平面汇交力系与力偶
平面汇交力系和平面力偶系的平衡

平衡方程
平面汇交力系
例 已知:系统如图,不计杆、轮自重,忽略滑轮大小, P=20kN; 求:系统平衡时,杆AB,BC受力.
1.1 平面汇交力系的平衡
解: AB、BC杆为二力杆,取滑轮B (或点B),画受力图.建图示 坐标系
1.2 平面力偶系的平衡
1.平面力偶系的合成和平衡条件 已知:
任选一段距离d
=
=
=Leabharlann 1.2 平面力偶系的平衡平面力偶系平衡的充要条件 ,有如下平衡方程 平面力偶系平衡的必要和充分条件是:所有各力偶矩 的代数和等于零。
1.2 平面力偶系的平衡
例 已知: 求: 光滑螺柱 AB所受水平力.
解 由力偶只能由力偶平衡的性质, 其受力图为
解得
1.1 平面汇交力系的平衡
1.平面汇交力系合成
合力 FR 在x轴,y轴投影分别为
合力等于各力矢量和
由合矢量投影定理,得合力投影定理
合力的大小为:
方向为:
cos(FR
,
i)
Fix FR
作用点为力的汇交点.
cos(FR
,
j)
Fiy FR
2.平面汇交力系的平衡方程 平面汇交力系平衡的必要和充分条件是:该力系的合力为零。
1.1 平面汇交力系的平衡
平面力系:各力的作用线在同一平面内。 平面汇交力系:各力的作用线都在同一平面内且汇交于一点的力系。 平面平行力系:各力的作用线都在同一平面内且相互平行的力系。 平面力偶系:在同一平面内有n个力偶作用,形成一个平面力偶系。 平面任意力系:各力的作用线都在同一平面内且任意分布的力系。
第二章平面汇交力系及平面力偶系

1、两力的合成方法——平行四边形法则。
2、多个力的合成。方法——力多边形法 则(依据平行四边形法则)。将汇交
力系各力平行移至首尾相接,起点至
第
终点连线为合力。
一 章
静 力 学 基 础
理论力学教学课件
第一节 平面汇交力系的合成
一、几何法(作图法)
F1
R12
O
F2
F3
R123
同理 :Ry= F1y+ F2y+ F3y
R FX 2 Fy 2
第二节 平面汇交力系合成的解析法
例 用 解 析 法 求 三 力 的 合 力 。 已 知 F1=100N ,
F2=200N,F3=300N 。
F1
45°
O
F2
解:F1X=F1COS45°=71N F1y=F1sin45°=71N F2X=F2=200N
静 力
自行封闭。
学 基
础
第二节 平面汇交力系的合成与 平衡的解析法
一、解析法合成(计算 ) 1、力在直角坐标轴上的投影
y
a’
A
αF
B
b’
oa
b
x
ab:F在x轴上的投影(Fx). a’b’:F在y轴上的投影(Fy)。
Fx=ab=Fsinα
第
一
Fy=a’ b’= - Fcosα
章
静 力 学 基 础
第二节 平面汇交力系合成的解析法
解:据平衡方程:ΣFx=0 ΣFy=0
ΣFy=-P- FD cos30°-FCBsin30°=0 FCB=-74.6 KN (BC杆受压) ΣF x=-FAB - FD sin30°FCBcos30°=0 FAB =54.6 KN (AB杆受拉)
t2平面汇交力系与平面力偶系

在机械工程、土木工程等领域中,需要分析物体在多个力矩作用下的平衡状态,以确定物体的转动状态和稳定性。
03
平面汇交力系与平面力偶 系的联系
力的平移定理
力的平移定理:一个作用在刚体上的力,可以平移而不改变它对刚体的作用,但必 须同时附加一力偶。
力的平移定理描述了力的位置变化对刚体运动的影响,即力的平移不会改变刚体的 运动状态,但需要附加一个与原力等效的力偶。
t2平面汇交力系与平面力偶 系
contents
目录
• 平面汇交力系 • 平面力矩与平面力偶系 • 平面汇交力系与平面力偶系的联系 • 实例分析
01
平面汇交力系
定义与性质
定义
平面汇交力系是指所有力都汇交于一 点或者所有力都位于同一平面内的力 系。
