磁悬浮导轨毕业设计

合集下载

[精品]磁悬浮导轨上碰撞设计性实验

[精品]磁悬浮导轨上碰撞设计性实验

磁悬浮导轨碰撞设计性实验研究【实验目的】(1)了解磁悬浮的物理思想和永磁悬浮技术;(2)用两个磁悬浮滑块, 设计多种弹性和非弹性碰撞实验;(3)观察系统中物体间的各种形式的碰撞,考察动量守恒定律;(4)观察碰撞过程中系统动能的变化,分析实验中的碰撞是属于那种类型的碰撞【设计要求及实验内容】(1)设计一种相对弹性碰撞;(2)设计一种相对非弹性碰撞;(3)设计一种尾随弹性碰撞;(4)设计一种尾随非弹性碰撞;以上实验需画出发生碰撞试验的示意图。

设计数据记录和处理的表格,表格中必须列入动量增量和动能增量及其相对变化值。

【主要实验器材】(1)DHSY型磁悬浮动力学实验仪(2)DHSY型磁悬浮导轨实验智能测试仪(3)磁悬浮滑块【实验原理、方法提示】1. 磁悬浮原理随着科技的发展,磁悬浮技术的应用成为技术进步的热点,例如磁悬浮列车。

永磁悬浮技术作为一种低耗能的磁悬浮技术,也受到了广泛关注。

本实验使用的永磁悬浮技术,是在磁悬导轨与滑块两组带状磁场的相互斥力作用之下,使磁悬滑块浮起来,从而减少了运动的阻力,来进行多种力学实验。

实验装置如图1所示。

磁悬浮导轨实际上是一个槽轨,长约1.2米,在槽轨底部中心轴线嵌入钕铁硼NdFeB磁钢,在其上方的滑块底部也嵌入磁钢,形成两组带状磁场。

由于磁场极性相反,上下之间产生斥力,滑块处于非平衡状态。

为使滑块悬浮在导轨上运行,采用了槽轨。

在导轨的基板上安装了带有角度刻度的标尺。

根据实验要求,可把导轨设置成不同角度的斜面。

1.手柄2.光电门Ⅰ3.磁浮滑块4.光电门Ⅱ5.导轨6.标尺7.角度尺8.基板 9计时器图5.9.1 磁悬浮实验装置图5.9.2 磁悬浮导轨截面图2.碰撞本实验是在磁悬浮导轨上进行的,提供三辆滑块;一辆滑块是一头装有弹簧;一辆滑块装有粘性尼龙毛,一辆滑块装有粘性尼龙刺。

碰撞装置如图3所示。

设有两物,其质量各为1m 和2m ,碰撞前的速度各为0201υυ和,碰撞后的速度各为1211υυ和而且在碰撞的瞬间,此二物体构成的系统,在所考察的速度方向上不受外力的作用或所受的外力远小于碰撞时物体间的相互作用力,则根据动量守恒定律,系统在碰撞前的总动量等于碰撞后的总动量。

磁悬浮导轨上碰撞设计性实验

磁悬浮导轨上碰撞设计性实验

磁悬浮导轨碰撞设计性实验研究【实验目的】(1)了解磁悬浮的物理思想和永磁悬浮技术;(2)用两个磁悬浮滑块, 设计多种弹性和非弹性碰撞实验;(3)观察系统中物体间的各种形式的碰撞,考察动量守恒定律;(4)观察碰撞过程中系统动能的变化,分析实验中的碰撞是属于那种类型的碰撞【设计要求及实验内容】(1)设计一种相对弹性碰撞;(2)设计一种相对非弹性碰撞;(3)设计一种尾随弹性碰撞;(4)设计一种尾随非弹性碰撞;以上实验需画出发生碰撞试验的示意图。

设计数据记录和处理的表格,表格中必须列入动量增量和动能增量及其相对变化值。

【主要实验器材】(1)DHSY型磁悬浮动力学实验仪(2)DHSY型磁悬浮导轨实验智能测试仪(3)磁悬浮滑块【实验原理、方法提示】1. 磁悬浮原理随着科技的发展,磁悬浮技术的应用成为技术进步的热点,例如磁悬浮列车。

