同解方程

同解方程

同解方程

张鸿云

两个方程,如果第一个方程的解是第二个方程的解,而第二个方程的解也是第一个方程 的解,那么这两个方程叫做同解方程.例如,方程3x -2=7和3x +4=13,这两个方程都只有一个解,而且都是x =3,这两个方程就叫做同解方程.又如方程(x -3)(x -1)=0和5(x -3)(x -l )=0,用3或者1去代替这两个方程中的x ,都得到恒等式0=0.也就是3和1能够使这两个方程左右两边相等.而用其他无论什么数来代替这两个方程中的x 都不能够使某个方程左右两边相等.这两个方程都有,并且只有x 1=3,x 2=1这两个解,这两个方程就叫同解方程.

根据方程的基本性质,可以把一个方程变形成为另一个与它同解的方程,这种变形叫做 同解变形.例如,将方程

=---5

11392x x 1的两边同时乘上15得到方程5(2 x —9)-3(11-x )=15,这个方程与原方程=---511392x x 1同解.

选自《中国小学教学百科全书》

二次微分方程的通解

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐 次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将 y e rx 代入方程 y py qy 0 得 (r 2 pr q )e rx 0 由此可见 只要r 满足代数方程r 2 pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2 pr q 0叫做微分方程y py qy 0的特征方程 特征方程 的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无 关的解

这是因为 函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0 )()2(121111=++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且 x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的 两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关 的实数形式的解 函数y 1e ( i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e ( i )x e x (cos x i sin x ) y 1y 22e x cos x ) (2 1cos 21y y x e x +=βα y 1y 22ie x sin x ) (21sin 2 1y y i x e x -= βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解

解一元一次方程同解方程精选试题附答案

6.2.6同解方程 完成时间:20min 一.选择题(共9小题) 1.已知关于x的方程7x+3k=12与7x+3=0的解相同,则k的值为() A.﹣3 B.3C.﹣5 D.5 2.关于x的方程x+a=2x﹣3与2x﹣b=x有相同的解,则a、b的关系为() A.a﹣b=3 B.b﹣a=3 C.b+a=3 D.b+a+3=0 3.已知方程4x=8与x﹣k=1的解相同,则4k2﹣1的值为() A.1B.3C.8D.17 4.吴云科和孟家福是七年级四班的两名爱好数学的优等生,在学完第三章《一元一次方程》后,吴云科对孟家福说:“方程与方程的解相同,你能求出k的值吗?”孟家福用笔算了 一下给出正确答案,聪明的你知道是哪个吗?() A.0B.2C.1D.﹣1 5.如果方程x=1与2x+a=ax的解相同,则a的值是() A.2B.﹣2 C.3D.﹣3 6.下列方程中与方程3x=x+1的解相同的是() A.2x=4 B.2x=4x﹣1 C.5x+3=6 D.6x﹣15x=3 7.如果方程6x+3a=22与方程3x+5=11的解相同,那么a=() A.B.C. ﹣D. ﹣ 8.在方程:①3x﹣=1;②;③6x﹣5=2x﹣3;④x+=2x中,与方程2x=1的解相同的方程有()A.1个B.2个C.3个D.4个 9.有4个关于x方程: (1)x﹣2=﹣1 (2)(x﹣2)+(x﹣1)=﹣1+(x﹣1) (3)x=0 (4) 其中同解的两个方程是() A.(1)与(2)B.(1)与(3)C.(1)与(4)D.(2)与(4) 二.填空题(共15小题) 10.方程x+2=3的解也是方程ax﹣5=8的解时,则a=_________. 11.已知关于x的方程+3=x与方程3﹣2x=1的解相同,则m2=_________. 12.若方程2x﹣3=11与关于x的方程4x+5=3k有相同的解,则k的值是_________.

二元一次方程组的同解错解参数等问题

二元一次方程组的同解、错解、参数等问题 一. 解下列方程组: 二.含参数的二元一次方程组的解法 二元一次方程组是方程组的基础,是学习一次函数的基础,是中考和竞赛的常见的题目,所以这一部分知识非常重要。 1.、同解 两个二元一次方程组有相同的解,求参数值。 例:已知方程 与 有相同的解, 则a 、b 的值为 。 2、错解 由方程组的错解问题,求参数的值。 例:解方程组???=-=+872y cx by ax 时,本应解出???-==23y x 由于看错了系数c,从而得到解???=-=2 2y x 试求a+b+c 的值。 方法:是正确的解代入任何一个方程当中都对,再把看错的解代入没有看错的方程中去从而求出参数的值。 3、参数问题 根据方程组解的性质,求参数的值。 例:1、m 取什么整数时,方程组的解是正整数? 方法:是把参数当作已知数求出方程的解,再根据已知条件求出参数的值。 (1) (2) ???=+=+4535y ax y x (3) (4) ???=+=-1552by x y x ① ② ???=-=-0362y x my x