性质
平面汇交力系中,力的方向和大小是 确定的,且所有力的作用线都汇交于 一点或者都位于同一平面内。
02
在进行工程设计和建设时,需 要充分考虑各种力和力矩的作 用,并进行精确的分析和计算 。
03
在机械、航空航天、交通等工 程领域,平面汇交力系与平面 力偶系的应用非常广泛,它们 是工程力学的重要组成部分。
感谢您的观看
THANKS
平面汇交力系主要应用于刚体 在平面运动中的动力学问题,
如机械手、机器人等。
平面力偶系主要应用于分析 旋转刚体的平衡问题,如电
机转子、涡轮机等。
在实际应用中,需要根据问题 的具体需求选择合适的力系进 行分析,以简化问实际工程中的平面汇交力系问题
01
平面汇交力系在工程中常常出现在固定装置的受力分析,例如桥梁、 建筑物的固定连接处。
平面力矩的合成
规则
平面力矩的合成遵循平行四边形定则,即以两个力为邻边作 平行四边形,其对角线矢量等于两个力的力矩之和。
平面汇交力系和平面力偶系

第二章 平面汇交力系与平面力偶系§2.1平面汇交力系合成与平衡的几何法一、汇交力系合成与平衡的几何法 汇交力系:是指各力的作用线汇交于同一点的力系。
若汇交力系中各力的作用线位于同一平面内时,称为平面汇交力系,否则称为空间汇交力系。
1、平面汇交力系的合成先讨论3个汇交力系的合成。
设汇交力系1F ,2F ,3F汇交于O (图1),由静力学公理3:力的平行四边形法则(力的三角形)可作图2,说明)(),,(321F F F F=如图和图所示,其中321F F F F ++=F2F 3F OFO1F 2F 3F12F讨论:1)图2中的中间过程12F 可不必求,去掉12F 的图称为力多边形,由力多边形求合力大小和方向的方法称为合力多边形法则。
2)力多边形法则:各分力矢依一定次序首尾相接,形成一力矢折线链,合力矢是封闭边,合力矢的方向是从第一个力矢的起点指向最后一个力矢的终点。
3)上述求合力矢的方法可推广到几个汇交力系的情况。
结论:汇交力系合成的结果是一个合力,合力作用线通过汇交点,合力的大小和方向即:∑=i F F用力多边形法则求合力的大小和方向的方法称为合成的几何法。
2.平面汇交力系的平衡1F 2F iF 2-n F 1-n F n F设作用在刚体上的汇交力系),,(21n F F F 为平衡力系,即 0),,(21≡n F F F先将121,,-n F F F 由力多边形法合成为一个力1-N F,(∑-=-=111n i i N F F )0),(),,(121≡≡-n N n F F F F F由静力公理1,作用在刚体上二力平衡的必要充分条件是:1-N F 与n F等值,反向,共线,即n N F F =-1, 可得01=+-n N F F,或0=∑i F结论:平面汇交力系平衡的必要与充分条件是:力系中各力的乖量和为零,用几何法表示的平衡条件是0=∑i F,力多边形自行封闭。
例1. 已知:简支梁AB ,在中点作用力F,方向如图,求反力FA B C45F AF BACα 45FF BF α解:1。
第二章-平面汇交力系与平面力偶系

FC FA
2FC sin 30 Q 0 FC Q FA Q
例2-3:重物P=20kN,用钢丝绳挂在支架 的滑轮B上,钢丝绳的另一端缠绕在绞车D 上。杆AB 与BC 铰接,并以铰链A、C与 墙连接。如两杆和滑轮的自重不计,并忽 略摩擦和滑轮的大小,试求平衡时杆AB 和BC 所受的力。
平面汇交力系与平面力偶系是两种简单力系, 是研究复杂力系的基础。 本章研究问题: (1)平面汇交力系的几何法与解析法 (2)平面力偶的基本特性 (3)平面力偶系的合成与平衡
§2-1 平面汇交力系合成与平衡的几何法
所有的力在同个平面内且作用线交于一点为平面 汇交力系,三力平衡为其一。
几何法:根据力的平行四边形规则作图得出。
FNA
A
B
FNA
水平坐标系:
