凸轮机构的运动分析与设计
凸轮机构的设计和计算

凸轮机构的设计和计算凸轮机构是机械传动中常用的一种机构,它可以将旋转运动转化为直线或者非圆轨迹运动。
在机械设计中,凸轮机构的设计和计算是一个重要的环节,下面将从凸轮的选择、轮廓线的设计、凸轮刚度的计算以及凸轮与连接杆的配合等方面进行详细探讨。
一、凸轮的选择凸轮的选择主要考虑两个因素,一是工作台速度要求,二是工作台运动规律要求。
根据工作台速度要求,可以确定凸轮直径或转速,并结合工作台的惯性力矩计算,选取合适的凸轮惯量。
根据工作台运动规律要求,可以确定凸轮的轮廓线类型,如简单凸轮、非圆滚子凸轮等。
二、凸轮轮廓线的设计凸轮的轮廓线设计可以按照几何法或图形法进行。
几何法常用于简单凸轮的设计,通过几何学原理计算得到凸轮的轮廓线。
图形法常用于复杂凸轮的设计,通过图形法绘制凸轮的轮廓线。
对于简单凸轮的设计,可以先确定凸轮的中心轴线,然后根据工作台的运动规律要求,计算得到凸轮相对于中心轴的偏置量。
根据几何关系,可以发现工作台特定点的运动与该点到凸轮中心轴的距离成正比关系,因此可以画出凸轮轮廓线。
对于复杂凸轮的设计,可以根据工作台的运动规律要求,通过图形法绘制凸轮的轮廓线。
首先,在平面上绘制凸轮的中心轴线和工作台的运动轨迹,然后根据几何关系,绘制工作台各点与凸轮中心轴的距离曲线,最后得到凸轮的轮廓线。
三、凸轮刚度的计算凸轮机构在工作过程中会受到惯性力矩的作用,因此需要进行凸轮刚度的计算。
凸轮刚度可以通过应力分析的方法进行计算,可以分为弹性刚度和塑性刚度。
弹性刚度计算可以根据凸轮的材料及几何尺寸进行,通过几何学和材料力学的知识,可以得到凸轮的弹性变形及应力分布。
而塑性刚度计算则需要根据凸轮的材料本构关系及极限变形条件,通过材料损伤理论及极限分析法进行计算。
四、凸轮与连接杆的配合凸轮与连接杆的配合是凸轮机构中的关键问题。
凸轮与连接杆之间要保持一定的配合间隙,以确保运动的精度。
配合间隙的大小应根据凸轮的制造及组装精度、工作台的运动精度要求等因素进行综合考虑。
机械原理课程教案—凸轮机构及其设计

机械原理课程教案—凸轮机构及其设计一、教学目标1. 让学生了解凸轮机构的定义、分类和应用。
2. 使学生掌握凸轮的轮廓曲线设计方法。
3. 培养学生分析、解决凸轮机构实际问题的能力。
二、教学内容1. 凸轮机构的定义及分类1.1 凸轮机构的组成1.2 凸轮机构的分类1.3 凸轮机构的应用2. 凸轮的轮廓曲线2.1 凸轮的轮廓曲线类型2.2 基圆、止点圆和顶点圆的概念2.3 凸轮轮廓曲线的设计方法3. 凸轮机构的设计步骤3.1 确定凸轮的类型和参数3.2 选择合适的凸轮材料3.3 设计凸轮的轮廓曲线3.4 计算凸轮的强度和寿命4. 凸轮机构的实际应用案例分析三、教学方法1. 采用讲授法,讲解凸轮机构的定义、分类和应用。
2. 利用多媒体演示法,展示凸轮机构的运动原理和设计方法。
3. 案例分析法,分析实际应用中的凸轮机构设计。
四、教学准备1. 教案、教材、多媒体课件。
2. 凸轮模型或图片。
五、教学过程1. 导入:简要介绍凸轮机构的定义和应用,激发学生的学习兴趣。
2. 讲解:详细讲解凸轮机构的分类、凸轮的轮廓曲线设计方法。
3. 演示:利用多媒体展示凸轮机构的运动原理和设计方法。
4. 实践:让学生分组讨论,分析实际应用中的凸轮机构设计案例。
6. 作业:布置相关练习题,巩固所学知识。
六、教学评估1. 课堂问答:通过提问方式检查学生对凸轮机构基本概念的理解。
2. 练习题:布置针对性的练习题,巩固学生对凸轮轮廓曲线设计和凸轮机构设计步骤的掌握。
3. 案例分析报告:评估学生对实际应用案例分析的能力,检查学生能否将理论知识运用到实际问题中。
七、拓展学习1. 介绍其他类型的凸轮机构,如摆动凸轮、复合凸轮等。
2. 探讨凸轮机构在现代机械设计中的应用和发展趋势。
八、课后作业1. 复习本节课的内容,重点掌握凸轮机构的分类、凸轮轮廓曲线的设计方法及设计步骤。
