五年级奥数之余数问题
五年级高斯奥数之余数含答案

第16讲余数内容概述掌握余数酌概念与基本性质,掌握除以某些特殊数的余数的计算方法.学会利用余数的可加性、可减性和可乘性计算余数;学会运用同期性处理各类余数计算问题;学会求解“物不知数’问题.典型问题兴趣篇1.72除以一个数,余数是7.商可能是多少?2.100和84除以同一个数,得到的余数相同,但余数不为0.这个除数可能是多少?3.20080808除以9的余数是多少?除以8和25的余数分别是多少?除以11的余数是多少?4.4个运动员进行乒乓球比赛,他们的号码分别为101、126、173、193.规定每两人之间比赛的盘数是他们号码的和除以3所得的余数.请问:比赛盘数最多的运动员打了多少盘?5.某工厂有128名工人生产零件,他们每个月工作23天,在工作期间每人每天可以生产300个零件.月底将这些零件按17个一包的规格打包,发现最后一包不够17个.请问:最后一包有多少个零件?6.(1)220除以7的余数是多少?(2)1414除以11的余数是多少?(3)28121除以13的余数是多少?7.8+8⨯8+ +8⨯8⨯ ⨯810个8除以5的余数是多少?8.一个三位数除以21余17,除以20也余17.这个数最小是多少?2.(1) 421421 421除以 4 和 125 的余数分别是多少? (2) 808808 808 除以 9 和 11 的余数分别是多少?4.自然数 2 ⨯ ⨯ 2 -1 的个位数字是多少?9.有一个数,除以 3 的余数是 2,除以 4 的余数是 1.请问:这个数除以 12 余数是几?10.100 多名小朋友站成一列,从第一人开始依次按 1,2,3,…,11 的顺序循环报数,最 后一名同学报的数是 9;如果按 1,2,3,…,13 的顺序循环报数,那么最后一名同学报的 数是 11.请问:一共有多少名小朋友?拓展篇1.1111 除以一个两位数,余数是 66. 求这个两位数.21个421 21个8083.一年有 365 天,轮船制造厂每天都可以生产零件 1234 个,年终将这些零件按 19 个一包的规格打包,最后一包不够 19 个.请问:最后一包有多少个零件?2 ⨯ 2 ⨯ 67个2 5.算式12007 + 22007 + 32007 + + 2006 2007 计算结果的个位数是多少?6.一个自然数除以 49 余 23,除以 48 也余 23.这个自然数被 14 除的余数是多少?7.一个自然数除以 19 余 9,除以 23 余 7.这个自然数最小是多少?9.123123 123 除以 99 的余数是多少?7 ⨯ 7 ⨯ ⨯ 78.刘叔叔养了 400 多只兔子,如果每 3 只兔子关在一个笼子里,那么最后一个笼子里有 2只;如果每 5 只兔子关在一个笼子里,那么最后一个笼子里有 4 只;如果每 7 只兔子关在一 个笼子里,那么最后一个笼子里有 5 只.请问:刘叔叔一共养了多少只兔子?123个12310.把 63 个苹果,90 个橘子,130 个梨平均分给一些同学,最后一共剩下 25 个水果没有分出去.请问:剩下个数最多的水果剩下多少个?11.有一个大于 l 的整数,用它除 300、262、205 得到相同的余数,求这个数.12.用 61 和 90 分别除以某一个数,除完后发现两次除法都除不尽,而且前一次所得的余数 是后一次的 2 倍,如果这个数大于 1,那么这个数是多少?超越篇1.从 l 依次写到 99,可以组成一个多位数 12345…979899.这个多位数除以 11 的余数是多少?2.算式 7 + 7 ⨯ 7 + +计算结果的末两位数字是多少? 2008个73.算式1⨯ 3 ⨯ 5 ⨯ 7 ⨯ ⨯ 2007 计算结果的末两位数字是多少?4.有 5000 多根牙签,按以下 6 种规格分成小包:如果 10 根一包,最后还剩 9 根;如果 9 根一包,最后还剩 8 根;如果依次以 8、7、6、5 根为一包,最后分别剩 7、6、5、4 根.原 来一共有牙签多少根?5.有三个连续的自然数,它们从小到大依次是5、7、9的倍数,这三个连续自然数最小是多少?6.请找出所有的三位数,使它除以7、11、13的余数之和尽可能大.7.已知21!AB0909421717094CD000.那么四位数ABCD是多少?8.有一些自然数n,满足:2n-n是3的倍数,3n-n是5的倍数,5n-n是2的倍数,请问:这样的,n中最小的是多少?第12讲余数内容概述掌握余数的概念与基本性质,掌握除以某些特殊数的余数的计算方法.学会利用余数的可加性、可减性和可乘性计算余数;学会运用同期性处理各类余数计算问题;学会求解“物不知数’问题.典型问题兴趣篇1.72除以一个数,余数是7.商可能是多少?【答案】1或5【解析】72-7=65,再分解质因数65=5×13,还有1×65=65,所以商可能是1或52.100和84除以同一个数,得到的余数相同,但余数不为0.这个除数可能是多少?【答案】8或16【解析】100和84同余,做差后是这个数的倍数,100-84=16,所以这个除数可能是8或16 3.20080808除以9的余数是多少?除以8和25的余数分别是多少?除以11的余数是多少?【答案】8;0,8;0【解析】一个数除以9的方法:各位数字之和除以9,2+8+8+8=26,26÷9=2…8;除以8的方法:末三位除以8,808÷8=101…0;除以25的方法:末两位除以25,8÷25=0…8;除以11的方法:奇数位数字之和与偶数位数字之和的差除以11,2+0+0+0=2,0+8+8+8=24,24-2=22,22÷11=2 04.4个运动员进行乒乓球比赛,他们的号码分别为101、126、173、193.规定每两人之间比赛的盘数是他们号码的和除以3所得的余数.请问:比赛盘数最多的运动员打了多少盘?