FNB
F
y`
30 60 °
x`
FNB F
o`
A B
FNA
FNB
FNA
同样得:
也可以用几何法,画出封闭的力三角形求解,解得此结果。
工件对V形铁的压力与FNA、FNB等值反向。
例:在图示结构中各构件的自重略去不计。在构件AB上作用 一力偶矩为M的力偶,求支座A和C的约束反力。
(a) (b)
FBC、 FAB 均为正值,表示力的假设方向与实际方向 相同,即杆 BC 受压,杆 AB 受拉力。
例:不计杆重。D处受力G,求A、 C处的约束反力。 解:
画受力图
FLASH
Sa大小、方向不知,Sb大小不知,三个未知数
由几何关系:
1 tg tg 3
X 0, Y 0,
SB cos SA cos 0
SB sin SA sin G 0
平面汇交力系和平面力偶系

平面汇交力系和平面力偶系
平面汇交力系和平面力偶系是平面力学中的两个重要概念。
平面汇交力系是指各力的作用线在同一平面内且汇交于一点的力系。
在平面汇交力系中,力的大小和方向可以通过力的矢量表示。
平面汇交力系的合成可以通过力的多边形法则来进行,即将各个力按照首尾相接的顺序连接起来,形成一个封闭的多边形,合力则为这个多边形的封闭矢量。
平面力偶系是指由若干个力偶组成的力系,其中力偶是由大小相等、方向相反且不共线的两个力组成的力矩对。
在平面力偶系中,力偶的作用效果是产生旋转,而不是平移。
平面力偶系的合成可以通过力偶矩的代数和来进行。
平面汇交力系和平面力偶系在工程和物理学中有广泛的应用。
在结构分析、机械设计和力学问题中,常常需要考虑和分析平面汇交力系和平面力偶系的作用效果。
总的来说,平面汇交力系和平面力偶系是平面力学中的重要概念,它们的合成和平衡条件对于理解和解决平面力学问题至关重要。
第二章-1 平面汇交力系与平面力偶系
第二章-1 平面汇交力系与平面力偶系一、判别题(正确和是用√,错误和否×,填入括号内。
)2-1 平面汇交力系平衡的充分与必要的几何条件是:力多边形自行封闭。
(√)2-2 力在某一固定面上的投影是一个代数量。
(×)2-3 两个力F1、F2大小相等,则它们在同一轴上的投影也相等。
(×)2-4 一个力不可能分解为一个力偶;一个力偶也不可能合成一个力。
(√)2-5 力偶无合力、不能用一个力来等袒代替,也不能用一个力来平衡;(√)2-6 力偶无合力,也就是说力偶的合力等于零。
(×)2-7 力偶矩和力对点之矩本质上是二样的,讲的是一回事。
(×)2-8 力偶的作用效果取决于力偶矩的大小和转向。
(√)2-9 只要两力偶的力偶矩代数值相等,就是等效力偶。
(√)2-10 力偶中的两个力对同平面内任一点之矩的代数和等于力偶矩。
(√)2-11 力偶只能用力偶来平衡。
(√)2-12 平面力偶系可简化为一个合力偶。
(√)2-13 力偶可任意改变力的大小和力偶臂的长短。
(×)2-14 力偶的两力在其作用面内任意轴上的投影的代数和都等于零。
(√)2-15 若两个力F1、F2在同一轴上的投影相等,则这两个力相等,即F1 = F2。
(×)2-16 若两个力F1、F2大小相等,则在同一轴Ox上投影相等,即F1x = F2x。
(×)2-17 若两个力F1、F2大小、方向、作用点完全相同,则这两个力在任一轴上的投影相等。
(√)2-18 若两个力大小相等、方向相反,则在任一轴Ox上的投影大小相等。
(√)2-19 若两个力平行,则它们在任一轴上的投影相等。
(×)2-20 若两个力在某轴上的投影均为零,则该两力平行。
(√)2-21 图示为分别作用在刚体上A、B、C、D点的4个共面力,它们所构成的力多边形自行封闭且为平行四边形。
由于力多边形自行封闭,所以是平衡的。
第二章1平面汇交力系与平面力偶系
2.欲将碾子拉过障碍物,水平拉力 F 至少多大? F 3.力 F 沿什么方向拉动碾子最省力,及此时力 多大?