4、根据所给的不定方程组,求比值。 2、求适合方程组 ? ? ? = + + = - + 5 4 3 4 3 2 z y x z y x 的 z y x z y x + - + + 的值。 练习: 2.已知关于x y 、的方程组 210 320 mx y x y += ? ? -= ? 有整数解,即x y 、都是整数,m是正整数,求m的值 3、已知关于x y 、的方程组 26 47 x ay x y -= ? ? += ? 有整数解,即x y 、都是整数,a是正整数, 求a的值. 4. 已知方程组由于甲看错了方程①中的a得到方程组的解为 3 1 x y =- ? ? =- ? ; a515 42 x y x by += ? ? -=- ? ① ②

二元一次方程组的同解错解参数等问题

二元一次方程组的同解、错解、参数等问题 一. 解下列方程组 : 二.含参数的二元一次方程组的解法 二元一次方程组是方程组的基础,是学习一次函数的基础,是中考和竞赛的常见的题目,所以这一部分知识非常重要。 1.、同解 两个二元一次方程组有相同的解,求参数值。 例:已知方程 与 有相同的解, 则a 、b 的值为 。 2、错解 由方程组的错解问题,求参数的值。 例:解方程组???=-=+872y cx by ax 时,本应解出???-==23y x 由于看错了系数c,从而得到解???=-=2 2y x 试求a+b+c 的值。 方法:是正确的解代入任何一个方程当中都对,再把看错的解代入没有看错的方程中去从而求出参数的值。 3、参数问题 根据方程组解的性质,求参数的值。 例:1、m 取什么整数时,方程组的解是正整数? (1) (2) ???=+=+4535y ax y x (3) (4) ???=+=-1552by x y x ① ② ? ??=-=-0362y x my x

方法:是把参数当作已知数求出方程的解,再根据已知条件求出参数的值。 4、根据所给的不定方程组,求比值。 2、求适合方程组?? ?=++=-+05430432z y x z y x 的 z y x z y x +-++ 的值。 练习: 2.已知关于x y 、的方程组210320 mx y x y +=??-=?有整数解,即x y 、都是整数,m 是正整数,求m 的值

3、已知关于x y 、的方程组2647x ay x y -=??+=? 有整数解,即x y 、都是整数,a 是正整数, 求a 的值. 4. 已知方程组 由于甲看错了方程①中的a 得到方程组的解为31x y =-??=-? ;乙看错了方程②中的b 得到方程组的解为54 x y =??=?,若按正确的a b 、计算,求原方程组的解. 5..关于x y 、的二元一次方程组59x y k x y k +=?? -=?的解也是二元一次方程236x y +=的解,则k 的值? 6. 若()4360,2700,x y z x y z xyz --=+-=≠求代数式222 222522310x y z x y z +---的值. 7、先阅读,再做题: 1.一元一次方程ax b =的解由a b 、的值决定: ⑴若0a ≠,则方程ax b =有唯一解b x a =; ⑵若0a b ==,方程变形为00x ?=,则方程ax b =有无数多个解; a 515 42x y x by +=??-=-?① ②

非齐次线性方程组同解的判定和同解类

非齐次线性方程组同解的判定和同解类 摘要 本文主要讨论两个非齐次线性方程组同解的条件及当两个非齐次线性方程组的导出组的解空间相同时解集之间的关系。 关键词 非齐次线性方程组 同解 陪集 引言 无论是解齐次线性方程组,还是解非齐次线性方程组.所用的方法都是消元法,即对其系数矩阵或增广矩阵施以行的初等变换,而得到比较简单的同解方程组.用矩阵理论来说,就是系数矩阵或增广矩阵左乘以可逆矩阵后所得线性方程组与原线性方程组据有相同的解.这仅为问题的一面,而问题的反面是,如果两个非齐次线性方程组同解,则它们的系数矩阵或增广矩阵之间是否存在一个可逆矩阵?答案是肯定的,此即是本文主要解决的问题. 预备知识 定理1设,A B 是向量组C 两个线性无关的极大组,则存在可逆矩阵P ,使得 B PA =。 定理2设A 、B 为m n ?矩阵,且秩A =秩B ,如果存在矩阵C ,使得 CA B = 则存在m m ?可逆矩阵P ,使得 PA B = 证明 设秩A =秩B =r ,则存在可逆矩阵1P 与Q 使 011A P A A ??=????, 01B QB B ??=???? 其中0A ,0B 分别为秩数等于r 的r n ?矩阵,由于B CA =,则B 的行可由A 的行线性表出,从而B 的行可由0A 的行线性表出,进而0B 的行可由0A 的行线性表出, 于是矩阵00A B ?? ???? 的行向量组的极大线性无关组为0A 的各行,因为0B 的各行线性无 关且秩0B r =,所以0B 的各行亦构成一个线性无关组,则存在可逆矩阵r P 使得 00r B P A = 又设 110A C A =,12020r B C B C P A == 令 221 0r r n r P P C P C I -?? =? ?-?? 则1P 为可逆矩阵,且