【答案】5【解析】1+0+1=2,2÷3=…2,1+2+6=9,9÷3=…0,1+7+3=11,11÷3=…2,1+9+3=13…1,最多打了5盘5.某工厂有128名工人生产零件,他们每个月工作23天,在工作期间每人每天可以生产300个零件.月底将这些零件按17个一包的规格打包,发现最后一包不够17个.请问:最后一包有多少个零件?【答案】168 ⨯ 8 ⨯ ⨯ 8 【解析】余数问题,求 128×23×300÷17 的余数128÷17=7...9 23÷17=1...6 300÷17=17 (11)9×6×11=594 594÷17=34 (16)6.(1) 220 除以 7 的余数是多少?(2) 1414 除以 11 的余数是多少?(3) 28121 除以 13 的余数是 多少?【答案】(1)4;(2)4;(3)2【解析】因为 23 除以 7 的余数是 1,20=3×6+2,所以 220 除以 7 的余数就是 22 除以 7 的余 数 即为 4;同理,1414 除以 11 的余数是 4;28121 除以 13 的余数是 27. 8 + 8 ⨯ 8 + +除以 5 的余数是多少? 10个8【答案】2【解析】根据余数的和等于和的余数的方法,除以 5 的余数是 28.一个三位数除以 21 余 17,除以 20 也余 17.这个数最小是多少?【答案】437【解析】最小公倍数问题,【21,20】=420,再加上 17,这个数最小是 4379.有一个数,除以 3 的余数是 2,除以 4 的余数是 1.请问:这个数除以 12 余数是几?【答案】5【解析】除以 3 的余数是 2 的数是 5,而 5 恰好除以 4 余 1,5 除以 12 余数是 510.100 多名小朋友站成一列,从第一人开始依次按 1,2,3,…,11 的顺序循环报数,最 后一名同学报的数是 9;如果按 1,2,3,…,13 的顺序循环报数,那么最后一名同学报的 数是 11.请问:一共有多少名小朋友?【答案】141【解析】根据题意,可转化为一个 100 多的数除以 11 余 9,除以 3 余 11,所以先求 11 和 13 的最小公倍数,再减去 2 就是所求,一共有 141 名小朋友拓展篇1.1111 除以一个两位数,余数是 66. 求这个两位数.【答案】95【解析】先从 1111 里减去余数 66,再分解质因数,所求的两位数要大于余数 66,所以是2.(1) 421421 421除以 4 和 125 的余数分别是多少? (2) 808808 808 除以 9 和 11 的余数分别是多少?4.自然数 2 ⨯ ⨯ 2 -1 的个位数字是多少? 9521个42121个808 【答案】(1)1,46;(2)3,5【解析】(1)21÷4=5…1;421÷125=3…46;(2)(8+8)×21÷9=37…3;808808÷11 余 0,最后还剩一个 808,8+8=16,16÷11 余 53.一年有 365 天,轮船制造厂每天都可以生产零件 1234 个,年终将这些零件按 19 个一包 的规格打包,最后一包不够 19 个.请问:最后一包有多少个零件?【答案】15【解析】先求出一年的总数,再除以 19 余数为 152 ⨯ 2 ⨯ 67个2【答案】7【解析】找出 2 的 n 次方的个位数字的周期,2,4,8,6…,再看 67 除以 4 的余数是 3, 所以个位数字是 8-1=75.算式12007 + 22007 + 32007 + + 2006 2007 计算结果的个位数是多少?【答案】1【解析】每个数乘方的个位数字的周期是 4,2007 除以 4 余 3,所以原式就与 1 到 2006 的 3 次方的个位数字是一样的,以 10 个数为一个周期列出为 1,8,7,4,5,6,3,2,9,0…, 2006 除以 10 余数为 6,所以前 6 个的和即是所求 1+8+7+4+5+6=31,所以个位数字是 16.一个自然数除以 49 余 23,除以 48 也余 23.这个自然数被 14 除的余数是多少?【答案】9【解析】【49,48】+23=2375,被 14 除余 97.一个自然数除以 19 余 9,除以 23 余 7.这个自然数最小是多少?9.123123 123 除以 99 的余数是多少?【答案】237【解析】7+23k -9 能被 19 整除,最小为 2378.刘叔叔养了 400 多只兔子,如果每 3 只兔子关在一个笼子里,那么最后一个笼子里有 2 只;如果每 5 只兔子关在一个笼子里,那么最后一个笼子里有 4 只;如果每 7 只兔子关在一 个笼子里,那么最后一个笼子里有 5 只.请问:刘叔叔一共养了多少只兔子?【答案】404【解析】根据题意是一个 400 多的数除以 3 余 2,除以 5 余 4,除以 7 余 5,最后所求的数 是 404123个123【答案】90【解析】6 个 123 能被 99 整除,123 里有 20 个 6 余 3,所以 123123123 除以 99 余数是 9010.把 63 个苹果,90 个橘子,130 个梨平均分给一些同学,最后一共剩下 25 个水果没有分 出去.请问:剩下个数最多的水果剩下多少个?【答案】20【解析】三个数分别的余数不知道,但是余数的和是 25,可以把这三个数相加,根据余数 的和等于余数的和来计算,63+90+130-25=258,再分解质因数,最后剩下个数最多的水 果剩下 20 个11.有一个大于 l 的整数,用它除 300、262、205 得到相同的余数,求这个数.【答案】19【解析】根据同余的两个数的差能被这个数整除,300-262=38,262-205=57,再求(38,57)=1912.用 61 和 90 分别除以某一个数,除完后发现两次除法都除不尽,而且前一次所得的余数 是后一次的 2 倍,如果这个数大于 1,那么这个数是多少?【答案】17【解析】先把余数变相同,再作差求解即可。