永磁悬浮技术作为一种低耗能的磁悬浮技术,也受到了广泛关注。

本实验使用的永磁悬浮技术,是在磁悬导轨与滑块两组带状磁场的相互斥力作用之下,使磁悬滑块浮起来,从而减少了运动的阻力,来进行多种力学实验。

实验装置如图1所示。

磁悬浮导轨实际上是一个槽轨,长约1.2米,在槽轨底部中心轴线嵌入钕铁硼NdFeB磁钢,在其上方的滑块底部也嵌入磁钢,形成两组带状磁场。

由于磁场极性相反,上下之间产生斥力,滑块处于非平衡状态。

为使滑块悬浮在导轨上运行,采用了槽轨。

在导轨的基板上安装了带有角度刻度的标尺。

根据实验要求,可把导轨设置成不同角度的斜面。

1.手柄2.光电门Ⅰ3.磁浮滑块4.光电门Ⅱ5.导轨6.标尺7.角度尺8.基板 9计时器图5.9.1 磁悬浮实验装置图5.9.2 磁悬浮导轨截面图2.碰撞本实验是在磁悬浮导轨上进行的,提供三辆滑块;一辆滑块是一头装有弹簧;一辆滑块装有粘性尼龙毛,一辆滑块装有粘性尼龙刺。

碰撞装置如图3所示。

设有两物,其质量各为1m 和2m ,碰撞前的速度各为0201υυ和,碰撞后的速度各为1211υυ和而且在碰撞的瞬间,此二物体构成的系统,在所考察的速度方向上不受外力的作用或所受的外力远小于碰撞时物体间的相互作用力,则根据动量守恒定律,系统在碰撞前的总动量等于碰撞后的总动量。