解:取碾子画受力图. 用几何法,按比例画封闭力四边形
R h θ arccos 30 R
F B sin θ F F A F B cosθ P
F 1 1 .4 k N A
由合力投影定理可得:
F F 2 0 0 0 4 3 3 0 0 N 6 3 3 0 N x x
F F 0 2500 3000 N 550 N y y
则合力的大小为:
2 x 2 y 2 2
FF F 6 3 3 0 5 5 0 0 N 8 3 8 6 N
F , X 0 F , Y 0 8 0 4 5 4 R R 0 D A 4 5 PR A
各力的汇交点
(4) 解得
R A 5 P 22 . 4 kN 2
R R D A
1 10 kN 5
力的值为负值,表示假设的指向与实际指向相反.
例4. 简易压榨机如图所示。已知P试求当连杆AB、AC与铅垂线成角时,托板给被压物 体的力。
O
tg
F Ry F Rx
F F
RY
RX
平面汇交力系平衡的必要和充分条 y 件是该力系的合力为零: F R 0
F F 0 Rx X
O
F F 0 Ry X
例2.如图所示吊环受到三条钢丝绳的拉力作用。已知F1=2000N, F2=5000N,F3=3000N。试求合力。
FR F23 F1 F12 F2
F4
FR
F4
F2 F4
FR
F3
第2章 平面汇交力系和平面力偶系
9
例题 1
解:
1. 选碾子为研究对象,受力分析如图b所示。
F
R O
各力组成平面汇交力系,根据平衡的几何条
件,力P , F , FA和FB组成封闭的力多边形。
qP
B
由已知条件可求得
A
h
cos q R h 0.866
(a)
R
q 30
FO
再由力多边形图c 中各矢量的 几何关系可得
解得
FB sin q F FA FB cosq P
(2)应用合力矩定理
MO (F ) MO (Fx ) MO (Fy )
F cosq l cosj F sinq l sinj Fl cos(q j)
22
§2—4 平面力偶 1.力偶与力偶矩
由两个大小相等、方向相反且不共线的平行力组成的力系,
称为力偶。如图所示,记作(F,F')。力偶的两力之间
如图轧路碾子自重P = 20
kN,半径 R = 0.6 m,障碍物高
h = 0.08 m碾子中心O处作用一
水平拉力F,试求: (1)当水平 拉力F = 5 kN时,碾子对地面和
R
FO
障碍物的压力;(2)欲将碾子拉
q
过障碍物,水平拉力至少应为多
B
大;(3)力F 沿什么方向拉动碾
A
h
子最省力,此时力F为多大。
大小取决于力的大小与力臂的乘积,平面力对点之矩是一 个代数量。它的转向人为规定一般取逆时针转向时为正, 反之为负。
F对矩心点O之矩
MO(F) r
ห้องสมุดไป่ตู้Oh
B F A
M O (F ) Fh 2 AOAB
式中 AOAB为三角形OAB 的 面积,如图所示。单位为 N•m或kN •m。
理论力学第二章平面汇交力系与平面力偶系
合力作用点:为该力系的汇交点
2-2 平面汇交力系合成与平衡的解析法
(2)平面汇交力系平衡的充要条件: 各力在两个坐标轴上投影的代数和分别等于零。 ——平面汇交力系的平衡方程
X0,
Y
i 1
n
i
0
只可求解两个未知量
[ 例1 ] 系统如图,不计杆、轮自重,忽略滑轮大小, 已知: P=20kN; 求:系统平衡时,杆AB、BC受力。
解:AB、BC杆为二力杆,
取滑轮B(或点B),画受力图。 用解析法,建图示坐标系
Fix 0
FBA F1 cos 60 F2 cos 30 0
Fiy 0
FBC F1 cos 30 F2 cos 60 0
F1 F2 P
解得: FBC
27.32kN
②应用合力矩定理
mO ( F ) Fx l F y l ctg
m o (Q ) Q l
[例P28 2-4,习题P38 2-10]
[例2]水平梁AB受按三角型分布的载荷作用,如图所示。 载荷的最大值为q,梁长l ,试求合力作用线的位置。
解:在距A端x 的微段dx上, 作用力的大小为q’dx,其中 q’ 为该处的载荷强度。由图可知 ,q’=xq/l。,因此分布载荷合 力的大小为: l
2-2 平面汇交力系合成与平衡的解析法
二、平面汇交力系合成的解析法:
各分力在x轴和在y轴投影的代数 和 等于合力在对应轴上的投影。
FR x X 1 X 2 X 4
X
FR y Y1 Y2 Y3 Y4
