主动悬挂系统工作原理

合集下载

汽车悬挂系统的工作原理

汽车悬挂系统的工作原理

汽车悬挂系统的工作原理汽车悬挂系统是指汽车底盘的一个重要部分,它起到支撑车身、减震、保持车辆稳定的作用。

悬挂系统的工作原理是通过悬挂装置将车身与车轮连接起来,并通过减震器等装置来降低车身的振动和抖动,保持车辆的稳定性和乘坐舒适性。

悬挂系统由悬挂弹簧、减震器、悬挂支架等组成。

其中,悬挂弹簧是悬挂系统的核心部件之一。

它的主要作用是承受车身和行驶过程中的冲击力,使车身能够保持相对稳定的高度和姿态。

悬挂弹簧一般采用钢制,具有一定的弹性,能够在车身受到冲击时起到缓冲作用,避免车身产生过大的振动。

减震器是悬挂系统中的另一个重要组成部分,它的作用是减轻车身在行驶过程中的震动和抖动。

减震器一般由活塞、缸筒和阻尼液组成。

当车轮受到冲击力时,减震器内的阻尼液会通过活塞的运动产生阻尼力,将车身的振动和抖动减小到最低程度。

减震器的阻尼力大小可以通过调节阻尼器的硬度来实现。

悬挂支架是悬挂系统的另一个重要组成部分,它起到连接悬挂弹簧和车轮的作用。

悬挂支架一般由金属材料制成,具有一定的强度和刚度,能够承受车身和行驶过程中的各种力,保持车身的稳定性。

悬挂支架的设计和制造需要考虑车身的重量、重心位置以及行驶过程中的各种力的作用,以确保车身的稳定性和乘坐舒适性。

除了上述主要组成部分外,悬挂系统还包括其他一些辅助性的装置,例如悬挂控制系统、悬挂几何结构等。

悬挂控制系统可以根据行驶状态和路面情况调节悬挂系统的工作参数,以提供更好的悬挂性能和乘坐舒适性。

悬挂几何结构包括车轮的安装位置、车身的悬挂点、悬挂弹簧的布置等,它们的合理设计可以使汽车在行驶过程中更加稳定和安全。

汽车悬挂系统是保证车身稳定性和乘坐舒适性的重要装置。

它通过悬挂弹簧、减震器、悬挂支架等组件的协同作用,减小车身的振动和抖动,保持车辆的稳定性。

悬挂系统的工作原理是通过弹簧的弹性和减震器的阻尼力来实现的。

合理的悬挂几何结构和悬挂控制系统的运用可以进一步提高悬挂系统的性能。

对于驾驶员和乘客来说,一个良好的悬挂系统可以带来更舒适的乘坐体验,同时也能提高驾驶的安全性和稳定性。

汽车悬挂系统新技术——电控空气悬架及主动悬架PPT课件

汽车悬挂系统新技术——电控空气悬架及主动悬架PPT课件
第5页/共7页
另外,主动悬架具有控制车身运动的功能。当汽车制动 或拐弯时的惯性引起弹簧变形时,主动悬架会产生一个与 惯力相对抗的力,减少车身位置的变化。例如德国奔驰 2000款CL型跑车,当车辆拐弯时悬架传感器会立即检测出 车身的倾斜和横向加速度,电脑根据传感器的信息,与预 先设定的临界值进行比较计算,立即确定在什么位置上将 多大的负载加到悬架上,使车身的倾斜减到最小。
第2页/共7页
电控悬架工作时,阀门的相互作用控制通向空气弹簧元件的气流量。 传感器检测出汽车的行驶状态并反馈至ECU,ECU综合这些反馈信息 计算并输出指令控制空气弹簧元件的电动机和阀门,从而使电控悬架 随行驶及路面状态不同而变化:在一般行驶中,空气弹簧变软、阻尼 变弱,获得舒适的乘坐感;在急转弯或者制动时,则迅速转换成硬的 空气弹簧和较强的阻尼,以提高车身的稳定性。同时,该系统的电控 减振器还能调整汽车高度,可以随车速的增加而降低车身高度(减小离 地间隙),减少风阻以节省能源;在车速比较慢时车身高度又可恢复正 常。
