=4,∠A=60°,AD∥BC,∴∠C=∠A=60°,∠ABC=120°,∴∠ABF=∠CBE=30°,∴∠EBF=∠ABC﹣∠ABF﹣∠CBE=60°,根据菱形的对称性得,BF=BE,∴△BEF是等边三角形,在Rt△ABF中,∠ABF=30°,∴AF=AB=2,根据勾股定理得,BF=2,∴EF=BF=2,当点F在AB上且DF⊥AB时,四边形DFBE是等距四边形,如图1﹣1,连接BD,EF,交于点O,∵DF⊥AB,DE⊥CD,∴∠BFD=∠BED=90°,∵AB∥CD,∴∠FBE=180°﹣∠BED=90°,∴∠BFD=∠BED=∠FBE,∴四边形BFDE是矩形,∴BD=EF,在菱形ABCD中,AB=AD=4,∠A=60°,∴BD=AB=4,∴EF=4;(3)过点P分别作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,如图2,同(2)的方法得,四边形ADPF,四边形BEPD,四边形ECFP是等距四边形,过点A作AG ⊥BC于G,在Rt△ABG中,∠ABC=60°,AB=4,∴∠BAG=30°,∴BG=AB=2,根据勾股定理得,AG=2,∴S△ABC=BC•AG=×4×2=4,∴S△ABC =S△APB+S△BPC+S△APC=4,∴(AB•PD+BC•PE+AC•PF)=4,∵AB=BC=AC=4,∴PD+PE+PF=2∴四边形ADPF,四边形DBEP,四边形PEFC的周长的和为AB+BC+AC+2(PD+PE+PF)=12+4.10.(1)证明:如图1中,延长AH交CD于T,连接EG,GF.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠AGH=∠TDH,∵∠AHG=∠THD,HG=HD,∴△AHG≌△THD(ASA),∴AH=TH,AG=DT,∵AE⊥BC,AD∥BC,∴AE⊥AD,∵AF⊥AG,∴∠EAD=∠GAF.∴∠GAE=∠FAD,∵AD=AE,AF=AG,∴△GAE≌△FAD(SAS),∴DF=GE,∠AEG=∠ADE=45°,∵∠AED=45°,∴∠GEF=90°,∴EG2+EF2=FG2=2AF2,∵∠BAE+∠B=90°,∠BAE+∠EAF=90°,∴∠B=∠EAF,∵∠B=∠ADT,∴∠EAF=∠ADT,∵AG=AF,AG=DT,∴AF=DT,∵AE=AD,∴△EAF≌△ADT(SAS),∴EF=AT=2AH,∴DF2+4AH2=2AF2.(2)如图2中,∵A′B′=CD,A′B′∥AB∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,∵A′C+B′C=A′C+A′D=A′C+A′E≥CE,则CE的长度即为A'C+B'C的最小值,过点E作EH⊥BC于H,交AD于J,过点A作AT⊥BD于T,设DE交AA′于K,过点C作CR⊥AD于R.∵∠AEC=∠EAR=∠ARC=90°,∴四边形AECR是矩形,∴AR=EC=2,设AE=AD=x,在Rt△CRD中,则有x2+(x﹣2)2=10,解得x=3或﹣1(舍弃),∴AD=AE=BC=3,BE=BC﹣EC=1,过点B作BQ⊥DA交DA的延长线于Q,则AQ=BE=1,DQ=AQ+AD=4,BQ=AE=3,∴BD===5,=•BD•AT=•AD•BQ,∵S△ABD∴AT=,∵四边形ATDK是矩形,∴DK=AT=KD′=,在Rt△ADK中,AK===,∵S=•AD•EJ=•DE•AK,△ADE∴EJ=,在Rt△DJD′中,DJ==,∴AJ=EH=AD﹣DJ=3﹣=,∴CH=EC﹣EH=2﹣=,∵EH=EJ+JH=+3=,在Rt△CEH中,CE==,∴A'C+B'C的最小值为.。
北师大版九年级数学上册相似三角形判定定理的证明测试题