2. 分析课后练习题,加深对凸轮机构及其设计的理解。
九、课程回顾与展望2. 展望下一节课的内容,让学生对后续学习有所期待。
机械设计中的凸轮机构设计

机械设计中的凸轮机构设计在机械设计领域中,凸轮机构是一种重要的动力传输装置,被广泛应用于各种机械设备中。
凸轮机构通过凸轮的旋转运动,驱动其他部件产生直线或曲线的往复运动。
它具有紧凑、高效、稳定等特点,在汽车发动机、机床、纺织机械等领域发挥着重要作用。
然而,在设计凸轮机构时,需要考虑多个因素,包括凸轮形状、凸轮轮廓设计、轴承选择等,才能实现理想的设计效果。
一、凸轮机构的设计要素及原理凸轮机构设计的首要任务是确定凸轮形状和凸轮轮廓。
凸轮的形状直接影响着凸轮机构的运动特性。
常见的凸轮形状包括圆形凸轮、球面凸轮、椭圆凸轮、平面凸轮等。
每种形状都有其适用的场合,需要根据具体应用和设计要求进行选择。
凸轮的轮廓设计是凸轮机构设计的核心之一。
凸轮轮廓的设计需要满足工作机构的要求,确保凸轮和从动件之间能够实现精确的接触和运动匹配。
凸轮轮廓可以根据从动件的运动学要求来确定,可以是简单的直线、圆弧,也可以是复杂的曲线轮廓。
凸轮机构的设计还需要考虑力学特性及材料选择。
凸轮与从动件之间的接触处会产生接触力和摩擦力,需要确保设计中的力学强度和刚度满足要求。
此外,凸轮的材料也需要考虑其耐磨性和耐久性,以保证长时间的可靠运行。
二、凸轮机构的设计流程凸轮机构的设计是一个系统工程,需要进行详细的规划和流程设计。
以下是一般的凸轮机构设计流程:1. 确定设计要求:包括凸轮机构的运动周期、速度、力学要求等。
2. 凸轮轮廓设计:根据从动件的运动要求,确定凸轮轮廓。
可以通过计算方法、图形方法或CAD软件进行设计。
3. 凸轮形状选择:根据具体要求和应用场景,选择合适的凸轮形状。
可以进行形状优化设计和分析,以得到最佳的设计方案。
4. 轴承选择:选择合适的轴承类型和尺寸,确保凸轮机构的运动平稳和耐久可靠。
5. 强度和刚度分析:进行力学分析,评估凸轮机构的强度和刚度是否满足要求。
可以通过有限元分析等方法进行验证。
6. 材料选择和热处理:根据设计要求选择适当的材料,并进行必要的热处理,提高材料的力学性能和耐久性。
凸轮机构的设计和计算详解

凸轮机构的设计和计算详解1. 引言凸轮机构是一种常见的机械传动装置,通过凸轮的运动来实现对其他部件的控制和驱动。
凸轮机构广泛应用于发动机、机械加工、自动化设备等领域。
在本文中,我们将详细介绍凸轮机构的设计和计算方法。
2. 凸轮机构的基本原理凸轮机构由凸轮、从动件和控制件组成。
凸轮通过旋转或移动的方式,驱动从动件进行线性或旋转运动。
不同凸轮形状和运动方式将实现不同的功能。
3. 凸轮的设计要点凸轮的设计涉及凸轮形状、凸轮面积、凸轮运动规律等方面。
在进行凸轮设计时,需要考虑以下要点:•运动要求:根据从动件需要的运动类型(线性或旋转)、速度和加速度要求,确定凸轮的形状和运动规律。
•动态负载:凸轮在运动过程中所承受的动态负载应被考虑在内,以确保凸轮的强度和耐久性。
•材料选择:根据凸轮的工作条件和负载要求,选择适当的材料来制造凸轮,以保证其可靠性和寿命。
4. 凸轮机构的计算方法4.1 凸轮剖面的计算凸轮剖面的计算是凸轮机构设计中的重要一环。
根据凸轮的运动规律和从动件的运动要求,可以进行凸轮剖面的计算。
常用的凸轮剖面计算方法有:•凸轮剖面生成法:根据从动件的运动要求,通过几何构造和插值计算,生成凸轮剖面。
•凸轮运动分析法:通过分析凸轮的运动规律和从动件的运动要求,推导出凸轮剖面的数学表达式。
4.2 凸轮机构的运动学分析凸轮机构的运动学分析是确定凸轮机构各部件的运动规律和参数的过程。
通过运动学分析,可以计算凸轮机构的几何关系、速度和加速度等。
常用的凸轮机构运动学分析方法有:•图形法:通过绘制凸轮机构的运动示意图和运动曲线,分析凸轮机构的运动规律。
•解析法:通过建立凸轮机构的运动学方程,推导出各部件的运动参数,并进行计算。