汽车不同的行驶状态对悬架有不同的要求。一般行驶时需要 柔软一点的悬架以求舒适感,当急转弯及制动时又需要硬一点的 悬架以求稳定性,两者之间有矛盾。另外,汽车行驶的不同环境 对车身高度的要求也是不一样的。一成不变的悬架无法满足这种 矛盾的需求,只能采取折中的方式去解决。在电子技术发展的带 动下,工程师设计出一种可以在一定范围内调整的电子控制悬架 来满足这种需求。这种悬架称为电控悬架,目前比较常见的是电 控空气悬架形式。
空气弹簧元件是由电控减振器、阀门、双气室所组成。电控减 振器顶部有一个小型电动机,可通过它转动一个调整量孔大小的控 制杆将阻尼分成多级,从而实现控制阻尼的目的。阀门也充当了一 个调节气流的作用,通常双气室是连通的,合起来的总容积起着空 气弹簧的作用,比较柔软;但当关闭双气室之间的阀门时,则以一 个气室的容量来承担空气弹簧的作用,就会变得硬,因此阀门起到 控制"弹簧"变软变硬的作用。

主动悬架技术 ppt课件

主动悬架技术 ppt课件
工作原理:当线圈电流关闭时,磁流变液体没有磁化,铁颗粒随机地分散在液 体中,悬浮液的性能和普通的液压油一样。充电后,磁场使铁颗粒沿流体方向形 成纤维结构排列。结构中粒子之间结合的强度与磁场强度成正比,所以改变电流 就改变阻尼性能,变化范围很宽,其性能大大超过传统可变阻尼系统,同时也免 除这种可变阻尼减振器常用的电-机式阀片。该系统优点是反应速度快,缺点是 不能调节离地间隙。 应用车型:凯迪拉克XTS / 法拉利 / Audi TT/R8/A5 / 大众辉腾 / 路虎揽胜极光 供应商:BWI-Delphi ·连续可变的离散阻尼性能 ·对控制信号的输入有快速线性的反应 ·很宽的动态性能 ·在活塞杆低速运动时,有较高的阻尼性能 ·压缩力与反弹力对称 ·通过原点的阻尼力曲线斜度可以定制 ·没有运动件
主动悬架技术
奔驰Airmatic & ABC 空气悬挂系统 Airmatic DC System & 主动悬挂控制ABC
特点:主动控制空气悬挂系统和自适应阻尼悬挂系统(ADS)集成到一起,实现 双重控制(Dual Control),支持舒适到极限运动共四种模式,功能上包含防侧 倾、减小制动加速俯仰、底盘随速随路况自动升降。 应用车型:奔驰新S-c液压减震器
由传感器、圆筒型线性电动机、油压减震器和弹簧组成,与普通油压减震器 相比,响应更快,提高舒适和运动性。
•优化的车轮减振效果带来了更高的行驶安 全性 •驾乘更舒适,操控更敏捷 •减少车身的侧倾、点头和弹跳 •车轮与地面的更好接触缩短了制动距离 •阻尼力持续实时调整
主动悬架技术
ZF减震技术
Nivomat车高自平衡减震系统
功能:
1 可根据行驶工况自动调整车身高度,动力来源是车轮和车身的 相对运动
2 Nivomat内的高压气腔形成空气弹簧,与螺旋弹簧、缓冲块共 同构成悬架系统的弹性元件,刚度可变