4.5 相似三角形判定定理的证明一、选择题1.下列语句正确的是( )A.在 △ABC 和△A′B′C′中,∠B=∠B′=90°,∠A=30°,∠C′=60°, 则⊿ABC 和⊿A′B′C′不相似;B.在⊿ABC 和⊿A′B′C′中,AB=5,BC=7,AC=8,A′C ′=16,B′C′=14,A′B ′=10, 则⊿ABC ∽⊿A′B′C′;C.两个全等三角形不一定相似;D.所有的菱形都相似2.如图,在正三角形ABC 中,D 、E 分别在AC 、AB 上,且AC AD =31,AE =BE ,则有( )A.△AED ∽△BEDB.△AED ∽△CBDC.△AED ∽△ABDD.△BAD ∽△BCD( 3题 ) (4题)3.已知:如图,∠ADE =∠ACD =∠ABC ,图中相似三角形共有( ) A.1对 B.2对 C.3对 D.4对4.三角形三边之比为3:5:7,与它相似的三角形的最长边为21cm,则其余两边之和为( ) A.32cm B.24cm C.18cm D.16cm5.可以判定∆ABC ∽'''C B A ∆,的条件是 ( ) A.∠A=∠'C =∠'BB.''''C A B A AC AB =,且∠A=∠'C C.''''C A ACB A AB =且∠A=∠'BD.以上条件都不对 二、填空题6. 已知一个三角形三边长是6cm ,7.5cm ,9cm ,另一个三角形的三边是8cm ,10cm ,12cm ,则这两个三角形 (填相似或不相似)7. 如图,平行四边形ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10,则该平行四边形的面积是_____________8.四边形ABCD ∽四边形A ,B ,C ,D , ∠A=70度,∠B ,=108度,∠C ,=92度 则∠D=_______9.在平行四边形ABCD 中,AB=10,AD=6,E 是AD 的中点,在AB 上取一点F ,使⊿CBF ∽⊿CDE ,则BF 的长三、计算题10.已知:如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.求证:⊿ADQ∽⊿QCP.11. ⊿AB C中,AD、CE 是中线, ∠BAD=∠BCE,请猜想⊿ABC的形状,并证明.AED CB参考答案一、选择题1.B2.B3.C4.B5.D 二、填空题6.相似7.728.∠D=9009.1.8三、10.证明(主要步骤)有正方形性质及已知得PC=BC=CD ,DQ=CD ,即:DQ:PC=2:1QC:AD=2:1 加上直角相等可证相似。
人教版九年级 数学上册期末综合复习专题提优训练(三)
九年级(人教版)数学上册期末综合复习专题提优训练(三)一.选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.“翻开数学书,恰好翻到第16页”,这个事件是()A.随机事件B.必然事件C.不可能事件D.确定事件3.一元二次方程x2=3x的解为()A.x=0 B.x=3 C.x=0或x=3 D.x=0 且x=3 4.男篮世界杯小组赛,每两队之间进行一场比赛,小组赛共进行了6场比赛,设该小组有x支球队,则可列方程为()A.x(x﹣1)=6 B.x(x+1)=6 C.D.5.如图,在平面直角坐标系中,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(2,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是()A.x<﹣1 B.x>2 C.﹣1<x<2 D.x<﹣1或x>2 6.如图,已知⊙O是正方形ABCD的外接圆,点E是弧AD上任意一点,则∠BEC的度数为()A.30°B.45°C.60°D.90°7.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm8.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①3a+2b+c<0;②3a+c<b2﹣4ac;③方程2ax2+2bx+2c﹣5=0没有实数根;④m(am+b)+b<a(m≠﹣1).其中正确结论的个数是()A.4个B.3个C.2个D.1个二.填空题9.将抛物线y=4x2向左平移3个单位,再向上平移2个单位,所得到图象的函数表达式是.10.要为一幅长29cm,宽22cm的照片配一个相框,要求相框的四条边宽度相等,且相框所占面积为照片面积的四分之一,设相框边的宽度为x,则可列出关于x的一元二次方程.11.