4.3 凸轮机构的强度计算凸轮机构的强度计算是为了确定凸轮所承受的载荷是否安全,并选择适当的材料和结构来满足设计要求。
在强度计算中,需要考虑凸轮的静载荷、动载荷和疲劳载荷等。
常用的凸轮机构强度计算方法有:•静态强度计算:通过分析凸轮在静态载荷下的应力和变形情况,确定凸轮的强度和刚度。
机械设计基础4 凸轮机构分析与设计习题作业及答案

项目一内燃机的机械系统结构分析任务四凸轮机构分析与设计习题4.1 试标出图4.20所示位移线图中的行程h、推程运动角Φ,远t休止角Φ,回程运动角hΦ,近休止角sΦ'。
s图4.20 题4.1图4.2 凸轮机构从动件常用的四种运动规律是哪些?哪些有刚性冲击?哪些有柔性冲击?哪些没有冲击?如何选择运动规律?4.3 设计凸轮机构时,工程上如何选择基圆半径?4.4 滚子从动件盘形凸轮机构的基圆半径如何度量?4.5什么是压力角?凸轮平底垂直于导路的直动从动件盘形凸轮机构的压力角等于多少?机构的压力角有何工程意义?设计凸轮时,压力角如何要求?4.6 平底从动件盘形凸轮机构的凸轮轮廓为什么一定要外凸?4.7 用作图法作出图示凸轮机构转过45°后的压力角。
图4.21 题4.7图4.8 已知基圆半径,250mm r =偏心距mm e 5=,以角速度ω顺时针转动,推程为mm h 12=。
其运动规律如下表。
设计偏心尖顶直动从动件盘形凸轮轮廓。
4.9 设计偏置直动滚子从动件盘形凸轮机构, 凸轮转动方向及从动件导路位置如图4.22。
mm e 10=,mm r 400=,mm r T 10=,从动件运动规律同题4.8,试绘制凸轮轮廓。
图4.22 题4.9图项目一内燃机的机械系统结构分析任务四凸轮机构分析与设计习题答案4.1 解:如图。
题4.1答案图4.2 答: 凸轮机构从动件常用的四种运动规律是:①等速运动规律:从动件在推程开始和终止的瞬时,速度有突变,其加速度在理论上为无穷大,致使从动件在极短的时间内产生很大的惯性力,因而使凸轮机构受到极大的冲击。
是刚性冲击。
②等加速等减速运动规律:从动件在升程始末,以及由等加速过渡到等减速的瞬时,加速度出现有限值的突然变化,这将产生有限惯性力的突变,从而引起冲击。
是柔性冲击。
③余弦加速度运动规律:柔性冲击。
④正弦加速度运动规律:没有冲击。
在选择从动件的运动规律时,要综合考虑机械的工作要求、动力特性和加工制造等方面的内容。
凸轮机构运动原理解析

凸轮机构运动原理解析凸轮机构是一种机械传动装置,广泛应用于各种机械系统中,例如汽车发动机、工业机械和机床等。
本文将对凸轮机构的运动原理进行解析,以帮助读者更好地理解其工作原理。
一、凸轮机构的定义和构成凸轮机构是由凸轮和从动件(如滑块、摇臂等)组成的传动装置。
凸轮是一种特殊形状的轮轴,其外形常为椭圆或心形,具有多个凸起部分。
从动件则通过与凸轮接触,实现凸轮机构的运动传动。
二、凸轮机构的工作原理凸轮机构的工作原理基于凸轮的运动和从动件的运动响应之间的关系。
一般来说,凸轮的运动可以是旋转、往复或其他特殊的轨迹形式,这取决于具体的应用场景。
旋转运动的凸轮机构:当凸轮进行旋转运动时,从动件跟随凸轮的轨迹做往复运动。
这种机构常用于各类发动机的气门传动系统中。
例如,汽车发动机中的凸轮轴通过凸轮的旋转来驱动气门的开闭。
往复运动的凸轮机构:当凸轮进行往复运动时,从动件以一定的轨迹做复杂运动。
这种机构常用于机床和工业机械中。
例如,磨床的主轴就是通过往复运动的凸轮来驱动的。
其他特殊形式的凸轮机构:除了旋转和往复运动,凸轮还可以设计成其他特殊的轨迹形式,以满足特定的运动需求。
例如,摇杆机构中的摇杆就是一种特殊的凸轮,它通过摇杆的旋转运动来驱动从动件。
三、凸轮机构的优缺点凸轮机构具有以下几点优点:1. 可实现复杂的运动传动:由于凸轮可以设计成各种复杂的轨迹形式,因此凸轮机构可以实现各种复杂的运动传动需求。
2. 传动精度高:凸轮机构的传动精度高,能够满足精密机械装置的要求。
