高中数学必修1-5知识点1

合集下载

高中数学必修1、3、4、5知识点归纳及公式大全

高中数学必修1、3、4、5知识点归纳及公式大全

必修 1 数学知识点第一章、会合与函数观点§、会合1、把研究的对象统称为元素,把一些元素构成的整体叫做会合。

会合三因素:确立性、互异性、无序性。

2、只需构成两个会合的元素是同样的,就称这两个会合相等。

3、常有会合:正整数会合:N *或 N ,整数会合: Z ,有理数会合:Q ,实数会合: R .4、会合的表示方法:列举法、描绘法.§、会合间的基本关系1、一般地,对于两个会合 A 、B ,假如会合 A 中随意一个元素都是会合 B 中的元素,则称会合A是会合 B的子集。

记作 A B .2、假如会合A B ,但存在元素x B ,且 x A ,则称会合A是会合B的真子集.记作:A B.3、把不含任何元素的会合叫做空集.记作:.并规定:空会合是任何会合的子集.4、假如会合 A 中含有 n 个元素,则会合 A有 2 n个子集.§、会合间的基本运算1、一般地,由所有属于会合 A 或会合 B 的元素构成的会合,称为会合 A 与 B 的并集 .记作:2、一般地,由属于会合 A 且属于会合 B 的所有元素构成的会合,称为 A 与 B 的交集 .记作:3、全集、补集C U A { x | x U , 且 x U }§、函数的观点A B .A B .1、设 A 、 B 是非空的数集,假如依据某种确立的对应关系 f ,使对于会合 A 中的随意一个数x ,在会合 B 中都有唯一确立的数 f x 和它对应,那么就称 f : A B 为会合A到会合 B 的一个函数,记作:y f x , x A .2 、一个函数的构成因素为:定义域、对应关系、值域.假如两个函数的定义域同样,并且对应关系完整一致,则称这两个函数相等.§、函数的表示法1、函数的三种表示方法:分析法、图象法、列表法.§、单一性与最大(小)值1、注意函数单一性证明的一般格式:解:设 x1 , x2a, b 且 x1x2,则: f x1 f x2=§、奇偶性1、一般地,假如对于函数f x的定义域内随意一个x ,都有f x f x,那么就称函数f x.为偶函数偶函数图象对于y 轴对称.2 、一般地,假如对于函数f x 的定义域内随意一个x ,都有 f x f x ,那么就称函数f x 为奇函数.奇函数图象对于原点对称.第二章、基本初等函数(Ⅰ)§、指数与指数幂的运算1、一般地,假如x n a ,那么 x 叫做 a 的 n 次方根。

高中数学必修1-5常考难点

高中数学必修1-5常考难点

高中数学必修1-5常考难点必修一第一章:集合和函数的基本概念这一章的易错点,都集中在空集这一概念上,而每次考试基本都会在选填题上涉及这一概念,一个不小心就会丢分。

次一级的知识点就是集合的韦恩图、会画图,掌握了这些,集合的“并、补、交、非”也就解决了。

还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。

在第一轮复习中一定要反复去记这些概念,最好的方法是写在笔记本上,每天至少看上一遍。

第二章:基本初等函数——指数、对数、幂函数三大函数的运算性质及图像函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。

关于这三大函数的运算公式,多记多用,多做一点练习,基本就没问题。

函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。

对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及函数值的大小关系,这也是常考点。

另外指数函数和对数函数的对立关系及其相互之间要怎样转化等问题,需要着重回看课本例题。

第三章:函数的应用这一章主要考是函数与方程的结合,其实就是函数的零点,也就是函数图像与X 轴的交点。

这三者之间的转化关系是这一章的重点,要学会在这三者之间灵活转化,以求能最简单的解决问题。

关于证明零点的方法,直接计算加得必有零点,连续函数在x轴上方下方有定义则有零点等等,这些难点对应的证明方法都要记住,多练习。

二次函数的零点的Δ判别法,这个需要你看懂定义,多画多做题。

必修二第一章:空间几何三视图和直观图的绘制不算难,但是从三视图复原出实物从而计算就需要比较强的空间感,要能从三张平面图中慢慢在脑海中画出实物,这就要求学生特别是空间感弱的学生多看书上的例图,把实物图和平面图结合起来看,先熟练地正推,再慢慢的逆推(建议用纸做一个立方体来找感觉)。

在做题时结合草图是有必要的,不能单凭想象。

后面的锥体、柱体、台体的表面积和体积,把公式记牢问题就不大。

高中高一数学必修1各章知识点总结

高中高一数学必修1各章知识点总结

高中高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a∈A ,相反,a不属于集合A 记作 a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系(5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B① 任何一个集合是它本身的子集。