基于单片机的磁悬浮小球控制系统设计毕业论文

基于单片机的磁悬浮小球控制系统设计毕业论文

基于单片机的磁悬浮小球控制系统设计摘要随着越来越多的磁悬浮技术应用到现实生活中的各个领域,磁悬浮这个在几年前还是很陌生的一个词现在已经广为人知。

磁悬浮以悬浮力产生的原理分类可以分为超导磁悬浮和常导磁悬浮。

磁悬浮的控制系统是一个很复杂的问题。

本文研究的重点就是这两种磁悬浮的控制问题。

超导磁悬浮是利用处于超导状态下的超导体具有斥磁力的原理产生的。

超导磁悬浮的悬浮物体就是超导体本身,所以超导磁悬浮的控制重点就落在了超导体上。

本文从介绍超导磁悬浮的基本应用入手,逐步深入地介绍超导体的基本物理性质,然后介绍超导磁悬浮系统的控制方法、过程和原理。

与超导磁悬浮相比,常导磁悬浮的应用就更为广泛,因为常导磁悬浮的实现过程要简单得多。

常导磁悬浮可以分为应用电磁铁的磁悬浮和引用非电磁性磁铁(稀土永磁铁、普通磁铁等)的磁悬浮。

但是由于电磁铁便于控制和利用,所以利用电磁铁的磁悬浮义勇更为广泛。

本文在常导磁悬浮方面的研究是从一个实例入手,分析电磁铁式磁悬浮的原理,从而进一步研究电磁铁式磁悬浮的控制方法、过程和原理。

在本文的最后,我利用在大学里所学的知识,结合本文的研究重点——磁悬浮装置的控制问题,做出了一个简单的电磁悬浮装置。

这个悬浮装置的原理是利用对电磁铁电流的控制来实现一个铁球在空中的来回反复运动,达到视觉上的悬浮效果。

这虽然与实际的电磁铁悬浮控制方原理不同,但是利用这简单手段也能够达到相同的目的。

这个实例给了我们一个启示:简单的演示实验装置也能够说明磁悬浮列车等高新技术的工作原理,磁悬浮并不是遥不可及的。

关键词:常导磁悬浮,超导磁悬浮,磁悬浮的控制,演示实验装置,磁悬浮列车The design of control system of magnetic levitation ball basedon MCUABSTRACTAs more and more maglev technology is applied to each field in actual life, the word of magnetic suspension a several years ago was very strange has already widely known by the people. Magnetic suspension is classified and can be divided into superconductive magnetic suspension and electromagnetic magnetic suspension from the material which produces lift force. It is a very complicated problem to control the magnetism suspension system. The focal point that this text studies is that these two kinds of magnetic suspension demonstrate the design about question of controlling of the experimental provision.Superconductive magnetic suspension is to utilize the superconductor in superconductive state to upbraid magnetic force principles. To suspend object superconductor,so superconductive control focal point of magnetic suspension drop on the superconductor superconductive magnetic suspension. This text is from recommend that the using basically of superconductive magnetic suspension is started with, introduce the basic physical property of the superconductor , then the control method , course and principle to introduce superconductive magnetic suspension deeply progressively.Compared with superconductive magnetic suspension, the application that electromagnetic magnetic suspension is much more extensive , because the realization course that electromagnetic magnetic suspension is much simpler. Magnetic suspension that electromagnetic magnetic suspension and can be divided into the magnetic suspension which use the electro-magnet and quoted the non- electric magnetic magnet (tombarthite permanent magnet, ordinary magnet ,etc. ). But because the electro-magnet is more convenient and utilizes controlling, it is more extensive to use the magnetic suspension of the electro-magnet. The research in electromagnetic magnetic suspensionof this text is to proceed with a instance , analyse that according to the principle of electro-magnet type magnetic suspension , thus study electromagnetic type magnetic suspension control method , course and principle further.At the end of this text, I utilize knowledge studied in the university, combine the research focal point of this text - -Demonstrate the control question of the experimental provision , has made a simple electric magnetic suspension device in magnetic suspension. The principle of the device is to make use of control on electro-magnet electric current to realize moving repeatedly back and forth in the sky of an iron plate that this suspends, reach the result of suspending on the vision . This is it control square different principle to suspend with real electro-magnet, simple means this can achieve the the same goal too.This instance has given us one to enlighten: The simple demonstration experimental provision can state the operation principle of new and high technology , such as maglev train ,etc. too, magnetic suspension is not out of reach.KEY WORDS:electromagnetic magnetic suspension , superconductive magnetic suspension ,the control of magnetic suspension,demonstrate the experimental provision, the maglev train目录前言......................................................................... 错误!未定义书签。

毕业设计 磁悬浮

毕业设计 磁悬浮

编号:审定成绩:xxxx大学毕业设计(论文)设计(论文)题目:基于磁悬浮球装置的控制算法研究学院名称:xxx学生姓名:xx专业:xxxxxxxx班级:xxx学号:xxx指导教师:xx答辩组负责人:xx填表时间:2010年6 月xxxx大学教务处制摘要磁悬浮系统是一个复杂的非线性、自然不稳定系统,其控制器性能的好坏直接影响磁悬浮技术的应用,其研究涉及控制理论、电磁场理论、电力电子技术、数字信号处理以及计算机科学等众多领域。

由于磁悬浮系统对实时性的要求很高,在很大程度限制了先进控制算法的开发和应用。

为了满足日益复杂的控制要求和提高控制系统的实时性,本文以单自由度磁悬浮球系统为研究对象,在分析磁悬浮系统构成及工作原理的基础上,建立了数学模型并对其控制器进行了研究,以期望达到更好的控制效果。

本文首先分析了磁悬浮系统的工作原理,建立了系统的数学模型和线性化模型,并在此基础上利用MATLAB软件以及其中的SIMULINK仿真工具箱对模型开环和闭环系统进行了仿真。