3. 结构简单可靠:凸轮机构的结构相对简单,不容易出现故障,具有较高的可靠性。
然而,凸轮机构也存在一些缺点:1. 摩擦和磨损问题:由于凸轮和从动件之间的接触,会产生摩擦和磨损,这可能会限制凸轮机构的使用寿命。
2. 噪音和振动:凸轮机构在工作时可能会产生噪音和振动,这对于要求低噪音和低振动的装置来说可能是一个问题。
四、凸轮机构的应用领域凸轮机构广泛应用于各种机械系统中,包括但不限于以下几个领域:1. 汽车工业:凸轮机构被广泛应用于汽车发动机的气门传动系统,实现气门的开闭控制。
凸轮机构运动分析及创新设计试验平台研制

摘要凸轮机构是工程中用来实现机械化和自动化的重要驱动和控制机构之一,在轻工、食品、纺织、印刷、医药、标准零件制造、交通运输等领域运行的工作机械中都获得广泛应用。
但随着社会发展和科技进步,为了提高产品的质量和生产率,作为机械设备核心部件的凸轮机构而言,必须进一步提高它的设计水平,在解析法设计的基础上开展计算机辅助设计的研究和推广应用。
因此,开展对凸轮机构运动分析的研究,对于揭示机构的运动性能,进行机构的优化设计和动力学分析有着重要的实际意义。
本文首先介绍了凸轮机构的发展概况,提出课题的背景和意义,接着指出国内外研究的趋势和国内高校凸轮机构实验仅局限于对运动参数的测量与分析,然后提出以现实生活中最常用的一些凸轮为基础来研究凸轮机构试验平台中从凸轮轮廓设计到加工到试验这一整个系统构成。
凸轮轮廓线的设计在解析法的基础上用计算机软件进行绘制。
凸轮加工的方法用最常见的线切割加工,用CAXA线切割软件来辅助写代码。
平台可测量盘形凸轮,圆柱凸轮,直动从动件及摆动从动件组成的不同的凸轮机构的运动特性。
从动件的回复力采用恒定重力的重力回复,直动的轨道用直线导轨,进一步的提高测量精度。
在实验台中各个传感器的设计位置,可以让学生直观去观察从动件的速度、加速度;同时,为了让实验台的测量数据更加丰富,在实验台上加上旋转编码器,就可以观察和研究凸轮机构的在运行中输入轴的速度,让整个实验台的功能更加的强大,实验内容更加丰富,对凸轮机构运动研究也很有帮助。
关键词:凸轮机构;运动分析;解析法;试验台;软件辅助设计AbstractThe cam mechanism is one of the drive and control mechanism used to achieve the mechanization and automation project, running in the field of light industry, food, textile, printing, medicine, standard parts manufacturing, transportation machinery are widely available. With the social development and scientific and technological progress in order to improve product quality and productivity, as the core components of the cam mechanism of the machinery and equipment necessary to further improve the design level, on the basis of the analytical method designed to carry out the study of computer-aided design and application. Therefore, to carry out the analysis of motion of the cam mechanism to reveal the kinematic performance, the optimal design of