高斯小学奥数五年级上册含答案_余数的性质与计算

第二十一讲余数的性质与计算37』桂除的余数足多少?我知沽玳,余数昂7!^1这一讲我们来学习余数问题.在整数的除法中,只有能整除和不能整除两种情况. 当不能整除时,就会产生余数.一般地,如果a是整数,b是整数(b丰0),若有a+ b=q r (也就是a b q r ), 0当r 0 时,我们称a 能被b 整除;当r 0 时,我们称a 不能被b 整除,r 为a 除以b 的余数,q 为a 除以b 的商余数问题和整除问题是有密切关系的,因为只要我们去掉余数,就能和整除问题联系在一起了.余数有如下一些重要性质.基本性质:被除数=除数X商(当余数大于0时也可称为不完全商)+余数除数=(被除数-余数)*商;商=(被除数-余数)十除数.余数小于除数.理解这条性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.例题1.用一个自然数去除另一个整数,商40,余数是16,被除数、除数的和是877,求被除数和除数各是多少?「分析」如果设除数为a,被除数可以表示为什么?练习1.甲、乙两数的和是2014,甲数除以乙数商99余14,求甲、乙两数.我们之前学过一些特殊数(如2、3、4、5、7、8、9、11、13、25、99、125)的整除特性.这些数的整除特性稍加改造,即可成为求解余数的一类简便算法:1)一个数除以2或5的余数,等于这个数的个位数字除以2或5的余数;一个数除以4或25的余数,等于这个数的末两位数除以4或25的余数;一个数除以8或125的余数,等于这个数的末三位数除以8或125 的余数;2)一个数除以3或9的余数,等于这个数的各位数字和除以3或9的余数;一个数除以99(包括11、33)的余数,等于将它两位截断再求和之后的余数;此外,求3和9的余数还可应用乱切的方法.(3)一个数除以11 的余数,等于它的奇位数字和减去偶位数字和除以11的余数,如果奇位数字和比偶位数字和小,则先加上若干个11 再减即可.(4)一个数除以7、11和13的余数,等于将它三位截断之后,奇数段之和减去偶数段之和除以7、11 和13 的余数,如果奇数段之和比偶数段之和小,则加上若干个7、11 或13再减即可.这种利用整除特性来计算余数的方法叫做特性求余法.例题2.1)20132013 除以4和8 的余数分别是多少?2)20142014 除以3和9 的余数分别是多少?分析」根据4、8、3、9 的特性,可以很快计算出结果.练习2.(1)20121221 除以5和25 的余数分别是多少?(2)20130209 除以3和9 的余数分别是多少?例题3.(1)123456789 除以7和11的余数分别是多少?87654321 呢?(2)360360360 除以99 的余数是多少?「分析」根据7、1、99 的特性,可以计算出结果.在截断的时候要特别小心.练习3.201420132012 除以13和99 的余数分别是多少?为了更好地了解余数的其它一些重要性质,我们再来做几个练习:1)211除以9的余数是 _______ ;(2)137除以9的余数是_________(3) 211 137的和除以9的余数是___________ ; ( 4) 211 137的差除以9的余数是(5)211 137的积除以9的余数是__________ ; (6) 1372除以9的余数是________比较上面的结果,我们发现余数还有一些很好的性质:和的余数等于余数的和;差的余数等于余数的差;积的余数等于余数的积•这三条性质分别称为余数的可加性、可减性和可乘性•在计算一个算式的结果除以某个数的余数时,可以利用上述性每个数都用它除以7的质进行简算.例如计算33 37 15 80的结果除以7的余数就可以像右侧这样计算•这一简算方法又称替换求余法•需要提醒大家的是,虽然上述三条计算余数的口诀朗朗上口,但并不严格,在使用时还需要注意:(1)如果替换之后余数的计算结果大于除数,还需要再次计算结果的余数.例如:在计算423 317除以6的余数时,利用“和的余数等于余数的和”,结果就变成了3 5 8, 8 6,所以还需要再次计算8除以6的余数是2,才是423 317除以6最后的余数•再比如:在计算423 317除以6的余数时,也会遇到3 5 15 6的情况,同样的还需要计算15除以6的余数是3,才是最终的结果.(2)在计算减法时,会出现余数不够减的情况,这时只要再加上除数或除数的倍数即可•例如:在计算423 317除以6的余数时,会发现结果变成了3 5不够减.此时,只要再加上6,用6 3 5 4来计算即可.例题4.一年有365天,轮船制造厂每天都可以生产零件1234个•年终将这些零件按6个一包的规格打包,最后一包不够6个.请问:最后一包有多少个零件?「分析」最后一包的零件数实际上就是零件总数除以19的余数.练习4.(1)123 456 789除以111 的余数是多少?(2)224468 6678 的结果除以22 余数是多少?如果我们将“特性求余法”和“替换求余法”相结合,便可大大简化余数的计算.例题5.(1)87784 49235 81368除以4、9 的余数分别是多少?(2)365366+367368 369370除以7、11、13的余数分别是多少?「分析」要把结果算出来,再求余数,计算量很大.看看如何利用“替换求余”以及“特性求余”的方法来进行求解.例题6.(1)2100的个位数字是多少?32014除以10 的余数是多少?(2)32014除以7 的余数是多少?「分析」一个数的个位数字就是它除以10 的余数,大家来找一下个位数字的变化规律.小熊分粽子今天是端午节,猴爸爸一大早就领着猴儿们去观看龙舟比赛。
五年级奥数-数论之余数问题

