碳捕捉和储存技术CCS
碳捕捉与封存技术

碳捕捉与封存技术碳捕捉与封存技术(Carbon Capture and Storage,CCS)是一种用于减少二氧化碳(CO2)排放并防止其进入大气中的技术手段。
该技术通过将二氧化碳从工业源或发电厂等排放源捕捉、运输和封存到地下储层,以减少其对全球气候变化的贡献。
碳捕捉与封存技术的核心步骤包括碳捕捉、运输和封存。
首先,需要在排放源处将二氧化碳捕捉出来。
目前常用的捕捉技术包括化学吸收、物理吸收和膜分离等方法。
其中,化学吸收是最常见的方法,通过将二氧化碳溶解于溶剂中,然后再将溶剂与二氧化碳分离,从而实现二氧化碳的捕捉。
捕捉到的二氧化碳需要进行运输到封存地点。
运输方式主要包括管道运输和船舶运输。
管道运输适用于较近距离的运输,而船舶运输则适用于远距离运输。
在运输过程中,需要采取一系列措施确保二氧化碳的安全运输,避免泄漏和污染。
捕捉到的二氧化碳需要封存到地下储层中。
地下储层通常指的是深埋在地下数千米以下的地质层,如油气田、盐水层和煤层等。
在封存过程中,需要进行地质勘探和评估,确保储层的安全性和稳定性。
然后,通过注入二氧化碳到储层中,利用地质层的孔隙和裂缝将其封存起来,并通过监测和评估系统实时监测封存效果。
碳捕捉与封存技术的应用可以有效减少二氧化碳的排放并降低其对全球气候变化的影响。
它可以应用于各种排放源,如发电厂、石油化工厂和钢铁厂等,减少其温室气体排放。
此外,碳捕捉与封存技术还可以与其他低碳技术结合使用,如可再生能源和能源效率改进等,实现更加可持续的能源系统。
然而,碳捕捉与封存技术也面临一些挑战和限制。
首先,该技术需要大量的能源和资金投入,增加了项目的成本。
其次,寻找合适的地下储层也是一个挑战,因为不是所有地质层都适合封存二氧化碳。
此外,封存二氧化碳的长期安全性和环境影响也需要进一步研究和评估。
碳捕捉与封存技术是一项重要的应对气候变化的技术手段。
它可以有效减少二氧化碳的排放,并为实现低碳经济和可持续发展做出贡献。
碳捕集与封存( CCS)简介

碳捕集与封存(CCS)简介碳捕集与封存(Carbon Capture and Storage,简称CCS)是指将大型发电厂、钢铁厂、水泥厂、化工厂等排放的二氧化碳收集起来并封存而与大气隔绝的一种技术。
CCS是为了实现温室气体减排、应对全球气候变化而开发的一项新技术,其重要意义在Array于:它是在继续利用煤、石油等化石能源的同时实现CO2近零排放的唯一有效技术。
CCS技术包括CO2捕集、运输以及封存三个环节,每个环节都已有成熟技术,但在串联起来应用于大规模CO2减排时尚需要通过各种途径降低成本,包括进行技术改造和将所捕集的一部分CO2提供利用,如用于提高石油采收率等。
二氧化碳捕集二氧化碳的捕集方式主要有三种:燃烧前捕集(Pre-combustion)、富氧燃烧(Oxy-fuelcombustion)、燃烧后捕集(Post-combustion)。
燃烧前捕集目前主要采用IGCC(整体煤气化联合循环)发电系统。
其过程是在燃烧之前将煤气化成煤气并净化除去CO2、H2S、NOx及粉尘等,再将煤气分离得到得到H2和CO2。
H2作为燃气轮机的燃料,CO2经脱水和压缩后提供封存。
伴生的高温废气再利用来产生蒸汽供蒸汽轮机发电。
该技术的捕集系统小,效率高、用水少、环保(同时实现脱碳、脱硫、脱硝和除尘),还可与煤化工相结合,实现电、热、化工产品(氢气、甲醇、烯烃)等多联产。
IGCC的研发已列入我国“十一五”发展规划纲要和863计划重大项目。
富氧燃烧采用传统燃煤电站的技术流程,但通过制氧技术,将空气中占大比例的氮气(N2)脱除,直接采用高浓度的氧气(O2)与抽回的部分烟气的混合气体来替代空气,这样得到的烟气中有高浓度的CO2气体,可以直接进行处理和封存。