the institutions and dynamics analysis has important practical significance. This paper first introduces the overview of the development of the cam mechanism, put forward the background and significance of the topic, then pointed out that research trends at home and abroad and domestic universities cam mechanism experiment is only limited to the measurement and analysis of motion parameters, and then put forward to the most commonly used in real life cam based design of an innovative test platform to conduct a series of experiments to design, analysis and testing of the cam mechanism. Cam profile design computer software to draw on the basis of the analytical method. Cam processing method with the most common line cutting, with CAXA line cutting software to assist write code. Platform to measure disk cam, cylindrical cam, direct-acting the motion characteristics of the follower and oscillating follower cam mechanism. The restoring force of the driven member with constant gravity gravity reply movable straight track with a linear guide, and further improve the measurement accuracy. In the experimental Taichung sensor design, allows students intuitive to observe the follower velocity, acceleration; richer, in orderto allow the measurement data of the bench, and rotary encoders, can be observed in the experimental stage, and research the cam mechanism in the operation of the speed of the input shaft, so that the entire bench more powerful experimental richer, the movement of the cam mechanism is also helpful.Keywords:cam mechanism; motion analysis; analytical method; test bench; software aided design目录摘要Abstract第1章绪论 (1)1.1 引言 (1)1.2 凸轮机构的研究现状和发展趋势 (2)1.1.1 