数论之余数问题余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识点拨:一、带余除法的定义及性质:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b=q ……r ,也就是a =b ×q +r,0≤r <b ;我们称上面的除法算式为一个带余除法算式。
这里:(1)当时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商(2)当时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商一个完美的带余除法讲解模型:如图,这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理0r =0r ≠a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.3.同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m 同余,用式子表示为:a≡b ( mod m ),左边的式子叫做同余式。
小学奥数5-5-4 余数性质(二).专项练习及答案解析

1.学习余数的三大定理及综合运用 2.理解弃9法,并运用其解题一、三大余数定理:1.余数的加法定理 a 与b 的和除以c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。
例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a 与b 的差除以c 的余数,等于a ,b 分别除以c 的余数之差。
例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2.当余数的差不够减时时,补上除数再减。
例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a 与b 的乘积除以c 的余数,等于a ,b 分别除以c 的余数的积,或者这个积除以c 所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c 的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.乘方:如果a 与b 除以m 的余数相同,那么n a 与n b 除以m 的余数也相同.二、弃九法原理在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234189818922678967178902889923++++=1234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。
五年级高斯奥数之余数含答案

第16讲余数内容概述掌握余数酌概念与基本性质,掌握除以某些特殊数的余数的计算方法.学会利用余数的可加性、可减性和可乘性计算余数;学会运用同期性处理各类余数计算问题;学会求解“物不知数’问题.典型问题兴趣篇1. 72除以一个数,余数是7.商可能是多少?2. 100和84除以同一个数,得到的余数相同,但余数不为0.这个除数可能是多少?3. 20080808除以9的余数是多少?除以8和25的余数分别是多少?除以11的余数是多少?4. 4个运动员进行乒乓球比赛,他们的号码分别为101、126、173、193.规定每两人之间比赛的盘数是他们号码的和除以3所得的余数.请问:比赛盘数最多的运动员打了多少盘?5.某工厂有128名工人生产零件,他们每个月工作23天,在工作期间每人每天可以生产300个零件.月底将这些零件按17个一包的规格打包,发现最后一包不够17个.请问:最后一包有多少个零件?6.(1) 220除以7的余数是多少?(2) 1414除以11的余数是多少?(3) 28121除以13的余数是多少?7.810888888个⨯⨯⨯++⨯+除以5的余数是多少?8.一个三位数除以21余17,除以20也余17.这个数最小是多少?9.有一个数,除以3的余数是2,除以4的余数是1.请问:这个数除以12余数是几?10.100多名小朋友站成一列,从第一人开始依次按1,2,3,…,11的顺序循环报数,最后一名同学报的数是9;如果按1,2,3,…,13的顺序循环报数,那么最后一名同学报的数是11.请问:一共有多少名小朋友?拓展篇1.1111除以一个两位数,余数是66. 求这个两位数.2.(1) 42121421421421个除以4和125的余数分别是多少?(2) 80821808808808个除以9和11的余数分别是多少?3.一年有365天,轮船制造厂每天都可以生产零件1234个,年终将这些零件按19个一包的规格打包,最后一包不够19个.请问:最后一包有多少个零件?4.自然数12222267-⨯⨯⨯⨯个的个位数字是多少?5.算式20072007200720072006321++++ 计算结果的个位数是多少?6.一个自然数除以49余23,除以48也余23.这个自然数被14除的余数是多少?7.一个自然数除以19余9,除以23余7.这个自然数最小是多少?8.刘叔叔养了400多只兔子,如果每3只兔子关在一个笼子里,那么最后一个笼子里有2只;如果每5只兔子关在一个笼子里,那么最后一个笼子里有4只;如果每7只兔子关在一个笼子里,那么最后一个笼子里有5只.请问:刘叔叔一共养了多少只兔子?9. 123123123123123个除以99的余数是多少?10.把63个苹果,90个橘子,130个梨平均分给一些同学,最后一共剩下25个水果没有分出去.请问:剩下个数最多的水果剩下多少个?11.有一个大于l 的整数,用它除300、262、205得到相同的余数,求这个数.12.