该技术目前尚处于研发阶段,最大的难题是制氧技术的投资和能耗太高。
燃烧后捕集在传统工业排放的烟道气中捕集CO2。
目前常用的CO2分离技术主要有化学吸收法(利用酸碱Array性吸收)和物理吸收法(变温变压吸附),而膜分离法也发展很快,在能耗和设备紧凑性方面具有巨大潜力。
碳捕集与储存

碳捕集与储存简介碳捕集与储存(Carbon Capture and Storage,CCS)是一种减少二氧化碳(CO2)排放的技术。
该技术通过捕集和将CO2气体储存于地下,以减少其在大气中的浓度,从而减少对气候变化的负面影响。
工作原理CCS技术主要分为三个步骤:碳捕集、传输和储存。
1. 碳捕集:该步骤使用各种技术,如化学吸收、物理吸附和膜分离等,从燃烧过程中生成的二氧化碳流中分离出CO2气体。
碳捕集技术可以应用于工业过程中的烟囱排放、发电站和石油开采等。
2. 传输:捕集到的CO2气体通过管道系统或船运输被送至储存地点。
这一步骤需要考虑气体的安全运输和环境影响。
3. 储存:CO2气体被注入地下岩石层或盐水层,使其永久地储存在地下。
储存地点应该具备地质条件和盖层,确保CO2气体不会泄漏到地表。
优势和挑战CCS技术具有以下优势:- 减少温室气体排放:CCS技术可以将二氧化碳气体捕捉和储存,减少其进入大气的数量,从而减缓气候变化。
- 利用现有基础设施:CCS可以与现有的发电厂和工厂等基础设施结合使用,降低实施成本。
然而,CCS技术也面临一些挑战:- 成本高昂:CCS技术的实施和运营成本较高,包括碳捕集设备和储存基础设施的建设。
- 地质风险:选择适合储存CO2的地质层需要进行详细的调查和评估,以降低地质风险和CO2泄漏的可能性。
国际发展与前景CCS技术在全球范围内得到了广泛关注。
一些国家和地区已经开始实施CCS项目,以减少温室气体排放并实现气候变化目标。
然而,由于技术成熟度、经济可行性和社会接受度的问题,CCS技术在全球尚未得到普及。
随着全球对气候变化问题的关注不断增加,CCS技术可能会在未来发挥更重要的作用。
创新和进一步研发将推动CCS技术的发展,以解决其目前面临的挑战,并实现更可行的实施方式。
结论碳捕集与储存是一种有潜力的技术,可以减少二氧化碳排放并应对气候变化问题。
尽管面临一些挑战,然而通过技术创新和持续努力,CCS技术有望在未来得到更广泛的应用和发展。
碳捕捉和储存技术CCS

碳捕捉和储存技术CCS12月7日,联合国气候变化大会如期在哥本哈根拉开帷幕,来自192个国家和地区的代表出席了这次峰会。
几日下来,大会火药味十足,俨然成吵架大会。
虽然各国的“减排目标”还处于拉锯战中,如何达到这些减排目标将是接下来各国关注的问题,于是,“碳捕捉技术”再次成为媒体关注焦点。
相对于人造火山或是太空反光镜这类不靠谱的科技狂想,二氧化碳捕集封存技术(CCS技术)被认为更能拯救地球。
众所周知,人类为防止气候变暖需要节能减排,特别是减少二氧化碳的排放。
减排路径有许多,但对于以燃煤为主要能源的国家,减少燃煤使用代价高昂,因此CCS成为重要替代选择,因此对那些不愿改变能源消费结构的国家来说,这有极大吸引力。
国人也许对碳捕获技术稍感陌生,殊不知它“正是当今世界上国际最热门的气候变化领域最前沿、最重大的话题之一,国际政治领袖们无不投以巨大关注”。
早在去年年底,央行行长周小川就曾畅谈过“碳捕获”的深意,并认为金融业在这方面大有可为。
而根据浙大相关专家的看法,国外许多科研机构早已经从中嗅到了巨大的利益诱惑,并悄悄把目标瞄准了国内碳排技术市场。