然后,根据得出的系统传递函数,在SIMULINK环境下搭建系统开环传递函数,并据此进行PID控制器的设计和调节,以及用根轨迹法和频率响应法控制系统。

【关键词】磁悬浮球PID控制器根轨迹频率响应ABSTRACTThe magnetic levitation system is a complex, nonlinear, naturally unstable system. And the controller’s performance directly influences the wide applications of the magnetic levitation technology. The research on such a system involves control theory, electromagnetism, electric and electronic technology, digital signal processing, computer science and so on. Because the magnetic levitation system’s real time demand is rigorous, the development and application of advanced controllers is limited. In order to meet the requirement of complex controller and improving the real-time performance, this paper introduces the magnetic levitation control system based on the single-freedom-degree magnetic levitation ball system, then established the mathematic model and its controller is studied, and expected totter control effect.This paper analyses the working principle of maglev system, establishing the mathematic model of the system and the linear model, and on the basis of using the software MATLAB, and SIMULINK tool to model and the closed-loop system is simulated. Then, according to the system transfer function in building system under the environment of SIMULINK open-loop transfer function, the design and adjustment of the PID controller, and with the root locus method and the method of frequency response controlled control system.【key words】Magnetic levitation ball PID controller Root locusFrequency response目录前言 (1)第一章磁悬浮系统的概述 (2)第一节磁悬浮的分类及应用前景 (2)第二节磁悬浮技术的研究现状 (3)第三节磁悬浮的控制方法和发展趋势 (4)第二章磁悬浮系统的分析和建模 (6)第一节磁悬浮系统的分析 (6)第二节磁悬浮系统的工作原理 (6)第三节磁悬浮系统的建模 (7)一、控制对象的运动方程 (7)二、电磁铁中控制电压与电流的模型 (8)三、电流控制模型 (9)四、电压控制模型 (11)第三节磁悬浮球系统的搭建 (14)一、开环系统搭建 (14)二、闭环系统搭建 (15)第四节本章小结 (17)第三章控制器的设计和调试 (18)第一节 PID控制器的设计和调试 (18)一、PID控制基础 (18)二、PID控制参数整定 (19)三、磁悬浮系统中的PID控制 (21)第二节根轨迹控制器的设计和调试 (23)一、根轨迹法的基本概念和原理 (23)二、磁悬浮系统的根轨迹校正 (24)第三节频率响应控制器的设计和调试 (27)一、频率响应法的基本概念和分析 (27)二、磁悬浮系统中的频率响应 (29)第四节本章小结 (33)结论 (34)致谢 (35)参考文献 (36)附录 (38)一、英文原文 (38)二、英文翻译 (47)三、源程序 (54)前言磁悬浮技术是将电磁学、机械学、动力学、电子技术、自动控制技术、传感技术、检测技术和计算机科学等高新技术有机结合在一起,成为典型的机电一体化技术。

大学磁悬浮导轨课程设计

大学磁悬浮导轨课程设计

大学磁悬浮导轨课程设计一、课程目标知识目标:1. 理解磁悬浮导轨的基本原理,掌握其工作方式和相关物理概念;2. 学习磁悬浮导轨的关键技术,包括磁悬浮系统的设计、悬浮控制及驱动技术;3. 了解磁悬浮导轨在我国及世界范围内的应用现状和发展趋势。

技能目标:1. 能够运用所学知识分析和解决磁悬浮导轨在实际应用中出现的问题;2. 培养学生运用科学方法进行磁悬浮导轨相关实验操作的能力;3. 提高学生的团队协作和沟通能力,通过小组讨论、报告等形式,展示对磁悬浮导轨的研究成果。

情感态度价值观目标:1. 培养学生对磁悬浮导轨技术及其应用的兴趣,激发学生探索新技术的热情;2. 强化学生的环保意识,认识到磁悬浮导轨在节能减排方面的重要性;3. 培养学生具备创新精神和实践能力,树立投身国家科技创新事业的信念。

课程性质:本课程为大学学科课程,以理论与实践相结合的方式进行教学。

学生特点:学生具备一定的物理基础,对新技术具有好奇心和探索欲望,具备一定的自主学习能力。

教学要求:教师需结合课本内容,注重理论与实践相结合,通过案例分析、实验操作等形式,引导学生掌握磁悬浮导轨的相关知识,培养其创新和实践能力。

同时,关注学生的情感态度价值观的培养,激发学生的学习兴趣和责任感。

在教学过程中,将课程目标分解为具体的学习成果,便于教学设计和评估。

二、教学内容1. 磁悬浮导轨原理及物理基础- 磁悬浮基本概念- 磁悬浮导轨的工作原理- 相关物理知识(磁学、电磁学)2. 磁悬浮导轨关键技术- 磁悬浮系统设计- 悬浮控制技术- 驱动技术3. 磁悬浮导轨应用与现状- 国内外磁悬浮导轨发展历程- 磁悬浮列车及其优势- 磁悬浮导轨在其他领域的应用4. 磁悬浮导轨实验与操作- 实验室安全与规范操作- 磁悬浮导轨实验原理与步骤- 实验数据分析与处理5. 磁悬浮导轨发展前景与挑战- 技术创新与发展趋势- 环保与能源利用- 面临的挑战与解决方案教学大纲安排:第一周:磁悬浮导轨原理及物理基础第二周:磁悬浮导轨关键技术第三周:磁悬浮导轨应用与现状第四周:磁悬浮导轨实验与操作第五周:磁悬浮导轨发展前景与挑战教学内容与课本关联性:本教学内容紧密围绕教材相关章节,确保学生能系统掌握磁悬浮导轨相关知识。