主动液压悬架工作原理

主动液压悬架工作原理

主动液压悬架工作原理宝子们,今天咱们来唠唠汽车里超酷的主动液压悬架的工作原理。

咱先想象一下啊,汽车在各种路面上跑,就像人在不同的地形上走路一样。

如果路面坑坑洼洼的,没有个好的“减震装备”,那可就颠得难受死了。

这时候,主动液压悬架就像汽车的贴心小助手一样闪亮登场啦。

主动液压悬架呢,它主要有几个超级重要的部分。

有传感器,这就像是汽车的小眼睛和小耳朵。

传感器可机灵啦,它能随时感觉到路面的情况。

比如说,当车轮压到一个小坑的时候,传感器马上就能察觉到这个震动,就像你不小心踩了个小石子,脚能马上感觉到一样。

它能检测到车身的高度变化、速度、加速度啥的好多信息呢。

然后呢,就轮到控制器出场啦。

控制器就像是个超级聪明的小脑袋。

它拿到传感器传来的那些信息后,就开始分析啦。

它就想啊,“前面这个坑洼得这么处理呢?”它会根据预设好的一些程序和算法,快速地做出决定。

这个决定就是要怎么调整悬架,让车里的人感觉最舒服。

就好像你要根据不同的路况,决定是大步走还是小步挪一样。

再说说液压执行机构吧。

这个部分可就是真正干活的啦。

它接到控制器的指令后,就开始对悬架的高度和刚度进行调整。

比如说,如果传感器告诉控制器前面有个大坑,控制器就会让液压执行机构把悬架变软一点,这样车轮掉进坑里的时候,就不会把那种剧烈的震动直接传到车里。

就好比你从高处往下跳的时候,有个软软的垫子接住你,就不会摔得那么疼啦。

如果是在高速行驶的时候,控制器可能会让液压执行机构把悬架变硬一些,这样车子就会更稳定,不会因为风啊或者路面的小起伏就晃来晃去的。

而且啊,主动液压悬架还能根据不同的驾驶模式来调整呢。

如果是舒适模式,那它就会更倾向于把悬架调得软软的,就像坐在云朵上一样。

要是运动模式呢,悬架就会相对硬一点,这样车子在转弯的时候就会更灵活,就像运动员在赛场上做各种灵活的动作一样。

咱再举个例子哈。

比如说你开着车去自驾游,在那种乡间的小土路上,路面坑洼不平。

这时候主动液压悬架的传感器就忙个不停啦,到处收集信息。

主动悬架系统

主动悬架系统

主动悬架系统主动悬架是用一个有自身能源的力发生器来代替被动悬架中的弹簧和减振器。

根据作动器响应带宽的不同,主动悬架又分为宽带主动悬架和有限带宽主动悬架,也被叫做全主动悬架和慢主动悬架。

全主动悬架系统所采用的作动器具有较宽的响应频带,以便对车轮的高频共振也加以控制。

作动器多采用电液或液气伺服系统,控制带宽一般应至少覆盖0~15Hz,有的作动器响应带宽甚至高达100Hz。

结构示意图见上图。

从减少能量消耗的角度考虑,也可保留一个与作动器并联的传统弹簧,以用来支持车身静载。

主动悬架的一个重要特点就是,它要求作动器所产生的力能够很好地跟踪任何力控制信号。

因此,它为控制律的选择提供了一个广泛的设计空间,即如何确定控制律以使系统能够让车辆达到最佳的总体性能。

近二十年来,有大量关于主动悬架的研究论文及专题回顾文献发表。

研究结果表明,主动悬架能够在不同路面情况及行驶条件下显著地提高车辆性能。

主动悬架的研制工作起始于八十年代。

Lotus 制造了第一辆装有主动悬架的样车。

其系统的响应可达30Hz,它可使乘坐舒适性和转弯及制动时的车身姿态控制提高约35%。

还有一些主动悬架实施的例子,如Lotus Turbo Esprit、Damlar Benz的试验样机系统、BMW 和Ford等。

然而,由于这些主动悬架系统具有的高成本、高能耗、增加的重量及复杂程度,使主动悬架仅限于样车及一些赛车等有限的应用上。

结构上,有限带宽主动悬架通常由作动器与一个普通弹簧串联后,再与一个被动阻尼器并联构成,见上图。

这种系统在低频时(一般小于5或6赫兹)采用主动控制,而高于这个频率时,控制阀不再响应,系统特性相当于传统的被动悬架,而被动悬架在高频时的效果也比较好。

由于有限带宽主动悬架作动器仅需在一窄带频率范围内工作,所以它降低了系统的成本及复杂程度,比全主动悬架便宜得多。

尽管如此,它的主动控制仍然覆盖了主要的车身振动,包括纵向、俯仰、侧倾以及转向控制等要求的频率范围,改善了车身共振频率附近的行驶性能,提高了对车身姿态的控制,性能可达到与全主动系统很接近的程度。