线性方程组解的判定与解的结构

***学院数学分析课程论文 线性方程组解的判定与解的结构 院系数学与统计学院 专业数学与应用数学(师范) 姓名******* 年级 2009级 学号200906034*** 指导教师 ** 2011年6月

线性方程组解的判定与解的结构 姓名****** (重庆三峡学院数学与计算机科学学院09级数本?班) 摘 要:线性方程组是否有解,用系数矩阵和增广矩阵的秩来刻画.在方程组有解且有 多个解的情况下,解的结构就是了解解与解之间的关系. 关键词:矩阵; 秩; 线性方程组; 解 引言 通过系数矩阵和增广矩阵的秩是否相同来给出判定线性方程组的解的判别条件.在了解了线性方程组的判别条件之后,我们进一步讨论解的结构.对于齐次线性方程组,解的线性组合还是方程组的解.在线性方程组有无穷个解时可用有限多个解表示出来.另外以下还涉及到线性方程组通解的表达方式. 1 基本性质 下面我们分析一个线性方程组的问题,导出线性方程组有解的判别条件. 对于线性方程组 1111221121122222 1122n n n n s s sn n s a x a x a x b a x a x a x b a x a x a x b ++???+=??++???+=???????++???+=? (1) 引入向量 112111s αααα??????=?????????,122222s αααα??????=?????????,…12n n n sn αααα??????=????????? ,12s b b b β?? ?? ??=??????? ?? 方程(1)可以表示为 1122n n x x x αααβ++???+= 性质 线性方程组⑴有解的充分必要条件为向量β可以表成向量组α1,α2,…,αn 的线性组合. 定理1 线性方程组⑴有解的充分必要条件为它的系数矩阵

线性方程组的理论和解法

求线性方程组的方法 摘要:线性方程组是线性代数的一个重要组成部分,也在现实生活中有着广泛的运用,在电子工程、软件开发、人员管理、交通运输等领域都起着重要作用。在一些学科领域的研究中,线性方程组也有着不可撼动的辅助性作用,在实验和调查后期利用线性方程组对大量的数据处理是很方便简洁的选择。本文主要围绕如何解线性方程组来进行讲解,对于不同类型的线性方程组的不同方法,并简述线性方程组的一些实际应用。 关键词:齐次线性方程组,非齐次线性方程组,克莱姆法则,消元法,矩阵,矩阵的秩,特解,通解。 英文题目 The solution of linear equation Linear equations linear algebra is one of the important component parts, and in real life has extensive production use,and it plays an important role in electronic engineering, software development, personnel management, transportation, etc. In some discipline study, it also has the reigns of linear equations of the auxiliary function.In experiment and survey using the linear equations of the late on the data processing is very convenient simple choice.

方程组的同解性

方程组的同解性 方程组的同解性 解方程组的基本思路是消元,消元的方法:代入消元法和加减消元法.通过消元把复杂的方程组转化为新的简单的方程组.这里就产生一个问题,所得的新方程组的解是原方程组的解吗?会不会多呢,又会不会少呢?如果在解方程组的过程中,原方程组的解增多或减少,都不能达到解方程组的目的.为了保证在解方程组的过程中,方程组的解保持不变,我们在这里研究一些方程组的解会不会起变化的知识,也就是同解方程组的概念及其有关知识. (1)同解方程组:如果两个方程组的解完全相同,也就是说第一个方程组的所有解都是第二个方程组的解,而第二个方程组的所有解也都是第一个方程组的解,这样的两个方程组叫做同解方程组. 解方程组时需要逐步用同解方程组来代替原方程组.原方程组如果有解,最后的与之同解的方程组的解,就是原方程组的解. 下面介绍三个同解变形定理,作为解方程组的理论根据. 同解定理一:如果方程组里的任何一个方程用和它同解的方程来代替,那么所得的新方程组与原方程组同解. 同解定理二:如果方程组中的一个方程是一个未知数用另一个未知数的代数式来表示的等式,在这方程组里的另一个方程中把这个未知数用这个代数式代替,则所得的新方程组与原方程组同解. 同解定理三:如果把方程组里的一些方程的两边分别相加(或相减)得出一个新方程,并且把原方程组里的任意一个方程换成这个新方程,则所得的新方程组与原方程组同解. 我们重点学习了二元一次方程组的解法,它的基本思想是通过消元将方程组转化为一元一次方程求解.消元的方法重点介绍了两种方法:代入消元法和加减消元法.通过解方程应体会到方程组的解是由它的系数决定的.