大学磁悬浮实验报告

大学磁悬浮实验报告

1. 了解磁悬浮列车的原理和结构。

2. 通过实验演示磁悬浮现象,验证超导体对永磁体的排斥作用。

3. 掌握磁悬浮列车的运行机制和影响因素。

二、实验原理磁悬浮列车利用超导体在低温下的特性,实现列车与轨道之间的无接触悬浮。

当超导体冷却至一定温度时,其电阻降为零,形成超导态。

此时,超导体内的电流产生强大的磁场,与轨道上的永磁体相互作用,产生排斥力,使列车悬浮于轨道之上。

三、实验器材1. 超导磁悬浮列车演示仪(含磁导轨支架、磁导轨)2. 高温超导体(含Ag的YBacuo系高温超导体)3. 液氮四、实验步骤1. 将超导磁悬浮列车演示仪放置在平稳的工作台上。

2. 使用液氮将高温超导体冷却至临界温度(约90K)。

3. 将冷却后的高温超导体放置在磁导轨上,确保其与轨道平行。

4. 打开电源,使磁导轨产生磁场。

5. 观察高温超导体在磁场中的悬浮状态。

五、实验结果与分析1. 当高温超导体冷却至临界温度时,其在磁场中悬浮,证实了超导体对永磁体的排斥作用。

2. 通过调整磁导轨的磁场强度,可以观察到悬浮高度的变化。

当磁场强度增大时,悬浮高度也随之增大。

3. 实验过程中,高温超导体在磁场中的悬浮稳定性较好,但受到外界温度、磁场强度等因素的影响。

1. 磁悬浮列车利用超导体在低温下的特性,实现列车与轨道之间的无接触悬浮。

2. 超导体对永磁体的排斥作用是实现磁悬浮的关键因素。

3. 磁悬浮列车的悬浮高度和稳定性受到外界因素的影响。

七、实验注意事项1. 实验过程中,操作人员需穿戴防护用品,如手套、护目镜等。

2. 使用液氮时,注意防止泄漏和低温冻伤。

3. 调整磁导轨磁场强度时,需缓慢进行,避免对高温超导体造成损伤。

八、思考题1. 磁悬浮列车在实际应用中,如何解决高温超导体冷却问题?2. 磁悬浮列车在高速运行时,如何保证其稳定性和安全性?3. 除了磁悬浮技术,还有哪些新型高速轨道交通技术?九、实验总结本次磁悬浮实验成功演示了超导体对永磁体的排斥作用,验证了磁悬浮列车的原理。