用61和90分别除以某一个数,除完后发现两次除法都除不尽,而且前一次所得的余数是后一次的2倍,如果这个数大于1,那么这个数是多少?超越篇1.从l 依次写到99,可以组成一个多位数12345…979899.这个多位数除以11的余数是多少?2.算式72008777777个⨯⨯⨯++⨯+计算结果的末两位数字是多少?3.算式20077531⨯⨯⨯⨯⨯ 计算结果的末两位数字是多少?4.有5000多根牙签,按以下6种规格分成小包:如果10根一包,最后还剩9根;如果9根一包,最后还剩8根;如果依次以8、7、6、5根为一包,最后分别剩7、6、5、4根.原来一共有牙签多少根?5.有三个连续的自然数,它们从小到大依次是5、7、9的倍数,这三个连续自然数最小是多少?6.请找出所有的三位数,使它除以7、11、13的余数之和尽可能大.7.已知.0000940909421717!21CD AB 那么四位数ABCD 是多少?8.有一些自然数n ,满足:2n - n 是3的倍数,3n - n 是5的倍数,5n - n 是2的倍数,请问:这样的,n 中最小的是多少?第12讲余数内容概述掌握余数的概念与基本性质,掌握除以某些特殊数的余数的计算方法.学会利用余数的可加性、可减性和可乘性计算余数;学会运用同期性处理各类余数计算问题;学会求解“物不知数’问题.典型问题兴趣篇1. 72除以一个数,余数是7.商可能是多少?【答案】1或5【解析】72-7=65,再分解质因数65=5×13,还有1×65=65,所以商可能是1或52. 100和84除以同一个数,得到的余数相同,但余数不为0.这个除数可能是多少?【答案】8或16【解析】100和84同余,做差后是这个数的倍数,100-84=16,所以这个除数可能是8或163. 20080808除以9的余数是多少?除以8和25的余数分别是多少?除以11的余数是多少?【答案】8;0,8;0【解析】一个数除以9的方法:各位数字之和除以9,2+8+8+8=26,26÷9=2…8;除以8的方法:末三位除以8, 808÷8=101…0;除以25的方法:末两位除以25,8÷25=0…8;除以11的方法:奇数位数字之和与偶数位数字之和的差除以11, 2+0+0+0=2,0+8+8+8=24,24-2=22,22÷11=2 04. 4个运动员进行乒乓球比赛,他们的号码分别为101、126、173、193.规定每两人之间比赛的盘数是他们号码的和除以3所得的余数.请问:比赛盘数最多的运动员打了多少盘?【答案】5【解析】1+0+1=2,2÷3=…2,1+2+6=9,9÷3=…0,1+7+3=11,11÷3=…2,1+9+3=13…1,最多打了5盘5.某工厂有128名工人生产零件,他们每个月工作23天,在工作期间每人每天可以生产300个零件.月底将这些零件按17个一包的规格打包,发现最后一包不够17个.请问:最后一包有多少个零件?【答案】16【解析】余数问题,求128×23×300÷17的余数128÷17=7...9 23÷17=1...6 300÷17=17 (11)9×6×11=594 594÷17=34 (16)6.(1) 220除以7的余数是多少?(2) 1414除以11的余数是多少?(3) 28121除以13的余数是多少?【答案】(1)4;(2)4;(3)2【解析】因为23除以7的余数是1,20=3×6+2,所以220除以7的余数就是22除以7的余数 即为4;同理,1414除以11的余数是4;28121除以13的余数是27.810888888个⨯⨯⨯++⨯+除以5的余数是多少? 【答案】2【解析】根据余数的和等于和的余数的方法,除以5的余数是28.一个三位数除以21余17,除以20也余17.这个数最小是多少?【答案】437【解析】最小公倍数问题,【21,20】=420,再加上17,这个数最小是4379.有一个数,除以3的余数是2,除以4的余数是1.请问:这个数除以12余数是几?【答案】5【解析】除以3的余数是2的数是5,而5恰好除以4余1,5除以12余数是510.100多名小朋友站成一列,从第一人开始依次按1,2,3,…,11的顺序循环报数,最后一名同学报的数是9;如果按1,2,3,…,13的顺序循环报数,那么最后一名同学报的数是11.请问:一共有多少名小朋友?【答案】141【解析】根据题意,可转化为一个100多的数除以11余9,除以3余11,所以先求11和13的最小公倍数,再减去2就是所求,一共有141名小朋友拓展篇1.1111除以一个两位数,余数是66. 求这个两位数.【答案】95【解析】先从1111里减去余数66,再分解质因数,所求的两位数要大于余数66,所以是952.(1) 42121421421421个除以4和125的余数分别是多少?(2) 80821808808808个除以9和11的余数分别是多少?【答案】(1)1,46;(2)3,5【解析】(1)21÷4=5…1;421÷125=3…46;(2)(8+8)×21÷9=37…3;808808÷11余0,最后还剩一个808,8+8=16, 16÷11 余53.一年有365天,轮船制造厂每天都可以生产零件1234个,年终将这些零件按19个一包的规格打包,最后一包不够19个.请问:最后一包有多少个零件?【答案】15【解析】先求出一年的总数,再除以19余数为154.自然数12222267-⨯⨯⨯⨯个的个位数字是多少? 【答案】7【解析】找出2的n 次方的个位数字的周期,2,4,8,6…,再看67除以4的余数是3,所以个位数字是8-1=75.算式20072007200720072006321++++ 计算结果的个位数是多少?【答案】1【解析】每个数乘方的个位数字的周期是4,2007除以4余3,所以原式就与1到2006的3次方的个位数字是一样的,以10个数为一个周期列出为1,8,7,4,5,6,3,2,9,0…,2006除以10余数为6,所以前6个的和即是所求1+8+7+4+5+6=31,所以个位数字是16.