方程_同解方程与同解原理

重点、难点 重点1、掌握方程的基本概念: ①已知数:未知数,已知项未知项。 ②元:方程的未知数。 ③次数:方程中各项未知数指数和的最大值。 ④方程:含有未知数的等式。 ⑤方程的解:一般地说,使方程中左,右两边的值相等(简称为使方程成立)的未知数的值叫做方程的解。 方程的根:只有一个未知数的方程的解。 ⑥解方程:求方程的解的过程。 2、同解方程的概念: 在两个方程中,如果第一个方程的解都是第二个方程的解,并且第二个方程的解也都是第一个方程的解,我们就说这两个方程的解相同,这两个方程叫做同解方程。 3、方程的同解原理: ①方程的两边都加上或减去同一个数或同一个整式,所得的方程和原方程是同解方程。 ②方程的两边都乘以或除以同一个不等于0的数,所得的方程求原方程是同解方程。 难点 方程同解原理的应用及方程的变形。 【讲一讲】 例1:判断下列各式是不是方程: ①3x +5 ②x =3 ③5x >-1 ④3+2=5 ⑤3≠4x ⑥210x x - = 分析及解答:方程有②与⑥ ①不是等式 ③是不等式 ④无未知数 ⑤是不等式 例2:判断下列各数是否为方程的解, (1) 23515(6,4)x x x x -=-== (2)211110(2,,1)222 y y y y y --+==-== 分析:判断是否为方程的解,只需用方程的解的定义,把未知数的值代入到方程左,右两边,计算,若使左右相等,则未知数的值就是原方程的解。 解(1)把x =6代入原方程 把x =4代入原方程 左边232639x =-=?-= 左边232435x =-=?-= 右边515561515x =-=?-= 右边51554155x =-=?-= ∵左边≠右边 ∵左边=右边 ∴x =6不是原方程的解 ∴x =4是原方程的解。 (2)把y =-2代入原方程, 左边2211111(2)(2)121102222 y y =--+=-?--?-+=-++= 右边=0 ∵左边=右边 ∴y =-2是原方程的解

课题:二元一次方程组的同解、错解、参数等问题

课题:二元一次方程组的同解、错解、参数等问题 一. 解下列方程组 : 二.含参数的二元一次方程组的解法 二元一次方程组是方程组的基础,是学习一次函数的基础,是中考和竞赛的常见的题目,所以这一部分知识非常重要。 1.、同解 两个二元一次方程组有相同的解,求参数值。 例:已知方程 与 有相同的解, 则a 、b 的值为 。 2、错解 由方程组的错解问题,求参数的值。 例:解方程组???=-=+872y cx by ax 时,本应解出???-==23y x 由于看错了系数c,从而得到解???=-=2 2y x 试求a+b+c 的值。 方法:是正确的解代入任何一个方程当中都对,再把看错的解代入没有看错的方程中去从而求出参数的值。 3、参数问题 根据方程组解的性质,求参数的值。 例:1、m 取什么整数时,方程组的解是正整数? (1) (2) ???=+=+4535y ax y x (3) (4) ???=+=-1552by x y x ① ② ? ??=-=-0362y x my x

方法:是把参数当作已知数求出方程的解,再根据已知条件求出参数的值。 4、根据所给的不定方程组,求比值。 2、求适合方程组?? ?=++=-+05430432z y x z y x 的 z y x z y x +-++ 的值。 练习: 2.已知关于x y 、的方程组210320 mx y x y +=??-=?有整数解,即x y 、都是整数,m 是正整数,求m 的值

3、已知关于x y 、的方程组2647x ay x y -=??+=? 有整数解,即x y 、都是整数,a 是正整数, 求a 的值. 4. 已知方程组 由于甲看错了方程①中的a 得到方程组的解为31x y =-??=-? ;乙看错了方程②中的b 得到方程组的解为54 x y =??=?,若按正确的a b 、计算,求原方程组的解. 5..关于x y 、的二元一次方程组59x y k x y k +=?? -=?的解也是二元一次方程236x y +=的解,则k 的值? 6. 若()4360,2700,x y z x y z xyz --=+-=≠求代数式222 222522310x y z x y z +---的值. 7、先阅读,再做题: 1.一元一次方程ax b =的解由a b 、的值决定: ⑴若0a ≠,则方程ax b =有唯一解b x a =; ⑵若0a b ==,方程变形为00x ?=,则方程ax b =有无数多个解; a 515 42x y x by +=??-=-?① ②

二次微分方程的通解.