高速列车磁悬浮轨道的设计与测试

高速列车磁悬浮轨道的设计与测试

高速列车磁悬浮轨道的设计与测试第一章:引言高速列车磁悬浮轨道技术是现代交通工具中的一项高端技术,其高速、稳定、低噪音等优点使其得到广泛应用。

本论文将分析磁悬浮轨道的设计和测试过程,以期为磁悬浮轨道技术的研究和发展提供一定的参考。

第二章:磁悬浮轨道的设计2.1 磁悬浮轨道的基本结构磁悬浮轨道主要由磁力作用和轨道结构两部分组成。

其中,磁力作用主要由各种类型的电磁力和永磁力共同作用形成,轨道结构则分为导轨和导向轮两部分。

具体结构如图1所示。

2.2 轨道高度的设计轨道高度的设计是磁悬浮轨道一个非常重要的参数。

在实际工程应用中,轨道高度需要根据不同的使用场景进行调整。

轨道高度过高会增加能耗和成本,而轨道高度过低会对列车的稳定性产生负面影响。

2.3 磁悬浮轨道的辐射噪声控制磁悬浮轨道在高速运行过程中会产生辐射噪声,这是因为磁场变化所带来的的感应效应,会产生辐射电磁波。

要控制轨道的辐射噪声,需要采用多项技术手段,如设置金属屏蔽、最小化电流漏磁、合理安排线圈等。

第三章:磁悬浮轨道的测试对磁悬浮列车轨道进行测试是磁悬浮轨道技术研究的重要组成部分。

磁悬浮轨道测试的主要内容包括线圈电流测试、永磁材料测试、磁浮系统集成测试等。

3.1 线圈电流测试线圈电流测试是磁悬浮轨道测试中的重要环节。

线圈电流测试主要是通过外界管道或者被测对象本身的线圈将被测数据传输到测试设备上。

线圈电流测试需要采用高精度电流传感器对测试信号进行读取和处理。

3.2 永磁材料测试永磁材料作为磁悬浮轨道的重要部件之一,其材料性能对整个磁悬浮系统的稳定性和效率影响非常大。

永磁材料测试应通过测量永磁材料表面的磁场分布和磁通密度等物理特性来评估永磁材料的性能。

3.3 磁浮系统集成测试磁浮系统集成测试是磁悬浮轨道测试的最终环节。

在磁浮系统集成测试中,需要测试整个磁悬浮轨道系统的性能,包括系统的稳定性、动态响应、速度控制等多个方面。

通过集成测试,可以对整个系统运行效果进行评估,为后续的工程应用提供参考。

磁悬浮球系统的建模与仿真设计毕业设计

磁悬浮球系统的建模与仿真设计毕业设计

声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

学生签名:年月日新疆大学毕业论文(设计)任务书班级:自动化081 姓名:论文(设计)题目:磁悬浮球系统的建模与仿真设计专题:要求完成的内容: 1. 学习系统建模方法和熟练MATLAB语言。

2. 熟悉磁悬浮球控制系统的工作原理。

3. 建立磁悬浮球控制系统的数学模型。

4. 分析磁悬浮球控制系统的稳定性。

5. 磁悬浮球控制系统的控制器(PID,模糊)的设计。

6. 用SIMULINK建模进行仿真实验进行分析。

7. 编写毕业设计说明书。

发题日期:年月日完成日期:年月日实习实训单位:地点:论文页数:页;图纸张数:指导教师:教研室主任:院长:摘要磁悬浮技术是集电磁学、电子技术、控制工程、信号处理、机械学、动力学为一体的典型的机电一体化技术。

随着电子技术、控制工程、处理信号元器件、电磁理论及新型电磁材料的发展和转子动力学的进展,磁悬浮技术得到了长足的发展。

本实验平台可以使用多种控制器和控制方法,适用于相关人员的研究和实验工作。

研究和设计磁悬浮球控制系统实验平台是本文的主要工作,本文在分析磁悬浮球控制系统工作原理的基础上,设计了一套磁悬浮球控制系统实验平台。

本文着重介绍控制器的设计过程。

在此基础上,本文利用了MATLAB设计了基于计算机的磁悬浮PID传统控制和模糊PID控制器。

所研制的控制器软件设计方法简单、性能稳定、实时调试方便。

关键词:磁悬浮球控制系统;稳定性;传统PID控制器;模糊PID控制器ABSTRACTMagnetic Suspension is one of typical mechanics and electronics technology,which includes the electromagnetics, electron technology, control engineering, signaldisposal, mechanics and dynamics.As the electronic technology, control engineering, processing signal components, electromagnetic theory and the development of new