原始大气中二氧化碳的浓度非常高,并不适宜人类生存,地球是通过把二氧化碳固化后埋在地下(即成煤成油的过程),从而降低了大气中二氧化碳的浓度,变得适宜人类生存了。
现在的情况,正好相反,人类通过开采煤、油,把埋在地下的二氧化碳挖了出来,再排放到大气中,大气的二氧化碳浓度就增加了,随之而来的就是温室效应带来的一系列影响。
这实际是对工业革命,化石能源疯狂利用的一种嘲讽和报复。
后工业时代注定要解决工业革命的麻烦。
1850年全球CO2排放量仅为2亿吨,到2005年则增加到259亿吨。
这其中,全球化石燃料的消费主要集中在工业、电力和交通运输部门,其CO2排放量约占全球CO2排放总量的63.09%~72.96%。
现在,全球各国首脑希望人类在2050年时,把气温控制在不超过1850年时多2摄氏度。
CCS实验报告

CCS实验报告《CCS 实验报告》一、实验背景随着全球气候变化问题的日益严峻,减少温室气体排放成为了国际社会关注的焦点。
碳捕集与封存(Carbon Capture and Storage,CCS)技术作为一种潜在的减排手段,受到了广泛的研究和关注。
本次实验旨在对 CCS 技术的关键环节进行研究和测试,评估其可行性和效果。
二、实验目的1、深入了解 CCS 技术的工作原理和流程。
2、评估不同碳捕集方法的效率和成本。
3、研究二氧化碳的封存机制和安全性。
4、探索 CCS 技术在实际应用中的潜力和挑战。
三、实验原理CCS 技术主要包括三个环节:碳捕集、运输和封存。
碳捕集是指将工业生产过程中产生的二氧化碳气体分离和收集起来。
常见的碳捕集方法包括燃烧后捕集、燃烧前捕集和富氧燃烧捕集等。
燃烧后捕集通常采用化学吸收法,利用碱性溶液(如胺溶液)与二氧化碳发生化学反应,将其吸收。
吸收后的溶液经过加热解析,释放出高浓度的二氧化碳。
燃烧前捕集则是在燃料燃烧前将其转化为氢气和二氧化碳,然后对二氧化碳进行分离和捕集。
富氧燃烧捕集是通过使用高浓度的氧气来燃烧燃料,产生以二氧化碳和水蒸气为主的烟气,经过冷却和脱水后,容易分离出二氧化碳。
运输环节主要有管道运输和船舶运输两种方式。
管道运输适用于大规模、长距离的二氧化碳运输,具有成本低、效率高的优点。
船舶运输则适用于海上运输。
封存环节是将捕集到的二氧化碳注入到合适的地质构造中,如枯竭的油气田、深部盐水层等,使其长期稳定地储存,避免重新释放到大气中。
四、实验设备与材料1、模拟工业生产的燃烧装置。
2、化学吸收塔及相关的化学试剂。
3、二氧化碳检测仪器。
4、管道运输模拟系统。
5、地质封存模拟装置。
五、实验步骤1、碳捕集实验启动燃烧装置,模拟工业生产过程中的废气排放。
分别采用燃烧后捕集、燃烧前捕集和富氧燃烧捕集方法进行实验,记录不同方法下二氧化碳的捕集效率和能耗。
对捕集到的二氧化碳进行纯度检测和分析。
碳捕获与封存技术

碳捕获与封存技术
碳捕获与封存技术(CCS)是一种新兴的技术,旨在将大量的二氧
化碳从大气中吸收并将其封存在地下。
由于二氧化碳是导致全球变暖
的主要原因,因此实施碳捕获和封存技术可以减少大气中的碳排放,
从而降低全球变暖的影响。
碳捕获与封存技术不能完全删除二氧化碳,而是将其收集,处理,然后将其稳定封存到地下空间。
所以,这也被称为碳捕获与封存或碳
沉降。
碳捕获与封存技术的工作原理如下:在火力发电厂的烟气过滤
系统中,碳捕集剂可以将大量的二氧化碳吸附,这些二氧化碳可以在
真空压缩容器中稳定存储起来,然后通过管道而不是大气将其输送到
地下孔、深海底部或其他地下位置。
碳捕集与封存技术有很多优点,其中一个重要的优点是它可以把
大气中的二氧化碳排放降至最低,从而减少全球变暖的影响。
此外,
它还可以节省能源,改善空气质量,减少空气污染物的排放,降低火