第六节二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐次线性 微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程:方程 y''+py'+qy=0 称为二阶常系数齐次线性微分方程,其中p、q均为常数. 如果y1、y2是二阶常系数齐次线性微分方程的两个线性无关解,那么y=C1y1+C2y2就是它的通解. 我们看看,能否适当选取r,使y=e rx满足二阶常系数齐次线性微分方程,为此将y=e rx代入方程 y''+py'+qy=0 得 (r2+pr+q)e rx=0. 由此可见,只要r满足代数方程r2+pr+q=0,函数y=e rx就是微分方程的解.

特征方程: 方程r 2 +pr +q =0叫做微分方程y ''+py '+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出. 特征方程的根与通解的关系: (1)特征方程有两个不相等的实根r 1、r 2时, 函数x r e y 1 1=、 x r e y 22=是方程的两个线性无关的解. 这是因为, 函数x r e y 11=、x r e y 22=是方程的解, 又 x r r x r x r e e e y y )(21212 1-==不是常数. 因此方程的通解为 x r x r e C e C y 2 1 21+=. (2)特征方程有两个相等的实根r 1=r 2时, 函数x r e y 1 1=、x r xe y 1 2=是二阶常系数齐次线性微分方程的两个线性无关的解. 这是因为, x r e y 1 1=是方程的解, 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 1 1 1 1 1 1 )1()2()()()(1211++++=+'+'' 0)()2(12111 1 =++++=q pr r xe p r e x r x r , 所以x r xe y 1 2=也是方程的解, 且x e xe y y x r x r ==1 11 2不是常数. 因此方程的通解为 x r x r xe C e C y 1 1 21+=. (3)特征方程有一对共轭复根r 1, 2=α±i β时, 函数y =e ( α+i β)x 、

求下列微分方程的通解

第一章 绪 论 例1-1 求下列微分方程2 3x dx dy =的通解,并分别求满足下列条件的特解。 (1)通过点)1,2(; (2)与直线x y =相切; (3)与直线13+-=x y 正交。 解 直接积分得方程的通解为C x y +=3。 (1)将代入通解中1,2==y x 得7-=C ,则通过点)1,2(解为73-=x y 。 (2)与直线x y =相切的解满足在切点处斜率相同,有132=x ,即得3 1± =x ,切 点坐标为)3 1, 3 1( 和)3 1,31(- - 。同(1)的解法,与直线x y =相切的解为 3 323 + =x y 和3 32 3- =x y 。 (3)与直线13+-=x y 正交的解在正交点处斜率满足3 132 =x ,即得3 1± =x ,正交 点坐标为)0,31 (和)2,3 1(- 。同(1)的解法所求方程的解为27 553 +=x y 和27 13 -=x y 。 评注:求方程满足某条件的特解,关键要找到所求积分曲线经过的某一特定点的坐标,代入通解中确定出任意常数即可得特解。 例1-2 求与曲线族x Ce y =正交的曲线族。 解 因为曲线族x Ce y =满足的微分方程为y y =',所以与曲线族x Ce y =正交的曲线族满足的微分方程为y y 1- =',解之得C x y +-=22 ,这就是所求曲线族方程。 评注:首先对已给定的曲线族求得其满足的微分方程,其次借助于正交性得到所求曲线族满足的微分方程,再求解此微分方程。有时直接给出一个微分方程,要求求得与此微分方程的积分曲线族正交(或夹角为某一固定值)的曲线族。 例1-3 求一曲线方程,使曲线上任一点平分过该点的法线在两坐标轴之间的线段。 解 设所求的曲线为)(x y y =,过曲线上任一点),(y x 的法线方程为