汽车主动悬架设计介绍 080821

汽车主动悬架设计介绍 080821

应用 :货车、大客车的前、后悬架以及某些轿车的后悬架
2) 独立悬架
簧下质量小;
悬架占用的空间小;
优点
可以用刚度小的弹簧,改善了汽车行驶平顺性; 由于有可能降低发动机的位置高度,使整车的质心高度下
降,又改善了汽车的行驶稳定性;
左、右车轮各自独立运动互不影响,可减少车身的倾斜和
振动,同时在起伏的路面上能获得良好的地面附着能力。
4.3主动悬架装置介绍
(1)电子控制空气悬架 (2)电子控制油气悬架 (3)电子控制液压悬架
4.3.1电子控制空气悬架的特点
(1)弹簧刚度和减振器阻尼力控制
高速感应控制
前后关联控制 良好路面形式控制
(2)车身高度控制
主动悬架控制系统在轿车上的示意图
主动悬架各零件在轿车上的位置
而主动悬架的控制环节中安装了能够产生驱动的装置,采用 一种以力抑力的方式来抑制路面对车身的冲击力及车身的倾斜力。 由于这种悬架能够自行产生作用力,因此称为主动悬架。
主动悬架是近十几年发展起来的,由电脑控制的一种新型悬 架,具备三个条件: (1)具有能够产生作用力的动力源; (2)执行元件能够传递这种作用力并能连续工作; (3)具有多种传感器并将有关数据集中到微电脑进行运算并决定 控制方式。
可控阻尼减振器所起的作用与主动悬架中执行元件的作用类似, 都是通过系统内的力闭环控制,实现控制单元提出的力要求。
所不同的是执行元件要做功,而减振器则是通过调节阻尼力控 制耗散掉的能量的多少,几乎不消耗汽车发动机的能量。显然, 在半主动悬架中,必须并联弹簧以支持悬挂质量,一般情况下 该弹簧刚度是不变的。
实际设计时,考虑一种状态,如某个速度下或某个路况,优化选 定一个刚度和阻尼系数,不断去试验,改善两着间的关系。所以 称之为被动悬架。