electromagnetic material and the progress of the rotor dynamics, maglev technology got rapid progress. This experiment platform can use a variety of controller and the control method, apply to relevant personnel of research and experimental work.This thesis focuses on the research and design of Magnetic Suspension ball Control System testing platform. Based on analyzing of Magnetic Suspension ball Control system's working principle, the thesis designs a Magnetic Suspension ball Control System testing platform.The paper emphasizes the design process.On this basis, this paper use based on MATLAB design of magnetic levitation PID traditional computer control and fuzzy PID controller. The developed controller software design method is simple, stable performance, real-time debugging is convenient.Keywords: maglev ball control system;stability;the traditional PID controller;the fuzzy PID controller目录1 绪论 (5)1.1 磁悬浮技术综述 (5)1.1.1 前言 (5)1.1.2 磁悬浮方式的分类 (5)1.1.3 磁悬浮控制方法的现状与发展趋势 (5)1.2 课题的提出及意义 (6)1.3 本论文的工作及主要内容 (6)2 磁悬浮球系统组成及系统模型 (8)2.1 磁悬浮球系统组成 (8)2.2 磁悬浮球系统工作原理 (8)2.3 磁悬浮球系统的数学模型 (8)2.4 磁悬浮球系统闭环控制 (12)3 传统控制器的研究与设计 (13)3.1 引言 (13)3.2 控制器设计 (13)3.2.1 PID控制器基本控制规律 (13)3.2.1.1 比例控制器(P调节器) (13)3.2.1.2 积分控制器(I调节器) (14)3.2.1.3 微分控制器(D调节器) (15)3.2.1.4 比例-微分控制器(PD调节器) (15)3.2.1.5 比例-积分控制器(PI调节器) (16)3.2.1.6 比例-积分-微分控制器(PID调节器) (17)3.2.2 PID控制器的参数整定 (19)3.2.3 PID调节器参数的工程整定 (21)3.2.3.1工程实验法整定 (21)3.2.3.2 Ziegler-Nichols参数整定法 (22)3.3 磁悬浮球系统PID参数整定及系统仿真 (24)3.3.1 不加控制器时磁悬浮球系统及其系统仿真 (24)3.3.2 PID参数整定的步骤及系统仿真 (28)4 模糊PID控制器的设计 (32)4.1引言 (32)4.2模糊控制器简介 (32)4.2.1模糊控制的基本原理 (32)4.2.2 模糊控制器的结构 (32)4.3 模糊控制系统的设计 (34)4.3.1 模糊控制器的结构设计 (34)4.3.2 模糊控制器的基本设计 (35)4.3.3 模糊PID控制器结构及参数自整定原则 (36)4.3.4 模糊PID控制器的设计 (37)4.3.5 基于MATLAB的模糊PID控制系统的仿真研究 (39)5 总结与展望 (42)5.1总结 (42)5.2 今后的研究方向 (42)致谢 (43)1 绪论1.1 磁悬浮技术综述1.1.1 前言磁悬浮技术属于自动控制技术,它是随着控制技术的发展而建立起来的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽工程大学毕业论文基于Solidworks的磁悬浮导轨摘要随着微机电系统(MEMS)及纳米技术的发展,对精密工作台的位移精度和动态特性等提出越来越高的要求。