力发电厂的发电成本,保护健康,改善水环境,等等。
值得一提的是,碳捕集与封存技术的实施也是昂贵的,因为它需
要大量的资金用于设备和安装,并且需要大量的能源来运行。
因此,
该技术的成本昂贵,虽然它可以有效地减少大气中的碳排放,但也需
要政府和社会各界的努力才能使之受益。
碳捕集与封存技术的现状与挑战

碳捕集与封存技术的现状与挑战在全球气候变化的大背景下,减少温室气体排放已成为当务之急。
碳捕集与封存(Carbon Capture and Storage,简称 CCS)技术作为一种重要的减排手段,近年来受到了广泛的关注。
本文将探讨碳捕集与封存技术的现状,并分析其面临的挑战。
一、碳捕集与封存技术的原理碳捕集与封存技术主要包括三个环节:碳捕集、碳运输和碳封存。
碳捕集是指将二氧化碳从工业排放源(如发电厂、钢铁厂、水泥厂等)中分离出来的过程。
目前主要的碳捕集技术有燃烧后捕集、燃烧前捕集和富氧燃烧捕集。
燃烧后捕集是在燃烧过程完成后,从烟道气中捕集二氧化碳;燃烧前捕集则是在燃料燃烧前将其转化为氢气和二氧化碳,然后分离出二氧化碳;富氧燃烧捕集是采用高浓度氧气进行燃烧,从而产生高浓度的二氧化碳,便于捕集。
碳运输是将捕集到的二氧化碳通过管道、船舶或公路槽车等方式输送到封存地点。
碳封存则是将二氧化碳注入地下深处的地质构造中,如枯竭的油气田、深部盐水层等,使其长期与大气隔离。
二、碳捕集与封存技术的现状(一)技术进展经过多年的研究和发展,碳捕集与封存技术在某些方面取得了显著的进步。
燃烧后捕集技术中的化学吸收法不断优化,提高了二氧化碳的捕集效率和降低了成本。
同时,新型的吸附材料和膜分离技术也在研发中,有望进一步提高捕集效果。
在碳运输方面,管道运输技术相对成熟,但对于长距离和大规模的运输,还需要解决一些工程和安全问题。
碳封存的地质评估和监测技术也在不断改进,以确保二氧化碳的安全封存。
(二)示范项目全球范围内已经建立了一些碳捕集与封存的示范项目。
例如,挪威的 Sleipner 项目是世界上第一个大规模的二氧化碳封存项目,自 1996 年以来,已经成功将超过 1000 万吨的二氧化碳封存在北海的海底盐水层中。
美国的 Petra Nova 项目采用燃烧后捕集技术,每年可捕集约 140 万吨二氧化碳,并将其用于提高石油采收率。
中国也在积极推进碳捕集与封存技术的示范项目,如神华集团在鄂尔多斯的 10 万吨/年二氧化碳捕集与封存示范项目。
二氧化碳捕获和封存技术

二氧化碳捕获和封存技术
随着全球气候变暖,二氧化碳排放量日益增加,为抵御全球变暖的结果,我们需要研究减少二氧化碳排放的新技术。
二氧化碳捕获与封存(CCS)技术是对抗全球变暖的有效工具之一。
二氧化碳捕获与封存通过捕获二氧化碳并将其封存在地下,帮助减少工业废气中二氧化碳的排放,从而帮助减缓全球变暖的速度。
二氧化碳捕获与封存技术是一种技术,它可以将排放到大气中的二氧化碳从大气中捕获,然后将其封存在地下以防止对大气的影响。
一般来说,这种技术需要大量能源来捕获和提纯大气中的二氧化碳,因此它的成本相对较高。
一般来说,将捕获的二氧化碳封存在地下的成本也较高。
因此,在应用CCS技术之前,必须进行全面的成本评估。
尽管有关CCS技术的成本仍然存在较大偏差,但许多公司和组织仍在尝试开发CCS技术。
许多国家都在花费大量资源进行CCS研究。
在许多国家,科学家正在设计和评估可利用二氧化碳捕获和封存技术减少温室气体排放的技术方案,以促进可持续发展和减缓全球变暖的速度。
与其他技术不同的是,CCS技术不仅只能帮助减少二氧化碳排放量,还可以利用捕获的二氧化碳开发可再生能源。
有一种叫做化学反应传递泵(CRT)的技术,可以将捕获的二氧化碳利用起来,将其变为氢气或其他化合物,然后利用氢气发电或可再生能源。