主动减震原理

主动减震原理

主动减震原理
主动减震是一种汽车悬挂系统,通过采用传感器和电动执行器来主动调节悬挂系统的阻尼,从而实现减震效果。

这种技术主要基于车身传感器感知车辆行驶和路面状况,然后通过电脑处理和控制算法,实时调整悬挂系统的阻尼。

主动减震系统由几个主要组成部分构成。

首先,传感器用于监测车辆的加速度、姿态和路面状况等数据。

这些传感器可以安装在车身各个位置,如前后悬挂系统、车轮或车身上。

其次,传感器将采集到的数据传输给电脑处理单元。

电脑处理单元通过分析和处理数据,判断车辆的运动状态和路面条件,并生成相应的控制信号。

最后,通过电动执行器,控制信号被传递到悬挂系统的阻尼调节器,调整阻尼的硬度或软度,从而改变悬挂系统的减震效果。

主动减震的原理是根据车辆行驶和路面情况的实时变化,通过调整悬挂系统的阻尼,使车辆始终保持最佳的悬挂效果。

例如,当车辆经过颠簸不平的路面时,系统会感知到这种情况,并通过增加阻尼来减缓车身的上下移动,提供更好的悬挂效果,从而提高驾驶舒适性和稳定性。

相反,当车辆行驶在平坦的高速公路上时,系统会降低阻尼,提高悬挂的柔软度,以提供更好的悬挂舒适性。

主动减震系统的优点是可以根据不同的驾驶条件和个人喜好进行调节,提供更加个性化的驾驶体验。

此外,它还可根据路面条件的实时变化,做出及时的调整,提供更好的悬挂效果和驾
驶稳定性。

然而,主动减震系统的成本较高,安装和维护也相对复杂,因此一般在较高级别的汽车上采用。

4种主动悬挂系统原理完全介绍20100310

4种主动悬挂系统原理完全介绍20100310

主动悬挂系统 发布时间:2010-03-10 作者:李志随着汽车制造研发水平的不断提高,人们对于汽车的操控性和舒适性有了更高的要求。

这其中,车辆减震系统起着至关重要的作用。

而采用普通螺旋弹簧很难做到两全其美。

于是,适应能力更强,感受更完美的可变悬挂系统就诞生了。

目前市面上主流的主动悬挂主要有四种形式:空气悬挂、液压悬挂、电磁悬挂以及电子液力悬挂。

本篇文章就跟大家一同了解下。

空气式可调悬挂技术特点:底盘可升降,应用车型广泛技术不足:可靠性不如螺旋弹簧应用车型:奔驰S350、奥迪A8L、保时捷卡宴等其实提到主动悬挂系统,我们首先想到的,并且应用最广泛的自然是空气式可调悬挂,而在系统组成上,它主要是由控制电脑、空气泵、储压罐、气动前后减震器和空气分配器等部件。

主要用途就是控制车身的水平运动,调节车身的水平高度以及调节减震器的软硬程度。

通常来讲,装备空气式可调悬挂的车型前轮和后轮的附近都会设有离地距离传感器,按离地距离传感器的输出信号,行车电脑会判断出车身高度变化,再控制空气压缩机和排气阀门,使弹簧自动压缩或伸长,从而降低或升高底盘离地间隙,以增加高速车身稳定性或复杂路况的通过性。

而在日常调节中,空气悬挂会有几个状态。

1、保持状态。

当车辆被举升器举起,离开地面时,空气悬挂系统将关闭相关的电磁阀,同时电脑记忆车身高度,使车辆落地后保持原来高度:2、正常状态,即发动机运转状态。

行车过程中,若车身高度变化超过一定范围,空气悬挂系统将每隔一段时间调整车身高度:3、唤醒状态。

当空气悬挂系统被遥控钥匙、车门开关或行李厢盖开关唤醒后,系统将通过车身水平传感器检查车身高度。

如果车身高度低于正常高度一定程度,储气罐将提供压力使车身升至正常高度。

同时,空气悬挂可以调节减震器软硬度,包括软态、正常及硬态3个状态(也有标注成舒适、普通、运动三个模式等),驾驶者可以通过车内的控制钮进行控制。

当然,相比传统悬挂,由于空气式可调悬挂结构较为复杂,其出现故障的几率和频率也会高于螺旋弹簧悬挂系统,而用空气作为调整底盘高度的动力来源,相关部件的密封性也是一个问题,另外,如果频繁地调整底盘高度,还有可能造成气泵系统局部过热,会大大缩短气泵的使用寿命。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主动悬架是根据汽车的运动状态和路面状态,适时地调节悬架的刚度和阻尼,使其处于最正确减振状态。

它是在被动悬架〔弹性元件、减振器、导向装置〕中附加一个可控作用力的装置。

通常由执行机构、测量系统、反应控制系统和能源系统4局部组成。

执行机构的作用是执行控制系统的指令,一般为发生器或转矩发生器〔液压缸、气缸、伺服电动机、电磁铁等〕。

测量系统的作用是测量系统各种状态,为控制系统提供依据,包括各种传感器。

控制系统的作用是处理数据和发出各种控制指令,其核心部件是电子计算机。

能源系统的作用是为以上各局部提供能量。

主动悬挂系统能够根据车身高度、车速、转向角度及速率、制动等信号,由电子控制单元〔ECU〕控制悬挂执行机构,使悬挂系统的刚度、减振器的阻尼力及车身高度等参数得以改变,从而使汽车具有良好的乘坐舒适性和操纵稳定性。