高中数学必修+选修知识点归纳大全

高中数学必修+选修知识点归纳大全

高中数学必修+选修知识点归纳大全引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上是每一个高中学生所必须学习的。

上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。

不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

此外,基础内容还增加了向量、算法、概率、统计等内容。

选修课程有4个系列:系列1:由2个模块组成。

选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。

选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。

选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。

选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。

系列3:由6个专题组成。

选修3—1:数学史选讲。

选修3—2:信息安全与密码。

选修3—3:球面上的几何。

选修3—4:对称与群。

选修3—5:欧拉公式与闭曲面分类。

选修3—6:三等分角与数域扩充。

系列4:由10个专题组成。

选修4—1:几何证明选讲。

选修4—2:矩阵与变换。

选修4—3:数列与差分。

选修4—4:坐标系与参数方程。

选修4—5:不等式选讲。

选修4—6:初等数论初步。

选修4—7:优选法与试验设计初步。

选修4—8:统筹法与图论初步。

选修4—9:风险与决策。

选修4—10:开关电路与布尔代数。

2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算必修1数学知识点第一章:集合与函数概念§1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。

人教版高中数学必修一知识点与重难点

人教版高中数学必修一知识点与重难点

人教版高中数学必修一————各章节知识点与重难点第一章集合与函数概念1.1 集合1.1.1集合的含义与表示【知识要点】1、集合的含义一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。

2、集合的中元素的三个特性〔1〕元素确实定性;〔2〕元素的互异性;〔3〕元素的无序性2、“属于〞的概念我们通常用大写的拉丁字母A,B,C, ……表示集合,用小写拉丁字母a,b,c, ……表示元素如:如果a是集合A的元素,就说a属于集合A 记作 a∈A,如果a不属于集合A 记作 a A3、常用数集及其记法非负整数集〔即自然数集〕记作:N;正整数集记作:N*或 N+ ;整数集记作:Z;有理数集记作:Q;实数集记作:R4、集合的表示法〔1〕列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

〔2〕描述法:用集合所含元素的公共特征表示集合的方法称为描述法。

①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x∈R| x-3>2}或{x| x-3>2}〔3〕图示法〔Venn图〕【重点】集合的根本概念和表示方法【难点】运用集合的三种常用表示方法正确表示一些简单的集合【知识要点】1、“包含〞关系——子集一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作A⊆B2、“相等〞关系如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B A B B A且⇔⊆⊆3、真子集如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A⊂B(或B⊃A)4、空集不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集.【重点】子集与空集的概念;用Venn图表达集合间的关系【难点】弄清元素与子集、属于与包含之间的区别【知识要点】1、交集的定义一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作“A交B〞),即A∩B={x| x∈A,且x∈B}.2、并集的定义一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。

高中数学必修1-5_知识点总汇+公式大全

高中数学必修1-5_知识点总汇+公式大全

数学必修 1-5 常用公式及结论必修 1: 一、集合 1、含义与表示: ( 1)集合中元素的特征:确定性,互异性,无序性(2)集合的分类;有限集,无限集 ( 3)集合的表示法:列举法,描述法,图示法2、集合间的关系:子集:对任意x A ,都有 x B ,则称 A 是 B 的子集。