一个自然数除以49余23,除以48也余23.这个自然数被14除的余数是多少?【答案】9【解析】【49,48】+23=2375,被14除余97.一个自然数除以19余9,除以23余7.这个自然数最小是多少?【答案】237【解析】7+23k-9能被19整除,最小为2378.刘叔叔养了400多只兔子,如果每3只兔子关在一个笼子里,那么最后一个笼子里有2只;如果每5只兔子关在一个笼子里,那么最后一个笼子里有4只;如果每7只兔子关在一个笼子里,那么最后一个笼子里有5只.请问:刘叔叔一共养了多少只兔子?【答案】404【解析】根据题意是一个400多的数除以3余2,除以5余4,除以7余5,最后所求的数是4049. 123123123123123个除以99的余数是多少?【答案】90【解析】6个123能被99整除,123里有20个6余3,所以123123123除以99余数是9010.把63个苹果,90个橘子,130个梨平均分给一些同学,最后一共剩下25个水果没有分出去.请问:剩下个数最多的水果剩下多少个?【答案】20【解析】三个数分别的余数不知道,但是余数的和是25,可以把这三个数相加,根据余数的和等于余数的和来计算,63+90+130-25=258,再分解质因数,最后剩下个数最多的水果剩下20个11.有一个大于l 的整数,用它除300、262、205得到相同的余数,求这个数.【答案】19【解析】根据同余的两个数的差能被这个数整除,300-262=38,262-205=57,再求(38,57)=1912.用61和90分别除以某一个数,除完后发现两次除法都除不尽,而且前一次所得的余数是后一次的2倍,如果这个数大于1,那么这个数是多少?【答案】17【解析】先把余数变相同,再作差求解即可。
五年级的奥数余数问题解答

五年级的奥数余数问题解答1、(四中小升初选拔试题)被除数,除数,商与余数之和是2143,已知商是33,余数是52,求被除数和除数.分析: 方法1:通过对题意的理解我们可以得到:被除数=除数×商+余数=除数×33+52;又有被除数=2143-除数-商-余数=2143-除数-33-52=2058-除数;所以除数×33+52=2058-除数;则除数=(2058-52)÷34=59,被除数=2058-59=1999.方法2:此题也可以按这个思路来解:从被除数中减掉余数52后,被除数就是除数的33倍了,所以可以得到:2143-33-52-52= (33+1)×除数,求得除数=59 ,被除数=33×59+52=1999 .转化成整数倍问题后,可以帮助理解相关的性质.2、(美国长岛小学数学竞赛)写出所有的除109后余数为4的两位数.分析:还是把带有余数的问题转化成整除性的问题,也就是要找出能整除(109-4)的所有的两位数.进一步,要找出能整除105的两位数,很简单的方法就是把105分解质因数,从所得到的质因子中去凑两位数.109-4=105=3×5×7.因此这样的两位数是:15;35;21.3、有一个大于1的整数,除45,59,101所得的余数相同,求这个数.分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.4、数11…1(2007个1),被13除余多少分析:根据整除性质知:13能整除111111,而2007÷6后余3,所以答案为7.5、求下列各式的余数:(1)2461×135×6047÷11 (2)2123÷6分析:(1)5;(2)6443÷19=339……2,212=4096 ,4096÷19余11 ,所以余数是11 .6、1013除以一个两位数,余数是12.求出符合条件的所有的两位数.分析:1013-12=1001,1001=7×11×13,那么符合条件的所有的两位数有13,77,91 有的同学可能会粗心的认为11也是.11小于12,所以不行.大家做题时要仔细认真.7、学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这三种物品平分给每个班级,那么这三种物品剩下的数量相同.请问学校共有多少个班分析:所求班级数是除以118,67,33余数相同的数.那么可知该数应该为118-67=51和67-33=34的公约数,所求答案为17.8、(小学数学奥林匹克初赛)有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分到最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果分析:此题是一道求除数的问题.原题就是说,已知一个数除240余2,除313余7,求这个数最大为多少,我们可以根据带余除法的性质把它转化成整除的情况,从而使问题简化,因为240被这个数除余2,意味着240-2=238恰被这个数整除,而313被这个数除余7,意味着这313— 7=306恰为这个数的倍数,我们只需求238和306的最大公约数便可求出小朋友最多有多少个了.240—2=238(个) ,313—7=306(个) ,(238,306)=34(人) .9、(第十三届迎春杯决赛) 已知一个两位数除1477,余数是49.那么,满足那样条件的所有两位数是 .分析:1477-49=1428是这两位数的倍数,又1428=2×2×3×7×17=51×28=68×21=84×17,因此所求的两位数51或68或84.10、已知三个数127,99和一个小于30的两位数a除以一个一位数b的余数都是3,求a 和b的值.分析:127-3=124,99-3=96,则b是124和96的公约数.而(124,96)=4,所以b=4.