因此,在使用CCS技术减少二氧化碳排放量的同时,还可以利用该技术开发可再生能源。
因此,二氧化碳捕获和封存技术是一项重要技术,它可以有效减少温室气体排放,减缓全球变暖。
此外,它还可以帮助开发可再生能源,促进可持续发展。
然而,在CCS技术发展较为成熟之前,我们仍需要加强相关研究,以便可以成功应用于实际场合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碳捕捉和储存技术CCS12月7日,联合国气候变化大会如期在哥本哈根拉开帷幕,来自192个国家和地区的代表出席了这次峰会。
几日下来,大会火药味十足,俨然成吵架大会。
虽然各国的“减排目标”还处于拉锯战中,如何达到这些减排目标将是接下来各国关注的问题,于是,“碳捕捉技术”再次成为媒体关注焦点。
相对于人造火山或是太空反光镜这类不靠谱的科技狂想,二氧化碳捕集封存技术(CCS技术)被认为更能拯救地球。
众所周知,人类为防止气候变暖需要节能减排,特别是减少二氧化碳的排放。
减排路径有许多,但对于以燃煤为主要能源的国家,减少燃煤使用代价高昂,因此CCS成为重要替代选择,因此对那些不愿改变能源消费结构的国家来说,这有极大吸引力。
国人也许对碳捕获技术稍感陌生,殊不知它“正是当今世界上国际最热门的气候变化领域最前沿、最重大的话题之一,国际政治领袖们无不投以巨大关注”。
早在去年年底,央行行长周小川就曾畅谈过“碳捕获”的深意,并认为金融业在这方面大有可为。
而根据浙大相关专家的看法,国外许多科研机构早已经从中嗅到了巨大的利益诱惑,并悄悄把目标瞄准了国内碳排技术市场。
原始大气中二氧化碳的浓度非常高,并不适宜人类生存,地球是通过把二氧化碳固化后埋在地下(即成煤成油的过程),从而降低了大气中二氧化碳的浓度,变得适宜人类生存了。
现在的情况,正好相反,人类通过开采煤、油,把埋在地下的二氧化碳挖了出来,再排放到大气中,大气的二氧化碳浓度就增加了,随之而来的就是温室效应带来的一系列影响。
这实际是对工业革命,化石能源疯狂利用的一种嘲讽和报复。
后工业时代注定要解决工业革命的麻烦。
1850年全球CO2排放量仅为2亿吨,到2005年则增加到259亿吨。
这其中,全球化石燃料的消费主要集中在工业、电力和交通运输部门,其CO2排放量约占全球CO2排放总量的63.09%~72.96%。
现在,全球各国首脑希望人类在2050年时,把气温控制在不超过1850年时多2摄氏度。
如何减少大气中的二氧化碳排放量,科学家们已经想了各种办法。
第一步是“碳捕获”。
据方梦祥教授介绍,目前国际上比较成熟的是化学吸收法,简单来说就是利用CO2和某种吸收剂之间的化学反应,将CO2气体从烟道气中分离出来,目前科学家已经找到了多种性能优良而环保的吸收剂。
还有一种方法叫“膜”分离法,化石燃料燃烧后的烟气在通过膜时被分类处理了,有的会溶解并通过,有的却通不过被“拦截”了。
为了提高二氧化碳的减排效率,科学家还发明了一种富氧燃烧法,用纯氧燃烧使得排放的CO2纯度更高。
据悉,目前国际上像美、英、挪威包括中国都有一些碳捕捉试验项目,其中碳的捕捉效率可以高达90%。
“捕碳”还不是最难的,而且,“就算是把捕捉到的CO2再利用,拿去生产碳酸饮料,最后CO2还是排到了大气中”,科学家需要把CO2安全而永久地“封存”起来,这种碳捕捉与储存技术被称为CCS(即Carbon Capture and Storage 的缩写)技术。
科学家目前主要的思路是“封到地下”,包括深海存储和地质储存。
先说“深海存储”,要知道,海洋是全球最大的CO2贮库,其总贮量是大气的50多倍,在全球碳循环中扮演了重要角色。