Y
i
i
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
y
y
F FN B FBC
′ FBC
θ
FCD x
′ FCE
θ
E
FN E
θ
B
C
θ
(a) (b)
θ
C
(c) 图 2-7
x′ FCE
FN H
(d)
解
y
y
FBC
θ
FDE
′ FDB
θ
D
F
FDB
x
B F AB
(c)
x
(a)
(b) 图 2-8
12
解
(1)节点 D,坐标及受力如图 2-8b,由平衡理论得
∑ Fy = 0,
解得
∑ Fx = 0, FDB − FDE cos θ = 0 FDE sin θ − F = 0
FDB = F cot θ 讨论:也可以向垂直于 FDE 方向投影,直接得 FDB = F cot θ
y
F2
ϕ
γ β
F1
(a) 图 2-4
θ
x
P
(b)
解
坐标及受力如图 2-4b 所示,由平衡理论得
∑ Fx = 0, F1 cos(θ + β ) − F2 sin ϕ = 0 F2 sin ϕ = F1 cos(θ + β )
10
(1)
∑ Fy = 0,
式(1)除以式(2),得
F1 sin(θ + β ) − P + F2 cos ϕ = 0
(3)节点 E,受力如图 2-7d 所示
∑ Fy = 0 ,
即工件所受的压紧力
FNH = F 'CE cosθ = FNH = F 2 sin 2 θ
F 2 sin 2 θ
2-8 图 2-8a 所示为 1 拨桩装置。在木桩的点 A 上系 1 绳,将绳的另 1 端固定在点 C, 在绳的点 B 系另 1 绳 BE,将它的另 1 端固定在点 E。然后在绳的点 D 用力向下拉,使绳的 BD 段水平,AB 段铅直,DE 段与水平线、CB 段与铅直线间成等角 θ = 0.1 rad (当 θ 很小 。如向下的拉力 F=800 N,求绳 AB 作用于桩上的拉力。 时, tan θ ≈ θ )
F2 = 173 kN
如图 2-5a 所示,刚架的点 B 作用 1 水平力 F,刚架重量不计。求支座 A,D 的约
y F B C x
FA
(a) 图 2-5
A
(b)
D
FD
解 研究对象:刚架。由三力平衡汇交定理,支座 A 的约束力 FA 必通过点 C,方向如 图 2-5b 所示。取坐标系 Cxy ,由平衡理论得
3F1 = 1.553F1 2 cos 15°
3F1 (压) 2 cos 15°
(2)节点 B,坐标及受力如图 2-9c 所示,由平衡理论得
F2 = − 3FAB =
即
F1 ﹕ F2 = 0.644
2-10 如图 2-10 所示,刚架上作用力 F。试分别计算力 F 对 点 A 和 B 的力矩。 解 M A ( F ) = − Fb cos θ
∑ Fx = 0, ∑ Fy = 0,
式(1)、(2)联立,解得
F − FA × FD − FA ×
2 5 1
=0 =0
(1) (2)
5
FA =
5 F = 1.12 F , FD = 0.5 F 2
2-6 如图 2-6a 所示, 输电线 ACB 架在两线杆之间, 形成 1 下垂曲线, 下垂距离 CD=f=1 m,两电线杆距离 AB=40 m。电线 ACB 段重 P=400 N,可近似认为沿 AB 连线均匀分布。求 电线中点和两端的拉力。
FB =
M M , FA = l l M l M l cosθ
∑ M A = 0 , FB l − M = 0 , FB = FA =
(c)梁 AB,受力如图 2-12c1 所示。
∑ M A = 0 , FB l cos θ − M = 0 , FB = FA =
2-13 图 2-13a 所示结构中, 各构件自重不计。 在构件 AB 上作用 1 力偶矩为 M 的力偶, 求支座 A 和 C 的约束力。 解 (1)BC 为二力杆: FC = − FB (图 2-13c) (2)研究对象 AB,受力如图 2-13b 所示, FA , FB 构成力偶,则
∠( FR , Fx ) = arccos(
( 3 915
2
+ 3 107 2
)
N = 4 998 N
∑ Fx 3 915 N ) = arccos( ) = 38°26′ 4 998 N FR
(2)几何法 作力多边形 Oabc,封闭边 Oc 确定了合力 FR 的大小和方向。根据图 2-2c,得