那么a的可能取值是11,15,19,23,27.11.19941994…1994(1994个1994)除以15的余数是______.分析:法1:从简单情况入手找规律,发现1994÷15余14,19941994÷15余4,199419941994÷15余9,1994199419941994÷15余14,......,发现余数3个一循环,1994÷3=664...2,19941994…1994(1994个1994)除以15的余数是4;法2:我们利用最后一个例题的结论可以发现199419941994能被3整除,那么19941994199400…0能被15整除,1994÷3=664...2,19941994…1994(1994个1994)除以15的余数是4.12.a>b>c 是自然数,分别除以11的余数是2,7,9.那么(a+b+c)×(a-b)×(b-c)除以11的余数是多少分析:(a+b+c)÷11的余数是7;(a—b)÷11的余数是1l+2—7=6;(b—c)÷11的余数是11+7—9=9.所求余数与7 6×9÷11的余数相同,是4.13.一盒乒乓球,每次8个8个地数,10个10个地数,12个12个地数,最后总是剩下3个.这盒乒乓球至少有多少个?分析与解答:如果这盒乒乓球少3个的话,8个8个地数,10个10个地数,12个12个的数都正好无剩余,也就是这盒乒乓球减少3个后是8,10,12的公倍数,又要求至少有多少个乒乓球,可以先求出8,10,12的最小公倍数,然后再加上3.2 8 10 122 4 5 62 5 3故8,10,12的最小公倍数是22253=120.所以这盒乒乓球有123个.14、自然数,用它分别去除63,90,130都有余数,三个余数的和是25.这三个余数中最小的一个是_____.分析与解答:设这个自然数为,且去除63,90,130所得的余数分别为a,b,c,则63-a,90-b,130-c都是的倍数.于是(63-a)+ (90-b)+(130-c)=283-(a+b+c)=283-25=258也是的倍数.又因为258=2343.则可能是2或3或6或43(显然,86,129,258),但是a+b+c=25,故a,b,c中至少有一个要大于8(否则,a,b,c都不大于8,就推出a+b+c不大于24,这与a+b+c=25矛盾).根据除数必须大于余数,可以确定=43.从而a=20,b=4,c=1.显然,1是三个余数中最小的.15、求123456789101112……199200除以9的余数是________;解答:一位数个位数字之和是1+2+3+…..9=45二位数数字之和是1×10+1+2+3+…….9 (10-19)2×10+1+2+3+…….9 (20-29)……9×10+1+2+3+…….9 (90-99) 余90,9余0,11余2故二位数总和为(1+2…..+9)×10+1+2…..+9=495100—199与1—99的区别在于百位多了100个1,共100所以原数数字值和为45+495+495+100+2=1137,除以9余3.16、(23+105k)2)一个数除以7余3,除以11余7,除以13余4,符合此条件的数最小是________;如果它是一个四位数,那么最大可能是________;、满足除以7余3,除以11余7的最小数为73,设此数为73+77a=13b+4, 69-a=13b.a最小等于4.满足条件的最小数是381.设最大的四位数为381+1001x,最大的四位数为9390.(1732)17、今天周一,天之后是星期________;这个数的个位数字是________;天之后是星期________;解答:只要求出÷7的余数就可以知道天后是星期几.≡52007(mod7),56≡1(mod7)2007≡3(mod6), ≡52007≡53≡6(mod7) s所以天之后是星期日2007的个位数字是720072的个位数字是920073的个位数字是320074的个位数字是120075的个位数字是118、一个三位数,被17除余5,被18除余12,那么它可能是________________;一个四位数,被131除余112,被132除余98,那么它可能是________;解答:设此三位数为17a+5=18b+12. 可得到17a=17b+b+7,所以b+7一定能被17整除,b=10,27,44.这个三位数为192,498,804.设此四位数为131x+112=132y+98,可得到131x=131y+y-14,所以y-14一定能被131整除,y=14,145(太大)这个四位数是194619、甲,乙,丙三个数分别为603,939,393.某数A除甲数所得余数是A除乙数所得余数的2倍,A除乙数所得余数是A除丙数所得余数的2 倍.A是________;解答:如果A除丙所得的余数是1份的话,那么A除乙所得余数就是2份,A除甲所得的余数就是4份.把2乙-甲,则没有余数,即2乙-甲使A 的倍数;同理乙-2丙也同样没有余数,是A的倍数.939×2-603=1275,939-393×2=153A是1275和153的公约数,而1275与153的最大公约数是51,所以A可能是1,3,17,51 再实验得到A为17,余数分别为8,4,2.。
五年级奥数余数问题

五年级奥数余数问题一、题目。
1. 一个数除以3余2,除以5余3,除以7余2,求这个数最小是多少?解析:我们先列出除以3余2的数:2、5、8、11、14、17、20、23、26…再列出除以5余3的数:3、8、13、18、23、28…然后列出除以7余2的数:2、9、16、23、30…可以发现23同时满足这三个条件,所以这个数最小是23。
2. 有一个数,除以4余1,除以5余2,除以6余3,这个数最小是多少?解析:这个数加上3就能被4、5、6整除。
4、5、6的最小公倍数是4 = 2×2,5 = 5,6=2×3,最小公倍数LCM = 2×2×3×5 = 60。