一个圆锥和一个圆柱的底面积相等,已知圆柱的体积是圆锥的9倍,圆锥的高是8.1cm,则这个圆柱的高是cm.12.如图是抛物线y=ax2+bx+c的图象的一部分,请你根据图象写出方程ax2+bx+c=0的两根是.13.如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为cm2.14.以原点为中心,把点M(3,4)逆时针旋转90°得到点N,则点N的坐标为.15.已知边长为1的正方形ABCD的顶点A、B在一个半径为1的圆上,使AB边与弦MN重合,如图所示,将正方形在圆中逆时针滚动,在滚动过程中,点M、D之间距离的最小值是.三.解答题16.解下列方程.(1)x2+2x﹣35=0;(2)4x(2x﹣1)=1﹣2x.17.已知x1,x2是一元二次方程x2﹣2x+k+2=0的两个实数根.(1)求k的取值范围.(2)是否存在实数k,使得等式+=k﹣2成立?如果存在,请求出k的值;如果不存在,请说明理由.18.如图,正方形ABCD和直角△ABE,∠AEB=90°,将△ABE绕点O旋转180°得到△CDF.(1)在图中画出点O和△CDF,并简要说明作图过程;(2)若AE=12,AB=13,求EF的长.19.一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:摸球的次数200 300 400 1000 1600 2000 摸到白球的频数72 93 130 334 532 667 摸到白球的频率0.3600 0.3100 0.3250 0.3340 0.3325 0.3335 (1)该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是.(精确到0.01),由此估出红球有个.(2)现从该袋中摸出2个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个白球,1个红球的概率.20.在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点(A在B的左侧),与y轴的正半轴交于点C.已知OB=OC,点B的坐标为(3,0),抛物线的顶点为M.(1)求该抛物线的表达式;(2)直接写出点A、M的坐标,并在下图中画出该抛物线的大致图象;A;M.(3)根据图象直接回答:不等式x2+bx+c>3的解集为.21.如图①,一个横截面为抛物线形的隧道,其底部的宽AB为8m,拱高为4m,该隧道为双向车道,且两车道之间有0.4m的隔离带,一辆宽为2m的货车要安全通过这条隧道,需保持其顶部与隧道间有不少于0.5m的空隙,按如图②所建立平面直角坐标系.(1)求该抛物线对应的函数关系式;(2)通过计算说明该货车能安全通过的最大高度.22.如图,已知在Rt△ABC中,∠B=30°,∠ACB=90°,延长CA到O,使AO=AC,以O为圆心,OA长为半径作⊙O交BA延长线于点D,连接CD.(1)求证:CD是⊙O的切线;(2)若AB=4,求图中阴影部分的面积.23.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm,花园的面积为Sm2.(1)若花园的面积为192m2,求x的值;(2)写出花园面积S与x的函数关系式.x为何值时,花园面积S有最大值?最大值为多少?(3)若在P处有一棵树与墙CD,AD的距离分别是a(14≤a≤22)和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),设花园面积S的最大值为y,直接写出y 与a的关系式.24.已知:直线与y轴交于A,与x轴交于D,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求抛物线的解析式;(2)点P是直线AE上一动点,当△PBC周长最小时,求点P坐标;(3)动点Q在x轴上移动,当△QAE是直角三角形时,求点Q的坐标;(4)在y轴上是否存在一点M,使得点M到C点的距离与到直线AD的距离恰好相等?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.