国内外凸轮机构研究现状 (2)1.1.2 凸轮机构研究趋势 (3)1.3 课题设计的内容和意义 (4)第2章凸轮机构的设计理论 (6)2.1凸轮机构的基本参数 (6)2.2 从动件运动规律 (7)2.3凸轮轮廓曲线设计 (10)第3章凸轮的加工方法 (14)3.1 划线加工 (14)3.2 万能铣床加工 (14)3.3数控机床加工 (15)3.4 仿形机床加工 (16)3.5 电火花机床加工 (17)第4章凸轮机构实验平台 (22)4.1 凸轮实验平台的组成 (22)4.1.1直动从动件结构 (22)4.1.2摆动从动件结构 (24)4.1.3圆柱凸轮结构 (24)4.2凸轮机构实验台传动设计 (25)4.2.1选择传动方案 (25)4.2.2 选择电动机 (25)4.2.3涡轮蜗杆减速器 (25)4.2.4同步带传动设计 (26)4.2.5 从动件组件设计 (30)4.3 传感器选择 (32)4.3.1传感器概述 (32)4.3.2传感器选用原则 (33)4.3.3角位移传感器的选择 (34)4.3.4直线位移传感器选择 (36)第5章试验台运动仿真 (37)5.1运动仿真简介 (37)5.2Pro/ENGINEER仿真简介 (38)5.3凸轮机构试验平台运动仿真 (38)第6章总结和展望 (41)参考文献 (42)致谢 (43)第1章绪论1.1 引言凸轮机构是一种重要的驱动和控制机构用来实现机械化跟自动化,广泛的应用在轻工、发动机、纺织、印刷等工业机械中。
凸轮机构运动分析的原理

凸轮机构运动分析的原理凸轮机构是一种常见的机构,用于将旋转运动转化为直线运动或者变化其运动轨迹。
其基本原理是通过凸轮的几何形状和凸轮与其它运动部件的相对位置,实现运动传递和控制。
凸轮机构的运动分析是通过分析凸轮的几何特性和与其它机构部件的作用关系,推导出机构的运动规律和性能参数,包括凸轮的运动学状态、凸轮轮廓的设计,以及机构的运动周期和速度等。
凸轮机构的关键是确定凸轮的几何特性和轮廓形状。
凸轮的几何形状通常是由其运动部位(如凸轮轴)和运动部件(如滑块、摇臂等)的相对位置关系来确定。
在运动分析过程中,可以通过几何图形的绘制和计算,以及几何和尺寸的转换,来确定凸轮的轮廓和运动状态。
其中,常见的凸轮形状有圆形凸轮、椭圆凸轮、伞形凸轮和曲线凸轮等。
凸轮机构的运动分析主要包括以下几个方面的内容:第一,凸轮的转动及滚动运动分析。
根据凸轮与其它运动部件的相对运动关系,可以推导出凸轮的转动规律和速度,并确定凸轮是否有滚动条件。
滚动条件是指凸轮与其它运动部件接触点的相对速度为零,这样可以避免由于滑动产生的摩擦和磨损等问题。
第二,凸轮轮廓的设计与绘制。
通过运动分析和计算,可以确定凸轮的运动规律和性能参数,然后根据这些参数来设计凸轮的轮廓形状。
常用的方法有图解法、计算法和仿真法等。
其中,图解法是最简单直观的方法,通过手绘几何图形来确定凸轮的轮廓形状;计算法则是通过数学模型和计算公式,来计算凸轮的几何参数和轮廓形状;仿真法主要是利用计算机辅助设计(CAD)或仿真软件,来模拟凸轮的运动状态和绘制轮廓图形。
第三,凸轮机构的运动周期与传动比分析。
凸轮机构通常是用来实现特定的工作循环或运动行程,所以需要分析凸轮的运动周期和传动比。
运动周期是指凸轮从一个状态到另一个状态所需的时间,可以通过几何图形和时距图来表示和计算;传动比是指输入轴和输出轴的转速之比,可以通过几何和动力学分析来计算。
第四,凸轮机构的运动状态分析与优化。
通过运动分析,可以得到凸轮机构的运动规律和性能参数,如加速度、速度和位置等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
③ ④ ⑤ ⑥
⑦
理论轮廓 实际轮廓
(3)、对心直动平底推杆盘形凸轮机构
s
已知:rb ,推杆运动规律,凸 轮逆时针方向转动 设计:凸轮廓线
h
0
120
600
900
900
求解步骤:
① ② ③ ④
实际轮廓