所以这个数最小是60 3=57。
3. 一个数除以5余4,除以8余3,求这个数最小是多少?解析:设这个数为x。
根据除以5余4,可设x = 5a+4(a为整数)。
又因为除以8余3,所以5a + 4=8b+3(b为整数),即5a=8b 1。
通过试值法,当b = 2时,a = 3。
此时x=5×3 + 4=19,19除以8余3,所以这个数最小是19。
4. 一个数除以9余7,除以11余9,这个数最小是多少?解析:这个数加上2就能被9和11整除。
9和11互质,它们的最小公倍数是9×11 = 99。
所以这个数最小是99 2 = 97。
5. 某数除以7余1,除以8余2,除以9余3,求这个数最小是多少?解析:这个数加上6就能被7、8、9整除。
7、8、9的最小公倍数为7×8×9=504。
所以这个数最小是504 6 = 498。
6. 一个数除以3余1,除以5余2,除以7余3,这个数最小是多少?解析:中国剩余定理:先求5×7 = 35,35除以3余2,2×2 = 7,7除以3余1。
再求3×7=21,21除以5余1,1×2 = 2,2除以5余2。
然后求3×5 = 15,15除以7余1,1×3=3,3除以7余3。
五年级奥数:第14讲 余数问题

五年级奥数:第14讲余数问题在整数的除法中,只有能整除与不能整除两种情况。
当不能整除时,就产生余数,所以余数问题在小学数学中非常重要。
余数有如下一些重要性质(a,b,c均为自然数):(1)余数小于除数。
(2)被除数=除数×商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数。
(3)如果a,b除以c的余数相同,那么a与b的差能被c整除。
例如,17与11除以3的余数都是2,所以17-11能被3整除。
(4)a与b的和除以c的余数,等于a,b分别除以c的余数之和(或这个和除以c的余数)。
例如,23,16除以5的余数分别是3和1,所以(23+16)除以5的余数等于3+1=4。
注意:当余数之和大于除数时,所求余数等于余数之和再除以c的余数。
例如,23,19除以5的余数分别是3和4,所以(23+19)除以5的余数等于(3+4)除以5的余数。
(5)a与b的乘积除以c的余数,等于a,b分别除以c的余数之积(或这个积除以c 的余数)。
例如,23,16除以5的余数分别是3和1,所以(23×16)除以5的余数等于3×1=3。
注意:当余数之积大于除数时,所求余数等于余数之积再除以c的余数。
例如,23,19除以5的余数分别是3和4,所以(23×19)除以5的余数等于(3×4)除以5的余数。
性质(4)(5)都可以推广到多个自然数的情形。
例1 5122除以一个两位数得到的余数是66,求这个两位数。
分析与解:由性质(2)知,除数×商=被除数-余数。
5122-66=5056,5056应是除数的整数倍。
将5056分解质因数,得到5056=26×79。
由性质(1)知,除数应大于66,再由除数是两位数,得到除数在67~99之间,符合题意的5056的约数只有79,所以这个两位数是79。
例2 被除数、除数、商与余数之和是2143,已知商是33,余数是52,求被除数和除数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级奥数之余数问题
余数问题
例1、有一个数,除以3余2,除以4余1,问这个数除以12余几?
例2、XXX在计算有余数的除法时,把被除数113错写成了131.结果商比原来多3,但余数恰巧相同,那么余数是多少?例3、444……4÷6,当商是整数时,余数是几?
(100个4)
例4、有一列数,前两个数是3和4,从第3个数开始,每一个数都是前两个数的和。
这一列数中第100个数除以4,余数是多少?
例5、甲数除以9余7,乙数除以9余5.甲、乙两数的和除以9余数是几?甲乙两数的差除以9余数是几?甲、乙两数的积除以9余数是几?
例6、一个自然数除以2余1,除以5余1,除以7余1,这个自然数最小是多少?
例7、自然数、、除以m的余数相同,m最大是多少?
例8、自然数2836、4582、5146、6522除以一个自然数,所得余数相同且为两位数,除数和余数的和为多少?
例9、XXX玩具店有大小相同的红、黄、蓝、绿四种颜色的小球分别为344、277、411和555个。
现在要用一种精致的小盒分别去装这些小球,每只盒子里装的小球同样多,剩下的红、黄、蓝三色小球也恰好同样多。
剩下的绿球有多少个?
例10、9
练:
1、一个数除以3余2,除以5余3,除以7余2,符合这些条件的最小数是多少?
2010被7除余几?
2、XXX计算有余数的除法时,把被除数137错写成173.商比原来多3,余数正好相同。
问除数、余数各是多少?
3、555……55÷13,当商是整数时,余数是几?
(2001个5)
4、有一串数排成一行,个中第一个数是3,第二个数是10,从第三个数起,每一个数恰好是前两个数的和。
在这一串数中,第1991个数被3除,所得的余数是几?
5、甲数除以5余3,乙数除以5余2.甲、乙两数的和除以5余数是几?甲乙两数的差除以5余数是几?甲、乙两数的积除以5余数是几?
6、一个自然数除以3余2,除以5余1,除以7余1,这个自然数最小是多少?
7、自然数1000、2001、967除以m的余数不异,那末m 是几何?8、一个自然数,除1200、1314、1048所得的余数不异且大于5,那末这个自然数与余数的和是几何?
9、甲、乙、丙、丁四个学校划分有69人、85人、93人、97人游览。
目前要把这四个学校学生划分进行分组,并使每组的人数尽大概多,以便乘车参观游览。
已知甲、乙、丙三个学校分组后,所剩的人数不异,问XXX校分组后还剩下几个人?。