记作 AB真子集:若 A 是 B 的子集,且在B 中至少存在一个元素不属于A ,则 A 是B 的真子集,记作 AB 集合相等:若:A B,BA ,则 AB3. 元素与集合的关系:属于不属于:空集:4、集合的运算:并集:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为A B 交集:由集合 A 和集合 B 中的公共元素组成的集合叫交集,记为 A B补集:在全集 U 中,由所有不属于集合A 的元素组成的集合叫补集,记为C U A5.集合 { a 1, a 2 , , a n } 的子集个数共有 2n个;真子集有 2n–1 个;非空子集有 2n–1 个;6. 常用数集:自然数集: N 正整数集: N *整数集: Z有理数集: Q 实数集: R二、函数的奇偶性1、定义: 奇函数<=> f (–x ) = –f ( x ) ,偶函数<=> f (–x ) = f ( x )(注意定义域)2、性质:(1)奇函数的图象关于原点成中心对称图形;( 2)偶函数的图象关于 y 轴成轴对称图形;( 3)如果一个函数的图象关于原点对称,那么这个函数是奇函数;( 4)如果一个函数的图象关于 y 轴对称,那么这个函数是偶函数.二、函数的单调性1、定义:对于定义域为D 的函数 f ( x ),若任意的 x 1, x 2∈ D ,且 x 1 < x 2 ① f ( x 1 ) < f ( x 2 ) <=> f ( x 1 ) –f ( x 2 ) < 0 <=> f ( x )是增函数 ② f ( x 1 ) > f ( x 2 )<=> f ( x 1 ) –f ( x 2 ) > 0<=> f ( x )是减函数2、复合函数的单调性 : 同增异减三、二次函数 y = ax2+bx + c ( a 0 )的性质b 4ac b2b 4ac b 21、顶点坐标公式:,, 对称轴: x,最大(小)值:2a4a2a4a2. 二次函数的解析式的三种形式(1) 一般式 f ( x) ax2bx c(a 0) ; (2) 顶点式 f (x) a( x h)2k(a 0) ;(3) 两根式f ( x) a( x x 1 )( x x 2 )(a0) .四、指数与指数函数1、幂的运算法则:(1) a m ? a n = am + n,( 2) amanam n,( 3) ( a m ) n = am n( 4)( ab ) n = a n ? bnnnn(5)a a n( 6)a 0= 1 ( a ≠0)(7) a n1 (8) a m ma n( 9) am1bbnanma n2、根式的性质( 1) ( na )na .( 2)当 n 为奇数时, nana ; 当 n 为偶数时, n an| a | a, a 0 .a,a 04、指数函数 y = ax(a > 0 且 a ≠ 1) 的性质:(1)定义域: R ; 值域: (0,+∞)( 2)图象过定点( 0,1)YYa > 10 < a < 111XX5. 指数式与对数式的互化: log a N ba bN (a0, a 1, N 0) .五、对数与对数函数1 对数的运算法则:(1) a b= N <=> b = loga N ( 2)log a 1 = 0( 3) log a a = 1( 4) log a a b= b ( 5) a loga N= N(6) log a (MN) = log a M + log a NM( 7) log a () = log a M -- log a NN(8) log a N blog b N = b log a N (9)换底公式: log a N =alog b(10)推论log a m b n nlog a b ( a 0 ,且 a 1 , m, n 0 ,且 m 1, n 1, N 0 ). m1( 12)常用对数: lg N = log 10 N(13)自然对数:ln A = log e A (11)log a N =log N a(其中 e = 2.71828, )2、对数函数 y = log a x (a > 0 且 a≠ 1) 的性质:(1)定义域: ( 0 , +∞) ;值域:R ( 2)图象过定点(1,0)Ya >1 Y0 < a < 101 X1 X六、幂函数 y = x a的图象 : (1)根据 a 的取值画出函数在第一象限的简图.a > 10 < a < 1 a < 011 x 1 例如: y = x2 y x x 2 yx七. 图象平移:若将函数y f ( x) 的图象右移a、上移 b 个单位,得到函数 y f (x a) b 的图象;规律:左加右减,上加下减八. 平均增长率的问题如果原来产值的基础数为N,平均增长率为p ,则对于时间x的总产值y ,有1( ) x.y N p九、函数的零点: 1. 定义:对于y f ( x) ,把使 f (x) 0 的X叫 y f (x) 的零点。