主动悬挂系统是近十几年开展起来的、由电脑控制的一种新型悬挂系统,它聚集力学和电子学的技术知识,是一种比拟复杂的高技术装置,例如装置主动悬挂系统的法国雪铁龙桑蒂雅,该车悬挂系统系统的中枢是一个微电脑,悬挂系统上的5种传感器分别向微电脑传送车速、前轮制动压力、踏动油门踏板的速度、车身垂直方向的振幅及频率、转向盘角度及转向速度等数据,电脑不断接收这些数据并与预先设定的临界值进展比拟,选择相应的悬挂系统状态,同时,微电脑独立控制每一只车轮上的执行元件,通过控制减振器内油压的变化产生抽动,从而能在任何时候、任何车轮上产生符合要求的悬挂系统运动,因此,桑蒂雅轿车备有多种驾驶模式选择,驾车者只要扳动位于副仪表板上的“正常〞或“运动〞按钮,轿车就会自动设置在最正确的悬挂系统状态,以求最好的舒适性能,主动悬挂系统具有控制车身运动的功能,当汽车制动或拐弯时的惯性引起弹簧变形时,主动悬挂系统会产生一个与惯力相对抗的力,减少车身位置的变化,例如德国 benz 2000款cl型跑车,当车辆拐弯时悬挂系统传感器会立即检测出车身的倾斜和横向加速度,电脑根据传感器的信息,与预先设定的临界值进展比拟计算,立即确定在什么位置上将多大的负载加到悬挂系统上,使车身的倾斜减到最小。

〔一〕主动式空气悬挂系统工作原理图 4所示为丰田索阿拉高级轿车电子控制主动式空气悬挂系统的构成图。

它主要由空气压缩机、枯燥器、空气电磁阀、车身高度传感器、带有减振器的空气弹簧、悬挂控制执行器、悬挂控制选择开关及电子控制单元等组成。

空气压缩机由直流电机驱动,形成压缩空气,压缩空气经枯燥器枯燥后由空气管道经空气电磁阀送至空气弹簧的主气室。

当车身需要升高时,电子控制单元控制空气电磁阀使压缩空气进入空气弹簧的主气室〔见图 5〔b〕〕,使空气弹簧伸长,车身升高;当车身需要降低时,电子控制单元控制电磁阀使空气弹簧主气室中压缩空气排到大气中去〔见图 5〔a〕〕,空气弹簧压缩,车身降低。

在空气弹簧的主、辅气室之间有一连通阔,空气弹簧的上部装有悬挂控制执行器〔图中未画出〕。

电子控制单元根据各传感器输出信号,控制悬挂执行器,一方面使空气弹簧主、辅气室之间的连通阀发生改变,使主、辅气室之间的气体流量发生变化,因此而改变悬挂的弹簧刚度;另一方面,执行器驱动减振器的阻尼力调节杆,使减振器的阻尼力也得以改变。

丰田索阿拉轿车采用的主动式空气悬挂系统中,车高、弹簧刚度和减振器阻尼力可同时得到控制,且各自可以取三种数值,其所取数值由电子控制单元根据当时的运行条件和驾驶员选定的控制方式决定。

驾驶员可以任意选择四种自动控制模式,即控制车身高度的“常规值自动控制〞和“高值自动控制〞,以及控制弹簧刚度和减振器阻尼力的“常规值自动控制〞和“高速行驶时自动控制〞,具体控制内容如下:〔1〕抗后坐:通过传感器检测油门踏板移动速度和位移。