参考答案一.选择题1.解:A、是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.2.解:“翻开数学书,恰好翻到第16页”确实有可能刚好翻到第16页,也有可能不是翻到第16页,故这个事件是随机事件.故选:A.3.解:方程移项得:x2﹣3x=0,分解因式得:x(x﹣3)=0,解得:x=0或x=3,故选:C.4.解:设该小组有x支球队,则共有x(x﹣1)场比赛,由题意得:x(x﹣1)=6,故选:C.5.解:观察函数图象可知:当x<﹣1或x>2时,直线y=mx+n在抛物线y=ax2+bx+c 的上方,∴不等式mx+n>ax2+bx+c的解集为x<﹣1或x>2.故选:D.6.解:连接OB,OC,∵⊙O是正方形ABCD的外接圆,∴∠BOC=90°,∴∠BEC=∠BOC=45°.故选:B.7.解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4(cm),OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3(cm),∴CM=OC+OM=5+3=8(cm),∴AC===4(cm);当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2(cm),在Rt△AMC中,AC===2(cm).故选:C.8.解:由图象可知,当x=1时,y<0,即a+b+c<0,∵对称轴x=﹣=﹣1,a<0,∴b=2a<0,∴a+2a+c<0,即3a+c<0,∴3a+b+c<0,故①正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴3a+c<0<b2﹣4ac,故②正确;∵2ax2+2bx+2c﹣5=0,∴ax2+bx+c=,结合图象可知,不能确定抛物线y=ax2+bx+c与直线y=的交点情况,故③不正确;∵当x=m(m≠﹣1)时,y=am2+bm+c,且当x=﹣1时,函数y取得最大值,∴a﹣b+c>am2+bm+c,∴m(am+b)+b<a,故④正确;综上,正确结论有①②④共3个,故选:B.二.填空题(共7小题)9.解:由“左加右减”的原则可知,将抛物线y=4x2向左平移3个单位所得直线的解析式为:y=4(x+3)2;由“上加下减”的原则可知,将抛物线y=4(x+3)2向上平移2个单位所得抛物线的解析式为:y=4(x+3)2+2.故平移后的抛物线的函数关系式是:y=4(x+3)2+2.故答案为y=4(x+3)2+2.10.解:设相框边的宽度为xcm,则可列方程为:(29+2x)(22+2x)=×29×22.故答案为:(29+2x)(22+2x)=×29×22.11.解:设这个圆柱的高是xcm,圆锥和圆柱的底面积都为S,根据题意得S•x=9××S×8.1,解得x=24.3(cm),即这个圆柱的高是24.3cm.故答案为24.3.12.解:∵由图可知,抛物线与x轴的一个交点坐标为(﹣3,0),对称轴为直线x=﹣1,∴设抛物线与x轴的另一交点为(x,0),则=﹣1,解得x=1,∴方程ax2+bx+c=0的两根是x1=﹣3,x2=1.故答案为:x1=﹣3,x2=1.13.解:连结OC,过C点作CF⊥OA于F,∵半径OA=2cm,C为的中点,D、E分别是OA、OB的中点,∴OD=OE=1cm,OC=2cm,∠AOC=45°,∴CF=,∴空白图形ACD的面积=扇形OAC的面积﹣三角形OCD的面积=﹣×=π﹣(cm2)三角形ODE的面积=OD×OE=(cm2),∴图中阴影部分的面积=扇形OAB的面积﹣空白图形ACD的面积﹣三角形ODE的面积=﹣(π﹣)﹣=π+﹣(cm2).故图中阴影部分的面积为(π+﹣)cm2.故答案为:(π+﹣).14.解:如图,∵点M(3,4)逆时针旋转90°得到点N,则点N的坐标为(﹣4,3).故答案为:(﹣4,3).15.解:如图,点D的运动轨迹是图中的红线.观察图象可知M、D之间的最小距离是线段AD′的长=AE﹣D′E=2﹣,故答案为2﹣.三.解答题(共9小题)16.