高中数学北师大版必修1-全册-知识点总结全文编辑修改

精选全文完整版可编辑修改高中数学北师大版必修1 全册 知识点总结第一章集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念把某些特定的对象集在一起就叫做集合. (2)常用数集及其记法N 表示自然数集;N *或N +表示正整数集;Z 表示整数集;Q 表示有理数集;R 表示实数集. (3)集合与元素间的关系对象a 与集合M 的关系是a M ∈;或者a M ∉;两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来;写在大括号内表示集合. ③描述法:{x |x 具有的性质};其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素;则它有2n 个子集;它有21n-个真子集;它有21n -个非空子集;它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集Bx ∈A A=∅=∅A B A⊆B B ⊆ B{|x x x ∈A A =A ∅=⑼ 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A ==分配律:)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A UA A UA U Φ=ΦΦ===等幂律:.,A A A A A A == 求补律:A ∩ A ∪=U反演律:(A ∩B)=(A)∪(B) (A ∪B)=(A)∩(B)第二章函数§1函数的概念及其表示一、映射1.映射:设A 、B 是两个集合;如果按照某种对应关系f ;对于集合A 中的 元素;在集合B 中都有 元素和它对应;这样的对应叫做 到 的映射;记作 .2.象与原象:如果f :A →B 是一个A 到B 的映射;那么和A 中的元素a 对应的 叫做象; 叫做原象.二、函数1.定义:设A 、B 是 ;f :A →B 是从A 到B 的一个映射;则映射f :A →B 叫做A 到B 的 ;记作 .2.函数的三要素为 、 、 ;两个函数当且仅当 分别相(3)A B A ⊇A B B⊇补集{|,}x x U x A ∈∉且%1 (%1%1%1 %1同时;二者才能称为同一函数.3.函数的表示法有 、 、 .§2函数的定义域和值域一、定义域:1.函数的定义域就是使函数式 的集合. 2.常见的三种题型确定定义域:① 已知函数的解析式;就是 .② 复合函数f [g(x )]的有关定义域;就要保证内函数g(x )的 域是外函数f (x )的 域.③实际应用问题的定义域;就是要使得 有意义的自变量的取值集合. 二、值域:1.函数y =f (x )中;与自变量x 的值 的集合.2.常见函数的值域求法;就是优先考虑 ;取决于 ;常用的方法有:①观察法;②配方法;③反函数法;④不等式法;⑤单调性法;⑥数形法;⑦判别式法;⑧有界性法;⑨换元法(又分为 法和 法)例如:① 形如y =221x +;可采用 法;② y =)32(2312-≠++x x x ;可采用法或 法;③ y =a [f (x )]2+bf (x )+c ;可采用 法;④ y =x -x-1;可采用 法;⑤ y =x -21x -;可采用 法;⑥ y =xx cos 2sin -可采用 法等.§3函数的单调性一、单调性1.定义:如果函数y =f (x )对于属于定义域I 内某个区间上的任意两个自变量的值x 1、、x 2;当x 1、<x 2时;①都有 ;则称f (x )在这个区间上是增函数;而这个区间称函数的一个 ;②都有 ;则称f (x )在这个区间上是减函数;而这个区间称函数的一个 .若函数f (x )在整个定义域l 内只有唯一的一个单调区间;则f (x )称为 .2.判断单调性的方法:(1) 定义法;其步骤为:① ;② ;③ .(2) 导数法;若函数y =f (x )在定义域内的某个区间上可导;①若 ;则f (x )在这个区间上是增函数;②若 ;则f (x )在这个区间上是减函数. 二、单调性的有关结论1.若f (x ), g (x )均为增(减)函数;则f (x )+g (x ) 函数; 2.若f (x )为增(减)函数;则-f (x )为 ; 3.互为反函数的两个函数有 的单调性;4.复合函数y =f [g(x )]是定义在M 上的函数;若f (x )与g(x )的单调相同;则f [g(x )]为 ;若 f (x ), g(x )的单调性相反;则f [g(x )]为 .5.奇函数在其对称区间上的单调性 ;偶函数在其对称区间上的单调性 .§4函数的奇偶性1.奇偶性:① 定义:如果对于函数f (x )定义域内的任意x 都有 ;则称f (x )为奇函数;若 ;则称f (x )为偶函数. 如果函数f (x )不具有上述性质;则f (x )不具有 . 如果函数同时具有上述两条性质;则f (x ) . ② 简单性质:1) 图象的对称性质:一个函数是奇函数的充要条件是它的图象关于 对称;一个函数是偶函数的充要条件是它的图象关于 对称. 2) 函数f (x )具有奇偶性的必要条件是其定义域关于 对称. 2.与函数周期有关的结论:①已知条件中如果出现)()(x f a x f -=+、或m x f a x f =+)()((a 、m 均为非零常数;0>a );都可以得出)(x f 的周期为 ;②)(x f y =的图象关于点)0,(),0,(b a 中心对称或)(x f y =的图象关于直线b x a x ==,轴对称;均可以得到)(x f 周期第三章 指数函数和对数函数§1 正整数指数函数 §2 指数扩充及其运算性质1.正整数指数函数函数y =a x (a>0;a≠1;x ∈N +)叫作________指数函数;形如y =ka x (k ∈R ;a >0;且a ≠1)的函数称为________函数. 2.分数指数幂(1)分数指数幂的定义:给定正实数a ;对于任意给定的整数m ;n (m ;n 互素);存在唯一的正实数b ;使得b n =a m ;我们把b 叫作a 的mn 次幂;记作b=m na ;(2)正分数指数幂写成根式形式:m na =nam(a >0); (3)规定正数的负分数指数幂的意义是:m na-=__________________(a >0;m 、n ∈N +;且n >1);(4)0的正分数指数幂等于____;0的负分数指数幂__________. 3.有理数指数幂的运算性质 (1)a m a n =________(a >0); (2)(a m )n =________(a >0); (3)(ab )n=________(a >0;b >0).§3 指数函数(一)1.指数函数的概念一般地;________________叫做指数函数;其中x 是自变量;函数的定义域是____.2.指数函数y =a x (a >0;且a ≠1)的图像和性质§4 对数(二)1.对数的运算性质如果a >0;且a ≠1;M >0;N >0;则: (1)log a (MN )=________________; (2)log a MN=________;(3)log a M n =__________(n ∈R ). 2.对数换底公式 log b N =logaNlogab(a ;b >0;a ;b ≠1;N >0); 特别地:log a b ·log b a =____(a >0;且a ≠1;b >0;且b ≠1).a >10<a <1图像定义域 R 值域(0;+∞) 性 质过定点过点______;即x =____时;y =____ 函数值 的变化 当x >0时;______; 当x <0时;________ 当x >0时;________; 当x <0时;________ 单调性是R 上的________是R 上的________§5 对数函数(一)1.对数函数的定义:一般地;我们把______________________________叫做对数函数;其中x 是自变量;函数的定义域是________.________为常用对数函数;y =________为自然对数函数. 2.对数函数的图像与性质 对数函数y =log a x (a >0且a ≠1)和指数函数____________________互为反函数.第四章 函数应用 §1 函数与方程1.1 利用函数性质判定方程解的存在2.函数y =f (x )的零点就是方程f (x )=0的实数根;也就是函数y =f (x )的图像与x 轴的交点的横坐标.定义 y =log a x (a >0;且a ≠1) 底数 a >1 0<a <1 图像定义域 ______ 值域 ______单调性 在(0;+∞)上是增函数 在(0;+∞)上是减函数共点性 图像过点______;即log a 1=0函数值 特点 x ∈(0,1)时; y ∈______; x ∈[1;+∞)时;y ∈______.x ∈(0,1)时; y ∈______; x ∈[1;+∞)时; y ∈______.对称性函数y =log a x 与y =1log a x 的图像关于______对称3.方程f(x)=0有实数根⇔函数y=f(x)的图像与x轴有________⇔函数y=f(x)有________.4.函数零点的存在性的判定方法如果函数y=f(x)在闭区间[a;b]上的图像是连续曲线;并且在区间端点的函数值符号相反;即f(a)·f(b)____0;则在区间(a;b)内;函数y=f(x)至少有一个零点;即相应的方程f(x)=0在区间(a;b)内至少有一个实数解.1.2 利用二分法求方程的近似解1.二分法的概念每次取区间的中点;将区间__________;再经比较;按需要留下其中一个小区间的方法称为二分法.由函数的零点与相应方程根的关系;可用二分法来_________________________________________________________________.2.用二分法求函数f(x)零点近似值的步骤(给定精确度ε)(1)确定区间[a;b];使____________.(2)求区间(a;b)的中点;x1=__________.(3)计算f(x1).①若f(x1)=0;则________________;②若f(a)·f(x1)<0;则令b=x1(此时零点x0∈(a;x1));③若f(x1)·f(b)<0;则令a=x1(此时零点x0∈(x1;b)).(4)继续实施上述步骤;直到区间[a n;b n];函数的零点总位于区间[a n;b n]上;当a n和b n按照给定的精确度所取的近似值相同时;这个相同的近似值就是函数y=f(x)的近似零点;计算终止.这时函数y=f(x)的近似零点满足给定的精确度.。