FR = ( F1 + F2 cos 40°) 2 + ( F3 + F2 sin 40°) 2
FR = (80i + 140 j ) N
FR = (80 N) 2 + (140 N) 2 = 161 N
2-2 如图 2-2a 所示,固定在墙壁上的圆环受 3 条绳索的拉力作用,力 F1 沿水平方向, 力 F3 沿铅直方向,力 F2 与水平线成 40°角。3 个力的大小分别为 F1=2 000 N,F2=2 500 N, F3=1 500 N。求 3 个力的合力。
11
∑ F y = 0, FTA sinθ − W1 = 0
式(1) 、 (2)联立,解得
(2)
FT A =
W1 = sin θ
200 N 1 10 2 + 12
= 2 010 N
10 10 2 + 12
FT C = FT A cosθ = 2 010 N ×
因对称
= 2 000 N
FT B = FT A = 2 010 N
(2)
F2 cos ϕ = P − F1 sin(θ + β )
tan ϕ =
代入有关数据,解得
F1 cos(θ + β ) P − F1 sin(θ + β )
将 ϕ 值等数据代入式(1),得 2-5 束力。
ϕ = 30° γ = 90° + ϕ − β = 90° + 30° − 25° = 95°
= (2 000 + 2 500 cos 40°) 2 + (1 500 + 2 500 sin 40°) 2 =4 998 N ∑ Fx 3 915 N = arccos = 38°26′ ∠( FR , F1 ) = arccos FR 4 998 N
2-3 物体重 P=20 kN,用绳子挂在支架的滑轮 B 上,绳子的另 1 端接在绞车 D 上,如 图 2-3a 所示。转动绞车,物体便能升起。设滑轮的大小、杆 AB 与 CB 自重及摩擦略去不计, A,B,C 三处均为铰链连接。当物体处于平衡状态时,求拉杆 AB 和支杆 CB 所受的力。
y
x
A
45° 60° F1
FAB
FAC
(a) (b) 图 2-9
x ′ FAB B 30° F2 30° F BD y
(c)
解
(1) 节点 A,坐标及受力如图 2-9b 所示,由平衡理论得
∑ Fx = 0,
∑ Fx = 0,
FAB cos15° + F1 cos 30° = 0 , FAB = −
− FAB cos 30° − F2 cos 60° = 0
M B ( F ) = − Fb cosθ + Fa sin θ = F (a sin θ − b cosθ )
图 2-10
2-11 为了测定飞机螺旋桨所受的空气阻力偶,可将飞机水平放置,其 1 轮搁置在地秤 上,如图 2-11a 所示。当螺旋桨未转动时,测得地秤所受的压力为 4.6 kN ,当螺旋桨转动 时,测得地秤所受的压力为 6.4 kN 。已知两轮间距离 l = 2.5 m ,求螺旋桨所受的空气阻力 偶的矩 M 。
l/2
M B
l
(a1)
A FA
(a)
FB
l /3
A
FA
(b)
M
l
(b1)
B
FB
θ FA A
(c) 图 2-12
l/2
M l
(c1)
B
θ FB
解 (a) 梁 AB,受力如图 2-12a1 所示。 F A , F B 组成力偶,故
FA = FB
∑ M A = 0 , FB l − M = 0 ,
(b)梁 AB,受力如图 2-12b1 所示。
FT A
y
10 m
10 m P/2 O
θ
(a)
(b)
解 本题为悬索问题,这里采用近似解法,假定绳索荷重均匀分布。取 AC 段绳索为研 究对象,坐标及受力如图 2-6b 所示。图中:
W1 =
由平衡理论得
P = 200 N 2
(1)
∑ Fx = 0, FT C − FT A cosθ = 0
(1)轮 B,受力如图 2-7 b 所示。由平衡理论得
F (压) sin θ (2)节点 C,受力如图 2-7c 所示。由图 2-7c 知, F ' BC ⊥ FCD ,由平衡理论得 F ∑ Fx = 0, FBC − FCE cos(90° − 2θ ) = 0 , FCE = BC sin 2θ ∑ Fy = 0 , FBC =
∠( FR , F1 ) = arccos( F1 + F2 × 4 / 5 ) FR 100 N + 50 N × 4 / 5 = arccos( ) = 29.74 o = 29 o 44′ 161 N