将CO2进行海洋储存的方式,主要是通过管道或船舶将CO2运送到海洋储存地点,然后将CO2注入海底,在海底的CO2水最后会碳化并保存下来。
这个方法也有一定隐患:“CO2是通过船舶用高压打入海底的,万一CO2发生泄漏后果不堪设想,特别是海震时常发生。
”目前科学家认为相对可行的是地质储存,把CO2打入地下1~2千米的盐水层,在这样的深度,压力会将二氧化碳转换成所谓的“超临界流体”,并缓慢固化,就像地下的煤炭石油一样。
在这样的状态下,二氧化碳才不容易泄漏。
“另外,这片岩体的结构要好,有足够多的空间来容纳二氧化碳,而且具有连续性,面积够大。
据预测全球盐水层的储量达到10万亿吨,可以储存1000年。
到现在为止,全球共有三个成功的CCS项目在进行中。
美国Weyburn-Midale项目填埋的是北达科他萨斯喀彻温省一座废弃油田的煤炭气化厂产生的二氧化碳。
英国石油公司经营的阿尔及利亚萨拉油田项目把从当地生产的天然气中提取的二氧化碳输入地下。
挪威大型石油天然气公司国家石油公司也在北海有两处类似的项目。
另外,全球有上百个CCS项目正在建设中。
在国内,继北京的华能高碑店项目后,华能石洞口第二电厂碳捕获项目7月份在上海开工,该项目总投资1.5亿元,今年年底将建成,预计年捕获二氧化碳10万吨,并号称是全球最大的燃煤电厂碳捕获项目。
虽然目前CCS技术仍在实验阶段,其技术能否收到预期效果还有待证实,但成本之高已经叫人咋舌。
根据麻省理工大学去年发表的一份报告,捕捉每吨二氧化碳并将其加压处理为超临界流体要花费30-50美元,将一吨二氧化碳运送至填埋点埋藏需要花费10-20美元。
这也就是说,发电厂每向大气中排放一吨二氧化碳就要支付40-70美元,欧盟现行的碳价格则为8-10欧/吨,这一数字也接近联合国政府间气候变化专门委员会建议的碳价格的中间值。
方梦祥教授也给记者简单算了一笔账:比如,燃烧1吨煤要排放出2吨的CO2,现在的煤价按600元/吨计,加上碳排放增加的600多元,成本增加了一倍,而燃烧1吨煤可以发电300度,摊到每度电上,就是电价增加70%-90%,而如果把生产、运输、销售中增加的碳价格核算到每件商品上,最后就能算出该商品的碳排放价。
“如果征收起碳税来,这个数字将是很可观的。
”无怪乎,有专家称石油交易之后碳排放交易最具潜力,全球碳排放市场将成为未来最大的市场。
与此同时,各国资本已经开始觊觎这个产业,欧盟委员会已明确表示,欧盟计划直接投资80亿欧元用于CCS领域的技术研发。
“这对我们来说,既是挑战也是机遇,现在,国外许多机构早已经瞄准了国内碳排技术市场,像我们浙江大学已经跟欧盟、美国能源部、英国等建立起技术合作关系,其实,我们国内的碳捕捉技术成本相比国外要低廉很多,如果可以抢占一些市场份额还是大有可为的,可惜,目前国内企业很少能有这样的眼光。
”方梦祥教授说。
(青年时报)---------------------------------------------------------------------碳捕获技术简介目前,主要有四种不同类型的CO2收集与捕获系统:燃烧后分离(烟气分离)、燃料前分离(富氢燃气路线)、富氧燃烧和工业分离(化学循环燃烧),每种捕获技术的技术特点及其成熟度见下表。
在选择捕获系统时,燃气流中CO2浓度、燃气流压力以及燃料类型(固体还是气体)都是需要考虑的重要因素。
对于大量分散型的CO2排放源是难于实现碳的收集,因此碳捕获的主要目标是像化石燃料电厂、钢铁厂、水泥厂、炼油厂、合成氨厂等CO2的集中排放源。
针对排放的CO2的捕获分离系统主要有3类:燃烧后系统、富氧燃烧系统以及燃烧前系统。
燃烧后系统介绍燃烧后捕获与分离主要是烟气中CO2与N2的分离。