二元一次方程组的同解

1.若方程组,与方程组有相同的解,则a、b的值分别为() A.1,2B.1,0C.D. 2.若方程组的解中x+y=2019,则k等于()A.2018B.2019C.2020D.2021 3.如果关于x、y的二元一次方程组的解x、y满足x+y=2,那么k的值是()A.﹣2B.﹣3C.3D.2 4.若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A.B.﹣C.D.﹣ 5.关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值是()A.﹣B.C.D.﹣ 6.若关于x,y的方程组的解中x的值比y的值的相反数大2,则k为() A.﹣3B.﹣2C.﹣1D.1 7.若的方程组的解,则关于x、y的方程组的解为()A.B.C.D. 8.已知方程组的解是,则关于x,y的方程组的解是()A.B.C.D. 9.若方程组的解是,则方程组的解是()A.B.C.D. 10.已知关于x,y的方程组,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当m每取一个值时,就有一个方程,这些方程有一个公共解,这个公共解为() A.B.C.D. 11.已知关于x、y的方程组给出下列结论:①是方程组的解;②无论a取何值,x,y的值都不可能互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;④x,y的值都为自然数的解有4对,其中正确的有()A.①③B.②③C.③④D.②③④

12.已知关于x、y的方程组,则下列结论中正确的是() ①当a=1时,方程组的解也是方程x+y=2的解;②当x=y时,a=﹣; ③不论a取什么实数,2x+y的值始终不变;④若z=﹣xy,则z的最小值为﹣1 A.①②④B.①②③C.②③D.②③④ 13.(1)甲、乙两人在一环形场地上从点A同时同向匀速跑步,甲的速度是乙的速度的2.5倍,4min后两人首次相遇,此时乙还需要跑300m跑完第一圈.求甲、乙两人的速度及环形场地的周长. (2)将若干只鸡放入若干笼中,若每个笼中放4只.则有一鸡无笼可放;若每个笼里放5只.则有一笼无鸡可放,问有多少只鸡,多少个笼? 14.岳阳到长沙的公路全长140千米,甲、乙两车同时从岳阳、长沙两地相向开出,0.5h后到达同一地点,甲车比乙车多行了20千米,为了求出甲、乙两车的速度,请你列出相应的方程组. 15.一条船顺流航行,每小时行24km,逆流航行,每小时行18km.为了求轮船在静水中的速度x与水的速度y,你能列出方程组来吗? 16.黄玉骑自行车去香山,她先以8千米/时的速度走平路,而后又以4千米/时的速度上坡到达香山,共用了1.5小时,返回时,先以12千米/时的速度下坡,而后以9千米/时的速度度过平路,回到原出发点,共用去55分钟,求从出发点到香山的路程是多少千米? 17.某校组织八年级师生共420人参观纪念馆,学校联系租车公司提供车辆,该公司现有A,B两种座位数不同的车型,如果租用A种车3辆,B种车5辆,则空余15个座位:如果租用A种车5辆,B种车3辆,则有15个人没座位 (1)求该公司A,B两种车型各有多少个座位? (2)若A种车型的日租金为260元辆,B种车型的日租金为350元辆,怎样租车能使得座位恰好坐满且租金最少?最少租金是多少?(请直接写出答案) 18.甲、乙两人从相距18千米的两地同时出发,相向而行,经小时相遇.如果甲比乙先出发小时,那么在乙出发后经小时两人相遇.求甲、乙两人的速度. 19.游泳池中有一群小朋友,男孩子戴蓝色帽,女孩子戴红色帽,若每位男孩子看到的蓝色帽比红色帽多5个,则每位女孩子看到的蓝色帽是红色帽的2倍多1个,问男孩子与女孩子各多少人? 20.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价5万元/件,乙种产品售价3万元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A 种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨. (1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元? (2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,要求甲种产品比乙种产品多生产15件,如何安排甲、乙两种产品,使总产值是131.7万元.

5、浅谈方程组的同解原理在初中数学中的应用

浅谈方程组的同解原理在初中数学中的应用 张剑 (甘肃省宕昌县南阳中学,甘肃宕昌 748507)摘要:本文通过初中数学中常见的解方程组的问题,结合<<代数教材教法>>中方程组的同解原理举例论述,从而阐述了初中数学方程组的解法和技巧。使学生在解方程组时有章可循,有据可依,全面调动学生的积极性。 关键词:方程组的同解原理;方程组的解法;举例应用 解方程组的基本思想是“消元”和“降次”.教师在教学过程中,往往是按上面的方法去教和练,但数学是一门逻辑性严密的学科,当学生提出为什么这样做时,似乎没有合理的解释,笔者从事多年的数学教学,认为对“简单的二元二次方程组”一节应提出方程组的同解原理并加以解释,使学生在解题时有章可循,有据可依十分重要.消元的方法主要是代入法和加减法,降次的方法一般是换元法和因式分解法. 为了表达简练,规定记号A(x?y),B(x?y)表示含有未知数x、y 的二元二次整式(例如A=22 -++-);规定记号M(x、y),N(x、 x4y x3y1 y)表示含有未知数x、y的二元一次整式(如M(x?y)=2x-y-1). 一、方程组的同解原理1、2及其应用 定理1:如果方程M(x?y)=0与N(x?y)=0是同解方程,那么方程组