定比例尺 初始位置及推杆位移曲线 确定推杆反转运动占据的各位置点; 作推杆高副元素的包络线。
任务:设计内燃机凸轮配气机构。
已 知理论轮廓基圆半径 rb=40mm,从动件的运动规律如 下图所示,凸轮逆时针转动,试用作图法设计内燃机配气机构 盘形凸轮轮廓曲线。
s
30
0
900
600
120
900
图解法设计凸轮轮廓
1、尖顶对心移动从动件盘形凸轮的设计 1)已知条件:位移线图如下,基圆半径为rb=40mm, 凸轮以等角速度ω1逆时针转动,试绘制凸轮的轮廓曲 线。
从动件的运动规律的数学方程式为:
位移
S2 f ( )
dS dS d v2 dt d dt
dv dv d a2 dt d dt
速度
加速度
(1)、等速运动规律
运动线图
位移 h
s
0
t 速度
t’
v
冲击特性:始点、末点刚性冲击 适用场合:低速轻载
0
a
+ 0 - 加速度
s
已知:rb ,推杆运动规律,滚 子半径rk, 凸轮逆时针方向转动 设计:凸轮廓线
h
0
120
600
900
900Leabharlann 求解步骤:① ② 定比例尺 初始位置及推杆位移曲线(注:两 条廓线,理论/实际廓线) 实际廓线基圆rmin 理论廓线基圆rb 确定推杆反转运动占据的各位置; 将各位置点联接成光滑的曲线,即 为理论轮廓曲线; 作出高副元素的包络线。
凸轮绕定轴转动时,可推动从动件在垂直于凸轮轴 的平面内运动。
盘形凸轮机构
盘形凸轮实物
② 移动凸轮——当盘形凸轮的回转中心趋于无穷远
时,盘形凸轮就演化成了移动凸轮。凸轮呈板状, 相对机架做直线运动。
移动凸轮
靠模车削机构
③ 圆柱凸轮——凸轮是一个具有曲
线凹槽或端面曲线轮廓的圆柱,可 以看成是把移动凸轮卷成圆柱体演 化而成。
S H
9
8 10 0 1 2 3 7 6 4 5
0 1 2 3 4 5 6 7 8 9 10 12
2、滚子对心移动从动件盘形凸轮的设计 按尖底从动件的设计方法,
作出理论轮廓曲线在理
论轮廓上画出一系列滚 子,画出滚子的内包络
线得到实际轮廓曲线。
实际廓线
理论廓线
视野拓展 间歇运动机构
用以实现制动、进给、转位或分度功能。
如果要求棘轮作双向间歇运动时,可采用具有矩 形齿的棘轮以及与之相适应的双向棘爪。
有齿的棘轮机构运动可靠,从动棘轮容易实现有级 调节,但是有噪声、冲击,轮齿易摩损,高速时尤其严 重,常用于低速、轻载的间歇传动。 起重机、绞盘常用棘轮机构使提升的重物能停在任 何位置,以防止由于停电等原因造成事故。
自行车后轮
(1)、对心直动尖顶推杆盘形凸轮机构
s
h
已知:rb ,推杆运动规律,凸 轮逆时针方向转动。 设计:凸轮廓线
0
120
600
900
900
求解步骤:
① ② ③ ④ 定比例尺 初始位置及推杆位移曲线 确定推杆反转运动占据的 各位置点 将各位置点联接成光滑的 曲线,即为轮廓曲线。
(2)、对心直动滚子推杆盘形凸轮机构
H S
0
1800
2100
3000
3600
图解法设计凸轮轮廓
解: 1. 把位移曲线等分成12等份,编号 2. 按 1:1 比例作基圆,分12等份,逆着凸轮转向编号 3. 作等分射线 4. 在等分射线上截取相应角度的位移,得尖顶各位置 5. 用曲线光滑连接各点,得凸轮轮廓曲线 0
9
10 1 2
S
自动送料机构
圆柱凸轮实物
2、按从动件形状及运动类型分:
①尖顶从动件 ②滚子从动件 ③平底从动件 ④直动从动件 ⑤摆动从动件
三、凸轮机构的应用举例
1、自动送料机构
2、内燃机配气机构
3、绕线机构
凸轮打包送书机构
一般凸轮机构的命名原则
布置形式+运动形式+推杆形状+凸轮形状
对心直动尖顶推杆 盘形凸轮机构
定位弧
O2
槽轮机构的特点: 结构简单、工作可靠 适用于分度、转位等步进机构
槽轮
2
(二)、槽轮机构的类型 1、 外槽轮机构
2、 内槽轮机构
3、 空间槽轮机构
三、不完全齿轮机构