解:(1)x2+2x﹣35=0,(x+7)(x﹣5)=0,x+7=0或x﹣5=0,∴x1=﹣7,x2=5.(2)4x(2x﹣1)=1﹣2x,4x(2x﹣1)+(2x﹣1)=0,(2x﹣1)(4x+1)=0,(2x﹣1)=0或(4x+1)=0,,17.解:(1)∵一元二次方程x2﹣2x+k+2=0有两个实数根,∴△=(﹣2)2﹣4×1×(k+2)≥0,解得:k≤﹣1.(2)∵x1,x2是一元二次方程x2﹣2x+k+2=0的两个实数根,∴x1+x2=2,x1x2=k+2.∵+=k﹣2,∴==k﹣2,∴k2﹣6=0,解得:k1=﹣,k2=.又∵k≤﹣1,∴k=﹣.∴存在这样的k值,使得等式+=k﹣2成立,k值为﹣.18.解:(1)如图所示:连接AC,BD,交于点O.连接EO并延长到点F,使OF=OE,连接DF,CF,(2)如图所示:过点O作OG⊥OE与EB的延长线交于点G,∵四边形ABCD为正方形∴OA=OB,∠AOB=∠EOG=90°∴∠AOE=∠BOG在四边形AEBO中∠AEB=∠AOB=90°∴∠EAO+∠EBO=180°=∠EBO+∠GBO∴∠GBO=∠EAO,∴在△EAO和△GBO中,∵∴△EAO≌△GBO(ASA),∴AE=BG,OE=OG.∴△GOE为等腰直角三角形,∴OE=EG=(EB+BG)=(EB+AE)∵AE=12,AB=13,∴BE=5,∴EB+AE=17,∴OE=∴EF=.19.解:(1)观察表格发现,随着摸球次数的增多,摸到白球的频率逐渐稳定在0.33附近,由此估出红球有2个.故答案为:0.33,2;(2)列表如下:白红红白﹣﹣﹣(红,白)(红,白)红(白,红)﹣﹣﹣(红,红)红(白,红)(红,红)﹣﹣﹣所有等可能的情况有6种,其中恰好摸到1个白球,1个红球的情况有4种,则P(1个白球,1个红球)==;所以从该袋中摸出2个球,恰好摸到1个白球、1个红球的结果的概率为.20.解:(1)∵OB=OC,点B的坐标为(3,0),点C在y轴的正半轴上∴点C的坐标为(0,3),∵抛物线y=x2+bx+c过B、C两点,∴,解得,∴抛物线的表达式为y=x2﹣4x+3;(2)y=x2﹣4x+3,=(x﹣2)2﹣1,故顶点坐标为:M(2,﹣1),当y=0,则0=x2﹣4x+3,解得:x1=1,x2=3,故A(1,0);如图所示:故答案为:(1,0),(2,﹣1);(3)根据图象即可得出当x<0或x>4,y=x2﹣4x+3>3,即不等式x2+bx+c>3的解集为:x<0或x>4.故答案为:x<0或x>4.21.解:(1)如图②中,A(4,0),C(0,4),设抛物线解析式为y=ax2+k,由题意,得,解得:,∴抛物线表达式为.(2)2+=2.2,当x=2.2时,y=﹣×2.22+4=2.79,当y=2.79时,2.79﹣0.5=2.29 (m).答:该货车能够通行的最大高度为2.29 m.22.(1)证明:连接OD,∵∠BCA=90°,∠B=30°,∴∠OAD=∠BAC=60°,∵OD=OA,∴△OAD是等边三角形,∴AD=OA=AC,∠ODA=∠O=60°,∴∠ADC=∠ACD=∠OAD=30°,∴∠ODC=60°+30°=90°,即OD⊥DC,∵OD为半径,∴CD是⊙O的切线;(2)解:∵AB=4,∠ACB=90°,∠B=30°,∴OD=OA=AC=AB=2,由勾股定理得:CD===2,∴S阴影=S△ODC﹣S扇形AOD=×2×2﹣=2﹣π.23.解:(1)依题意得S=x(28﹣x),当S=192时,有S=x(28﹣x)=192,即x2﹣28x+192=0,解得:x1=12,x2=16,答:花园的面积为192m2,x的值为12m或16m;(2)由题意可得出:S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,答:x为14m时,花园面积S有最大值,最大值为196m2;(3)依题意得:,解得:6≤x≤28﹣a,S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,∵a=﹣1<0,当x≤14,y随x的增大而增大,又6≤x≤28﹣a,∴当x=28﹣a时,函数有最大值,是y=﹣(28﹣a﹣14)2+196=﹣(14﹣a)2+196.24.