(1) A ()0M ()0{ ??, ; x y =x y = (2)A ()0N ()0. { ??,x y =x y = 是同解方程组(摘自《初等代数教材教法》第267页定理13). 这个定理告诉我们,方程组中某一个方程变形后与未变方程组成的方程组是同解方程组. 定理2:已知y=ax+b (a ≠0),把y 代入A (x ?y )中的y 处,消去y ,得到一个只含x 的式子,记为P (x ),那么方程组 (1) A ()0y ax b(a 0){ ?+≠, ; x y == 与 (2)P ()0y ax b (a 0). { +≠,x == 是同解方程组(摘自《初等代数教材教法》第269页定理15). 这个定理告诉我们,把一个方程代入另一个方程所得的方程与被代入方程组成的方程组是同解方程组,它是代入消元法的依据. 例1解方程组 22x 02x y 10{ --=, ; -4y +x+3y-1= 解:由②得 y=2x-1 ③ 由于②与③同解,由定理1,得 22x 02x y 10{ --=, ; -4y +x+3y-1= 由定理2,得 22 x 0y 2x 1{ =-, ; -4(2x-1)+x+3(2x-1)-1=

二次微分方程的通解

教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程方程 y py qy 0 称为二阶常系数齐次线性微分方程其中p、q均为常数 如果y i、y2是二阶常系数齐次线性微分方程的两个线性无关解那么y Gy i Cy就是它 的通解 我们看看能否适当选取r 使y e”满足二阶常系数齐次线性微分方程为此将y e"代入方程 y py qy 0 得 2 rx ( r pr q) e 0 由此可见只要r满足代数方程r pr q 0 函数ye”就是微分方程的解 2 特征方程方程r pr q 0叫做微分方程y py qy 0的特征方程特征方程的两个根「1、「2可用公式 p Jp24q 2 122 求出 特征方程的根与通解的关系 (1) 特征方程有两个不相等的实根r i、「2时函数y1 e rix、y2 e r2X是方程的两个线性无

关的解 这是因为

y 函数y 1 e riX 、y 2 e r2X 是方程的解 又丄1春e (ri r2)x 不是常数 y e r2X 因此方程的通解为 y C i e rix C 2e r2X (2) 特征方程有两个相等的实根 r i 「2时 函数比e riX 、y 2 xe riX 是二阶常系数齐次线性 微分方程的两个线性无关的解 这是因为 y i e riX 是方程的解 又 p(xe 「iX ) q(xe 「iX ) (2r i xr i 2)e riX p(i xr-i )e riX qxe 「iX e riX (2r i p ) xe riX (r i 2 pr i q ) 0 所以y 2 xe riX 也是方程的解 因此方程的通解为 y Ce riX C 2xe riX (3) 特征方程有一对共轭复根 两个线性无关的复数形式的解 rx 且昱X 不是常数 y i e riX r i, 2 i 时 函数y e ( 函数 y e x cos x 、y e x sin 的实数形式的解 可以验证 y i e x cos x 、y 2 e x sin x 是方程的线性无关解 因此方程的通解为 y i e ( i )X X e (cos X i sin x ) y 2 e ( i )x X e (cos X i sin x ) y i y 2 2e X cos X e x cos X 珈 Y 2) y i y 2 2ie X si n X e x sin x 2i (y i y 2) 函数 y i e ( i )x 和 y 2 e ( i )x 都是方程的解 故e x cos x 、y 2 e x sin x 也是方程解 (xe riX ) i )x 、y e ( i )x 是微分方程的 x 是微分方程的两个线性无关 而由欧拉公式

二次微分方程的通解

二次微分方程的通解Last revision on 21 December 2020

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐次线 性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 ypyqy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么yC 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使ye rx 满足二阶常系数齐次线性微分方程 为此将ye rx 代入方程 ypyqy 0 得 (r 2prq )e rx 0 由此可见 只要r 满足代数方程r 2prq 0 函数ye rx 就是微分方程的解 特征方程 方程r 2prq 0叫做微分方程ypyqy 0的特征方程 特征方程的两个根r 1、r 2可用公式 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解 这是因为 函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(21212 1-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又