当车速低于20km/h且加速度大时〔急起步加速〕,ECU通过执行器将弹簧刚度和减振器阻尼力调到高值,从而抵抗汽车起步时车身后坐。

如果此时驾驶员选择了“常规值自动控制〞状态,那么弹簧刚度和减振器阻尼力由软调至硬;如果此时驾驶员选择了“高速行驶自动控制〞状态,那么刚度和阻尼力由中调至硬。

〔2〕抗侧倾:由装于转向轴的光电式转向传感器检测转向盘的操作状况。

在急转弯时,ECU通过执行器使弹簧刚度和减振器阻尼力转换到高〔硬〕值,以抵抗车身侧倾。

〔3〕抗“点头〞:在车速高于60 km/h时紧急制动,ECU通过执行器使弹簧刚度和减振器阻尼力调到高〔硬〕值,而不管驾驶员选择了何种控制状态,以抵抗车身前部的下俯。

〔4〕高速感应:当车速大于110km/h时,系统将使弹簧刚度和减振器阻尼力调至中间值,从而提高高速行驶时操纵稳定性。

既使驾驶员选择了“常规值自动控制〞状态〔刚度和阻尼处于低、软值〕,系统也将刚度和阻尼力调至中间值。

〔5〕前、后关联控制:车速在30-8O km/h范围内时,假设前轮车高传感器检测出路面有小凸起〔例如前轮通过混凝土路面接缝等〕,那么在后轮越过该凸起之前,系统将使弹簧刚度和减振器阻尼力调至低〔软〕值,从而提高汽车乘坐舒适性。

此时既使驾驶员选择了高速行驶状态〔刚度和阻尼力为中间值〕,系统仍将刚度和阻尼力调至低〔软〕值。

为了不影响高速时的操纵稳定性,这种动作在车速为80km/h以下才发生。

〔6〕坏路、俯仰、振动感应:车速在40-100km/h范围内,当前轮车高传感器检测出路面有较大凸起时〔例如汽车通过损坏的铺砌路面等〕,系统将弹簧刚度和减振器阻尼力调至中间值,以抑制车体的前后颠簸、振动等大动作,从而提高汽车的乘坐舒适性和通过性.而不管驾驶员选择了何种控制状态。

车速高于100km/h时,系统将使刚度和阻尼力调至高〔硬〕值。

〔7〕良好路面正常行驶:弹簧刚度和减振器阻尼力由驾驶员选择,“常规值自动控制〞状态,刚度和阻尼力处于低〔软〕值;“高速行驶时自动控制〞状态,那么刚度和阻尼力为中间值。

由左右前轮和左后轮三个车身高度传感器发出车高信号,ECU发出指令来进展车身高度调整。

〔l〕高速感应:当车速高于9Okm/h时,将车身高度降低一级,以减小风阻,提高行驶稳定性。

如果驾驶员选择了“常规值自动控制〞状态,那么车身高度值由中间值〔标准值〕调至低值;如果驾驶员选择了“高值自动控制〞状态,那么车高由高值调至中间值〔标准值〕。

在车速为60km/h时,车高恢复原状。

〔2〕连续坏路面感应:汽车在坏路面上连续行驶,车高信号持续2.5s以上有较大变动,且超过规定值时,将车高升高一级,使来自路面的突然抬起感减弱,并提高汽车的通过性能。