解:(1)∵直线与y轴交于A,∴A点的坐标为(0,2),∵B点坐标为(1,0).∴∴;(2)作出C关于直线AE的对称点F,由B和F确定出直线BF,与直线AE交于P点,设F(m,n),由题意D(﹣4,0),C(4,0),A(0,2),AF=AC=2,DF=DC=8,∴,解得或,∴F(,),∴直线BF的解析式为:y=﹣32x+32,,可得:P();(3)根据题意得:x+2=x2﹣x+2,解得:x=0或x=6,∴A(0,2),E(6,5),∴AE=3,设Q(x,0),①若Q为直角顶点,则AQ2+EQ2=AE2,即x2+4+(x﹣6)2+25=45,此时x无解;②若点A为直角顶点,则AQ2+AE2=EQ2,即x2+4+45=(x﹣6)2+25,解得:x=1,即Q(1,0);③若E为直角顶点,则AQ2=AE2+EQ2,即x2+4=45+(x﹣6)2+25,解得:x==,此时求得Q(,0);∴Q(1,0)或(,0)(4)假设存在,设M坐标为(0,m),则OM=|m|,∵OC=4,AO=2,OD=4,∴MC=MD,∴当MD⊥AD时,满足条件,∴在直角三角形AOD中,根据勾股定理得:AD=2,且AM=2﹣m,CM=,∵MD=MC,∴根据勾股定理得:=,即(2﹣m)2﹣(2)2=m2+16,解得m=﹣8,则M(0,﹣8).。
北师大版数学九年级上册《复习题》教案3
北师大版数学九年级上册《复习题》教案3一. 教材分析北师大版数学九年级上册《复习题》教案3,主要是对九年级上册所学知识的复习与巩固。
内容包括:实数、代数、几何、统计与概率等方面的知识点。
通过复习使学生对所学知识有更深刻的理解,提高解决问题的能力。
二. 学情分析九年级的学生已经掌握了大部分的初中数学知识,对于本节课的复习内容,他们已经有了一定的了解。
但是,由于知识点的繁多,部分学生可能对一些细节知识点掌握不牢固,需要通过复习来加强。
同时,学生对于复习的方式和方法可能还不够明确,需要教师的引导和指导。
三. 教学目标1.知识与技能:通过复习使学生对九年级上册所学知识有更深刻的理解,提高解决问题的能力。
2.过程与方法:培养学生自主复习、合作探讨的学习方法,提高学生的学习效率。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学的价值。
四. 教学重难点1.重点:对九年级上册所学知识的复习与巩固。
2.难点:对于一些细节知识点的理解和运用。
五. 教学方法1.引导法:教师引导学生对所学知识进行复习,帮助学生理清知识脉络。
2.合作学习法:学生分组讨论,共同解决问题,提高学习效果。
3.实践操作法:教师给出实例,学生动手操作,巩固知识点。
六. 教学准备1.教材:北师大版数学九年级上册。
2.教学PPT:包含复习题及相关知识点。
3.练习题:针对复习内容设计的练习题。
导入(5分钟)教师简要介绍本节课的复习内容,明确学习目标。
引导学生回顾所学知识,为新知识的复习做好铺垫。
呈现(10分钟)1.教师通过PPT呈现复习题,让学生独立完成。
2.教师选取部分学生解答错误的题目,进行分析讲解。
操练(10分钟)1.学生分组讨论,共同解决复习题中的难题。
2.教师巡回指导,给予学生解答疑惑。
巩固(10分钟)1.教师给出实例,让学生运用所学知识解决问题。
2.学生动手操作,巩固知识点。
拓展(10分钟)1.教师引导学生对所学知识进行拓展,提出更高难度的题目。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)填空
1. 如图1,在
中,对角线相交于点O
,AC ⊥CD , AO = 3,
BO = 5,则CO =_____,CD=______,AD =________
2. 如图2,在
中,AB 、BC 、CD 的长度分别为2x +1,
3x ,x +4的周长是_____________
3. 在△ABC 中,D 、E 、F 分别是AB 、BC 、AC 的中点,若△ABC 的周长为30 cm ,则△DCE 的周长为__________
4. 在等腰梯形ABCD 中,AD ∥BC ,AB=CD ,∠B=40°,则∠A=_____,∠C=_____,∠D=_____.