这就要求作为精密工作台的重要组成部分的导轨具有较高的位移分辨率、定位精度以及动态特性。

本论文针对传统导轨直接接触的固态导轨面之间存在着不可避免的摩擦力导致忽跳忽停的爬行现象,研究一种导向性能优异的磁悬浮导轨。

考虑到传统磁悬浮导轨采用的电磁和超导磁悬浮技术不适合用于微定位系统环境,设计采用永磁悬浮导轨。

同时,为悬浮的动导轨施加各个方向可调约束力,保证动导轨稳定运行。

对磁材料进行深入对比,选择合适的材料。

在结构设计时进行了力学平衡优化设计。

最后利用solidworks软件,将所设计的磁悬浮导轨做成三维模型。

关键词:磁悬浮导轨;永磁铁;力学平衡Research on the Structure of Maglev GuidewayBased on SolidworksAbstractWith the development of MEMS and nana technology, the demands of precision worktable on positioning precision and dynamic characteristic are even higher. This requires as an important part of precision worktable of guide rail has high displacement resolution, positioning accuracy and dynamic characteristics。

Since the inevitable friction force of solid state guide rail surface, traditional guide rail has the crawling phenomenon , that is,to jump or to stop. Thus a new magnetic suspension guide rail is studied with fine guidance acharacter. Since the technologies of traditional magnetic suspension guide rail and superconductivity magnetic suspension doesn’t fit the micro positioning system environment, the permanent maglev guide rail is designed. At the same time, each direction adjustable binding force is designed to achieve steady kinestate of the guide rail. A kind of appropriate material is chose through contrast of several magnetism materials. The optimization design is carried on mechanical balance. Three-dimensional model of maglev guideway is made by Solidworks software finally.Keywords: maglev guideway ,everlasting magnet, mechanics balance目录引言........................................................ - 1 -第1章绪论..................................................... - 2 -1.1 导轨简介 ................................................. - 2 -1.2精密工作台导轨发展和研究概况.............................. - 2 -1.3本论文研究目的与意义...................................... - 4 -第2章磁悬浮导轨总体结构设计................................... - 5 -2.1 前言 ..................................................... - 5 -2.2 磁悬浮导轨结构设计 ....................................... - 5 -2.2.1前言................................................ - 5 -2.2.2磁悬浮导轨工作原理 ................................. - 5 -2.2.3 导轨材料选择....................................... - 5 -2.3磁悬浮导轨方案选择........................................ - 7 -2.3.1各磁悬浮导轨方案介绍................................ - 7 -2.3.2 磁悬浮导轨方案选择................................. - 8 -第3章磁悬浮导轨各部件详细设计 .................................- 10 -3.1定导轨设计............................................... - 10 -3.1.1定导轨框架设计..................................... - 10 -3.1.2精度设计........................................... - 10 -3.2动导轨设计............................................... - 11 -3.2.1 动导轨结构设计.................................... - 11 -3.2.2 精度设计.......................................... - 11 -3.3 磁铁设计 ................................................ - 12 -3.3.1常用永磁材料....................................... - 12 -3.3.2各永磁材料特点..................................... - 12 -3.3.3永磁材料的选用..................................... - 14 -3.4 磁槽设计 ................................................ - 15 -3.4.1活动磁槽结构设计 .................................. - 15 -3.4.2活动磁槽料选用..................................... - 16 -3.5驱动系统选择与设计....................................... - 17 -3.5.1纳米电机简介与选择 ................................ - 17 -3.5.2柔性铰链结构设计与分析............................. - 19 -3.6载荷计算................................................. - 22 -3.6.1动导轨质量计算..................................... - 22 -3.6.2受力分析........................................... - 23 -3.6.3磁力计算........................................... - 23 -第4章磁悬浮导轨测试实验.......................................- 25 -4.1前言..................................................... - 25 -4.2 对磁悬浮导轨进行标定实验 ................................ - 25 -4.2.1导轨直线度测试..................................... - 25 -马军雷:基于Solidworks的磁浮导轨4.2.2导轨定位精度....................................... - 25 -4.3数据处理................................................. - 26 -第5章结论与展望...............................................- 27 -5.1 结论 .................................................... - 27 -5.2 展望 .................................................... - 27 -致谢............................................................- 28 -参考文献........................................................- 29 -附录A 附加图.............................................. - 30 -附录B 一篇引用的外文文献及其译文........................... - 32 -附录C主要参考文献摘要...................................... - 46 -插图清单图1-2 气浮滑块运动跟踪误差曲线 ............................................................................................... - 4 - 图2-1 动导轨受力分析 ................................................................................................................... - 5 - 图2-2 方案一................................................................................................................................... - 7 - 图2-3 方案二................................................................................................................................... - 7 - 图2-4 方案三................................................................................................................................... - 8 - 图2-5 方案四................................................................................................................................... - 8 - 图3-1 定导轨................................................................................................................................. - 10 - 图3-2 底座..................................................................................................................................... - 10 - 图3-3 动导轨................................................................................................................................. - 11 - 图3-4悬浮模块.............................................................................................................................. - 11 - 图3-5导向模块.............................................................................................................................. - 11 - 图3-6 保护模块............................................................................................................................. - 12 - 图3-7四种永磁材料的退磁曲线 .................................................................................................. - 14 - 图3-8 调节腔示意图 ..................................................................................................................... - 16 - 图3-9 磁场强度轴向分量分布 ..................................................................................................... - 16 - 图3-10 磁铁边缘效应 ................................................................................................................... - 17 - 图3-11 磁体副进给过程应满足的条件 ....................................................................................... - 17 - 图3-12 纳米电机工作原理图 ....................................................................................................... - 18 - 图3-13 HR2拨爪电机.................................................................................................................... - 18 - 图3-14 A B2放大器前面板........................................................................................................ - 19 - 图3-15 A B2盒工作原理图........................................................................................................ - 19 - 图3-16 柔性铰链结构图 ............................................................................................................... - 20 - 图3-17 单轴柔性铰链示意图 ....................................................................................................... - 21 - 图3-18 柔性铰链1 ........................................................................................................................ - 22 - 图3-19 柔性铰链2 ........................................................................................................................ - 22 - 图3-20 动导轨受力分析 ............................................................................................................... - 23 - 图3-21 两长直细条形永磁体间的参数 ....................................................................................... - 23 - 图3-22 2块平行矩形界面永磁体的横截面的参数 ..................................................................... - 24 - 图4-1 99型数显自准直仪 .......................................................................................................... - 25 - 图4-2自准直仪数值显示仪 .......................................................................................................... - 25 - 图4-3 GX-9 光栅尺.................................................................................................................... - 25 -表格清单表2-1 L Y16的化学成分 .................................................................................................................. - 6 - 表2-2 L Y16室温下的力学性能 ...................................................................................................... - 6 - 表3-1常用永磁材料参数对比 ...................................................................................................... - 13 - 表3-2 常用永磁材料性能对比 ..................................................................................................... - 14 - 表3-3 烧结NdFeB和SmCo永磁的力学性能指标.................................................................... - 15 - 表3-4间隙8mm时磁场强度分布................................................................................................ - 16 - 表3-5 316L机械性能 ................................................................................................................... - 17 -引言导轨是用来保证各运动部件的相对位置和相对运动精度以及承受载荷的部件。

相关文档
最新文档