连续坏路且车速大于4Okm/h小于90km/h时,不管驾驶员选择了何种控制状态,都将车高调至高值,以减小路面不平感,确保足够的离地间隙,提高乘坐舒适性。

车速小于4Okm/h时,车高那么完全由驾驶员选择,选择“常规值自动控制〞时,车高为中间值〔标准值〕;选择“高值自动控制〞时,车高为高值。

在连续坏路面上,车速高于9Okm/h时,不管驾驶员选择了何种控制状态,车高都将调至中间值,这样做是为了防止车身过高对高速行驶稳定性产生不利影响。

另外,还具有驻车时车高控制功能。

当汽车处于驻车状态时,为了使车身外观平衡,保持良好的驻车姿势,在点火开关断开后,ECU即发出指令,使车身高度处于常规模式的低状态。

〔二〕主动式油气弹簧悬挂系统工作原理油气弹簧以气体〔一般是惰性气体--氮〕作为弹性介质,而用油液作为传力介质。

它一般是由气体弹簧和相当于液力减振器的液压缸组成。

通过油液压缩气室中的空气实现刚度特性,而通过电磁阀控制油液管路中的小孔节流实现变阻尼特性。

图 6所示为雪铁龙XM 轿车的主动式油气弹簧悬挂布置图,从图中可以看到,它有五个根本行车状态的传感器。

其中,转向盘转角传感器安装于转向柱上,通过转向盘转角信号间接地把汽车转向程度〔快慢、大小〕的信息送给微机。

加速度传感器实际上是与油门踏板连接的油门动作传感器,间接地将加速动作信号送给微机。

制动压力传感器安装于制动管路中,当制动时,它向微机发送一个阶跃信号,表示制动,使微机产生抑制“点头〞的信号输出。

车速传感器安装于车轮上,送出与转速成正比的脉冲,微机利用它和转向盘转角信号,可以计算出车身的侧倾程度。

车身位移传感器安装于车身与车桥之间,用来测量车身与车桥的相对高度,其变化频率和幅度可反映车身的平顺性信息,同时还用于车高自动调节。

该系统的工作原理如图 7所示。

在图 7中,电磁阀7在微机指令下向右移动,从而接通压力油道,使辅助液压阀8的阀芯向左移动,中间的油气室9与主油气室连通,使总的气室容积增加,气压减小,从而刚度变小,所以9又称为刚度调节器。

a、b节流孔是阻尼器,在上图图示位置,系统处于“软〞状态。

下列图中,电磁阀7中无电流通过,在弹簧作用下,阀芯左移,关闭压力油道,原来用于推动液压阀8的压力油通过阀7的左边油道泄放,阀8阀芯右移,关闭刚度调节器9,气室总容积减小,刚度增大,使系统处于“硬〞状态。

在正常行车状态时,系统处于“软〞状态,以提高乘坐的舒适性,当高速、转向、起步和制动时,系统处于“硬〞状态,以提高车辆的操纵稳定性〔三〕带路况预测传感器的主动悬挂系统图 8所示为带有路面状况预测传感器的主动悬挂示意图。

该系统中包括一个悬挂弹簧16和一个单向液压执行器14,控制阀6通过油管8与单向液压执行器的油压腔相通。

油管上还接有一个支管8a,该支管与一个储压器11相连,储压器内充有气体,这些可压缩的气体可以产生一种类似弹簧的效果。

另外,支管的中间还设有一个主节流孔12,以限制储压器和油压腔之间的油流,从而形成减振作用。

在油管和储压器之间还设有一个旁通管路8b,该旁路上带有一个选择阀10和一个副节流孔9,副节流孔的直径大于主节流孔的直径。

中选择阀翻开时,油流通过选择阀的副节流孔,在储压器和油压腔之间流动,从而减小振动阻尼。

采用这样的装置可以使悬挂系统在选择阀的作用下,具有两种不同的阻尼参数。

控制阀的开度可以随控制电流的大小而改变,以控制进入油管的油量,进而控制施加到液压执行器的油压,随着输入控制阀的电流的增加,液压执行器的承载能力也增加。

在该悬挂系统中,输入到控制单元ECU的信号有:各轮上设置的检测车身纵向加速度的传感器输出信号,路面状况预测传感器测出的车辆前方是否有凸起物及其大小的检测信号,在各车轮处检测车身高度的传感器输出信号及车速传感器输出的车速信号等。

控制单元根据这些信号,对设置在各车轮上的控制阀和选择阀进展控制。

图 9所示为路况预测传感器的设置情况。

这种传感器通常为超声波传感器,频率为40kHz 左右,它安装在车身的前面,以便对其下方的路面状况进展检测。

在车辆正常行驶时,选择阀关闭,液压执行器的油压腔通过主节流孔与储压器相通,它可以吸收并降低因路面不平而引起的微小振动。

当车辆上的路况预测传感器发现路面上有将引起振动的凸起物时,控制单元便控制选择阀翻开,并将悬挂系统的阻尼系数减小到一个特定的值上。

相关文档
最新文档