常微分方程的通解

教学参考 常微分方程的通解* 钱明忠 陈友朋 (盐城师范学院数学科学学院 江苏盐城 224002) 摘要 给出常微分方程通解的定义,研究常微分方程的通解和所有解之间的关系,给出通解包含所有解的若干充分性条件. 关键词 通解;常数独立;所有解 中图分类号 O175.1 常微分方程的通解和所有解是两个不同的概念,但不少教材未将这两个概念说清楚,甚至于将两者混淆起来,例如文献[1][2]等,给学生理解和求解常微分方程带来了困难.事实上,有些方程 的通解就不包含所有解.例如方程d y d x =1-y 2 1-x2 的通解为arcsin y=arcsin x+C,其中C为任意常 数,而y=1也是该方程的解,它不包含在通解之中;又如y=0是方程d y d x =y x -(y x )2的一个解, 它不包含在该方程的通解y= x ln|x|+C (C为任意常数)之中. 本文将给出常微分方程通解的定义,同时研究常微分方程的通解和所有解之间的关系,然后给出通解包含所有解的若干充分性条件,证明过程突出通解定义中的 常数独立条件的验证这一关键,为进一步区分通解和所有解带来了方便. 考虑如下一般的n阶常微分方程 F(x,y,d y d x ,!, d n y d x n )=0.(1) 定义 若函数y= (x,c1,c2,!,c n)是方程(1)的解,且其中的任意常数c1,c2,!,c n独立,即, , ?,!, (n-1)关于c1,c2,!,c n的雅可比(Jacobi)行列式 D( , ?,!, (n-1)) D(c1,c2,!,c n)) #0, 其中 (k)(k=1,2,!,n-1)表示 对x的k阶导数.则称y= (x,c1,c2,!,c n)为常微分方程(1)的通解.如果关系式 (x,y,c1,c2,!,c n)=0所确定的隐函数y= (x,c1,c2,!,c n)为方程(1)的通解,则称关系式 (x,y,c1,c2,!,c n)=0为方程(1)的隐式通解,也简称为方程(1)的通解. 对于一般的常微分方程,其通解不一定包含所有解而仅仅是所有解的一部分.但在一些特殊情形下,方程的通解包含它的所有解.例如,n阶线性微分方程 d n y d x n +a1(x) d n-1y d x n-1 +!+a n-1(x) d y d x +a n(x)y=f(x),(2) 其中a i(x)(i=1,2,!,n)及f(x)为区间[a,b]上的已知连续函数,则有如下结论:定理1 设y1(x),y2(x),!,y n(x)为方程(2)所对应的齐次线性方程 d n y d x n +a1(x)d n-1y d x n-1 +!+a n-1(x)d y d x +a n(x)y=0 106 高等数学研究 ST U DI ES IN COL L EGE M A T H EM A T ICS V ol 10,N o 4 Jul.,2007 *收稿日期:2006-02-08;修改稿:2007-05-25.

二阶常系数齐次线性微分方程的通解证明

二阶常系数齐次线性微分方程的通解证明 来源:文都教育 在考研数学中,微分方程是一个重要的章节,每年必考,其中的二阶常系数齐次线性微分方程是一个基本的组成部分,它也是求解二阶常系数非齐次线性微分方程的基础,但很多同学对其求解公式不是十分理解,做题时也感到有些困惑,为了帮助大家对其通解公式有更深的理解和更牢固的掌握,文都网校的蔡老师下面对它们进行一些分析和简捷的证明,供考研的朋友们学习参考。 一、二阶常系数齐次线性微分方程的通解分析 通解公式:设0y py qy '''++=,,p q 为常数,特征方程02 =++q p λλ的特征根为12,λλ,则 1)当12λλ≠且为实数时,通解为1212x x y C e C e λλ=+; 2)当12λλ=且为实数时,通解为1112x x y C e C xe λλ=+; 3)当12,i λλαβ=±时,通解为12(cos sin )x y e C x C x αββ=+; 证:若02=++q p λλ的特征根为12,λλ,则1212(),p q λλλλ=-+ =,将其代入方程0y py qy '''++=中得1212()y py qy y y y λλλλ''''''++=-++= 212212()()()0y y y y y y y y λλλλλλ'''''''=---=---=, 令2z y y λ'=-,则11110x dz z z z z c e dx λλλ'-=? =?=,于是121x y y c e λλ'-=,由一阶微分方程的通解公式得 221212()()()1212[][]dx dx x x x y e c e e dx C e c e dx C λλλλλλ----??=+=+?? …(1) 1)当12λλ≠且为实数时,由(1)式得原方程的通解为

相关文档
最新文档