一、工作原理 由普通齿轮机构演化而来,不同之处在于轮齿不布满整个 圆周。主动轮转一周,从动轮转1/4周。从动轮停歇时,主动 轮上的锁住弧与从动轮上的锁住弧互相配合锁住,以保证从动 轮停歇在预定位置上。
H
8 7 4 6 5
3
0 1 2 3 4 5 6 7 8 9 10 12
图解法设计凸轮轮廓
解: 1. 把位移曲线等分成12等份,编号
2. 以 S =1:1 作基圆,分12等份,逆着凸轮转向编号
3. 作等分射线
4. 在等分射线上截取相应角度的位移,得尖顶各位置 5. 用曲线光滑连接各点,得凸轮轮廓曲线
(4)、偏置直动尖顶推杆盘形凸轮机构
s
了解
已知:rb,偏置圆半径e,推杆运 动规律,凸轮逆时针方向转动 设计:凸轮廓线
h
0
120
600
900
900
求解步骤:
① ② ③ ④ ⑤ 定比例尺 初始位置及推杆位移曲线 偏距圆、基圆 确定推杆反转运动占据的各位置点; 作推杆高副元素的包络线。
环节三、小组讨论—完成任务
学习情境四(4课时)
凸轮机构的运动分析与设计
能力目标:
能够正确分析凸轮机构的类型及特点并合理利用;
能够初步进行凸轮机构的设计。
环节一、提出工作任务
任务:设计某凸轮机构。
已 知理论轮廓基圆半径 rb=40mm,从动件的运动规律如 下图所示,凸轮逆时针转动,试用作图法设计盘形凸轮轮廓曲 线。
s
30
运动线图
h
s
t
0 1 2 3 4 5 6 7 8
v
冲击特性:· 无冲击 适用场合:高速轻载
t
a
t
三、凸轮轮廓轮廓设计
“反转法“原理
-
0 ‘
1” 2”
o o
3” 4”
作图法设计凸轮廓线 作图步骤: ① 根据从动件的运动规律:作出位移线图S-δt,并等分 角度; ② 定基圆; ③ 作出推杆在反转运动中依次占据的位置点; ④ 将各位置点联接成光滑的曲线; ⑤ 在理论轮廓上再作出凸轮的实际轮廓。
一、棘轮机构
(一)、棘轮机构的组成
棘轮机构由摆杆、 棘爪、棘轮、机架、止 回爪等部分组成。
棘轮机构的工作原理、特点和应用
摆杆1左右摆动,当摆杆左摆时,棘爪4插入棘轮3的齿内 推动棘轮转过某一角度。当摆杆右摆时,棘爪4滑过棘轮3,而 棘轮静止不动,往复循环,制动爪5防止棘轮反转。
如果要求摇杆往复运动时都能使棘轮向同一方 向转动,则可采用图所示的双动式棘轮机构。
缺点:从动件与凸轮接触应力大, 易磨损
用途:载荷较小的运动控制
凸轮机构:凸轮是一个具有 曲线轮廓的构件。含有凸 轮的机构称为凸轮机构。 它由凸轮、从动件和机架 组成。
自动送料机构
靠 模 车 削 机 构
3、凸轮机构的分类
(1)、按凸轮的形状分 盘形凸轮 移动凸轮 圆柱凸轮
凸轮绕固定轴回转
相当于机架往复直线移动
+
(2)、等加速等减速运动规律
运动线图
h/2
s
0
t/2 t t/2
h/2
h
冲击特性:起、中、末点柔性冲击
v
适用场合:低速轻载
0 a 0
(3)、余弦加速度运动规律
运动线图
s
1
2
3
4
t
5 6
h δ v δ
冲击特性:始、末点有软性冲击 适用场合:中低速、中轻载
a
δ
δ
(4)、正弦加速度运动规律
偏置直动滚子推杆 盘形凸轮机构
摆动平底推杆 盘形凸轮机构
从动件的常用运动规律 一、凸轮机构从动件运动 规律与凸轮形状的关系
位 移 线 图 的 形 成
从动件的常用运动规律
反转 法求 位移 线图
二、从动件常用的运动规律
1、凸轮机构的基本名词术语
从动件的运动规律是指从动件的位移、速度、加速度等随时 间t或凸轮转角δ 变化的规律。 基圆,基圆半径rb s 推程,推程运动角t
可看成是移动凸轮卷在圆柱体上
(2)、按从动件几何形状分 尖顶从动件 滚子从动件 平底从动件
能与任意凸轮轮廓保持接触, 可实现复杂的运动规律;易磨 损,只宜用于轻载、低速
耐磨、承载大,较常用
接触面易形成油膜,利于润 滑,常 用于高速运动;配合 的凸轮轮廓必须全部外凸
(3)、按凸轮与从动件的锁合(维持高副接触)形式分 力锁合凸轮机构 依靠从动件的重力、弹簧力或其他外力
h A 0
A’
s’
t s h
D
B
t
推程