化学溶剂吸收法是当前最好的燃烧后CO2收集法,具有较高的捕集效率和选择性,而能源消耗和收集成本较低。
除了化学溶剂吸收法,还有吸附法、膜分离等方法。
化学吸收法是利用碱性溶液与酸性气体之间的可逆化学反应。
由于燃煤烟气中不仅含有CO2、N2、O2和H2O,还含有SOx、NOx、尘埃、HCl、HF等污染物。
杂质的存在会增加捕获与分离的成本,因此烟气进入吸收塔之前,需要进行预处理,包括水洗冷却、除水、静电除尘、脱硫与脱硝等。
烟气在预处理后,进入吸收塔,吸收塔温度保持在40~60℃,CO2被吸收剂吸收,通常用的溶剂是胺吸收剂(如一乙醇胺MEA)。
然后烟气进入一个水洗容器以平衡系统中的水分并除去气体中的溶剂液滴与溶剂蒸汽,之后离开吸收塔。
吸收了CO2的富溶剂经由热交换器被抽到再生塔的顶端。
吸收剂在温度100~140℃和比大气压略高的压力下得到再生。
水蒸汽经过凝结器返回再生塔,而CO2离开再生塔。
再生碱溶剂通过热交换器和冷却器后被抽运回吸收塔。
富氧燃烧系统介绍富氧燃烧系统是用纯氧或富氧代替空气作为化石燃料燃烧的介质。
燃烧产物主要是CO2和水蒸气,另外还有多余的氧气以保证燃烧完全,以及燃料中所有组成成分的氧化产物、燃料或泄漏进入系统的空气中的惰性成分等。
经过冷却水蒸汽冷凝后,烟气中CO2含量在80% ~98%之间。
这样高浓度的CO2经过压缩、干燥和进一步的净化可进入管道进行存储。
CO2在高密度超临界下通过管道运输,其中的惰性气体含量需要降低至较低值以避免增加CO2的临界压力而可能造成管道中的两相流,其中的酸性气体成分也需要去除。
此外CO2需要经过干燥以防止在管道中出现水凝结和腐蚀,并允许使用常规的炭钢材料。
在富氧燃烧系统中,由于CO2浓度较高,因此捕获分离的成本较低,但是供给的富氧成本较高。
目前氧气的生产主要通过空气分离方法,包括使用聚合膜、变压吸附和低温蒸馏。
燃烧前捕获系统介绍燃烧前捕获系统主要有2个阶段的反应。
首先,化石燃料先同氧气或者蒸汽反应,产生以CO和H2为主的混合气体(称为合成气),其中与蒸汽的反应称为“蒸汽重整”,需在高温下进行;对于液体或气体燃料与O2的反应称为“部分氧化”,而对于固体燃料与氧的反应称为“气化”。
待合成气冷却后,再经过蒸汽转化反应,使合成气中的CO转化为CO2,并产生更多的H2。
最后,将H2从CO2与H2的混合气中分离,干燥的混合气中CO2的含量可达15%~60%,总压力2~7MPa。
CO2从混合气体中分离并捕获和存储,H2被用作燃气联合循环的燃料送入燃气轮机,进行燃气轮机与蒸汽轮机联合循环发电。
这一过程也即考虑碳的捕获和存储的煤气化联合循环发电(IGCC)。
从CO2和H2的混合气中分离CO2的方法包括:变压吸附、化学吸收(通过化学反应从混合气中去除CO2,并在减压与加热情况下发生可逆反应,同从燃烧后烟道气中分离CO2类似)、物理吸收(常用于具有高的CO2分压或高的总压的混合气的分离)、膜分离(聚合物膜、陶瓷膜)等。
碳捕捉与封存技术碳捕获和封存(以下简称CCS)是一种将工业和能源排放源产生的CO2进行收集、运输并安全存储到某处使其长期与大气隔离的过程。
CCS主要由捕获、运输、封存三个环节组成。
碳捕获CO2的捕获,指将CO2从化石燃料燃烧产生的烟气中分离出来,并将其压缩的过程。
对于大量分散型的CO2排放源是难于实现碳的收集,碳捕获的主要目标是化石燃料电厂、钢铁厂、水泥厂、炼油厂、合成氨厂等CO2的集中排放源。
目前针对化石燃料电厂的捕获分离系统主要有三种,即燃烧后捕获系统、燃烧前捕获系统和氧化燃料捕获系统。
CO2捕获已经在一些工业应用中采用,马来西亚一家工厂采用化学吸附工艺,每年从燃气电厂的烟道气流中分离出0·2×106t的CO2,用于尿素生产。