5. 菱形的对角线长分别为24和10,则此菱形的周长为___________,面积为____________.
6. 中,∠A -∠B = 30°,则∠C = __________,∠D = __________.
7. 判定一个四边形是正方形主要有两种方法,一是先证明它是矩形,然后证明______________,二是先证明
它是一个菱形,再证明_____________________________.
8. 如图3,已知四边形ABCD 是一个平行四边形,则只须
补充条件__________________,就可以判定它是一个菱形 (二)选择题
1. 下列命题中错误的是…………………………………………………………………………( )
A. 平行四边形的对角线互相平分;
B. 一组对边平行,一组对角相等的四边形是平行四边形;
C. 等腰梯形的对角线相等;
D. 两对邻角互补的四边形是平行四边形.
2. 菱形具有而平行四边形不具有的性质是……………………………………………………( ) A .内角和是360°; B. 对角相等; C. 对边平行且相等; D. 对角线互相垂直.
3. 平行四边形各内角的平分线围成一个四边形,则这个四边形一定是……………………( ) A. 矩形; B. 平行四边形; C. 菱形; D. 正方形
4. 如图4,在等腰梯形ABCD 中,AB ∥CD ,AD=BC= a cm ,∠A=60°,BD 平分∠ABC ,则这个梯形的周长是……………………………………………………………………………………( ) A. 4a cm ; B. 5a cm ; C.6a cm ; D. 7a cm ;
B
D
图3
B
图2
图1
图4
B
F E
D
C
B
A
(三)解答、证明
1. 已知:菱形ABCD 中,对角线AC = 16 cm ,BD = 12 cm , DE ⊥BC 于点E ,求菱形ABCD 的面积和BE 的长.
2. 如图6,四边形ABCD 中,AB=8 cm ,CD =9 cm ,
E 、
F 、
G 、
H 分别是AD 、BC 、BD 、AC 的中点,求四边形EGFH 的周长.
3. 如图7,在
中,AM = 23 AB, CN = 2
3 CD ,
求证:四边形AMCN 是平行四边形
.
4、已知菱形
ABCD 中,E 、F 分别是CB 、CD 上的点, 且BE=DF 。
求证:⑴△ABE ≌△ADF ;⑵∠AEF=∠AFE 。
5、已知:如图在梯形ABCD 中,AB=CD
,E 是AD 的中点, 求证:EB=EC 。
6、如图,在中,E 、F 是AC 上的两点, 且AE = CF. 求证:DE = BF.
7、已知:平行四边形ABCD 中,AB+BC=11cm ,∠B=30°, 平行四边形ABCD 的面积是15cm 2,求AB ,BC 。
8、已知如图,在矩形ABCD 中,E 为BC 上的一点, 且DE=BC,AF ⊥DE 于点F,求证:EF=BE
B
C
图5
A
B
C
D
E
F
G H
图6
B
图7
B A
B
C
B
E。