高中数学必修1-5知识点汇总

高一数学必修1知识网络集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。

、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。

、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。

真子集:若且(即至少存在但),则是的真子集。

集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B BC ard A B C ard A C ard B C ard A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩函数,,,A B A x B y f B A B x y x f y y x y →映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义 按照某个对应关系都有唯一确定的值和它对应。

高中数学必修1-5知识点归纳及公式大全

按住Ctrl 键单击鼠标左打开配套名师教学视频动画播放 必修1数学知识点第一章、集合与函数概念§1.1.1、集合 1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。

集合三要素:确定性、互异性、无序性。

2、 只要构成两个集合的元素是一样的,就称这两个集合相等。

3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法.§1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。

记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 如果集合A 中含有n 个元素,则集合A 有n2个子集.§1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A .2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A .3、全集、补集?{|,}U C A x x U x U =∈∉且§1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.§1.2.2、函数的表示法 1、 函数的三种表示方法:解析法、图象法、列表法.§1.3.1、单调性与最大(小)值1、 注意函数单调性证明的一般格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…§1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称.第二章、基本初等函数(Ⅰ)§2.1.1、指数与指数幂的运算1、 一般地,如果a x n=,那么x 叫做a 的n 次方根。

高中数学新教材必修第一册知识点总结

高中数学新教材必修第一册知识点总结第一章集合与常用逻辑用语1.1集合的概念1.集合的描述:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合,简称为集.2.集合的三个特性:(1)描述性:“集合”是一个原始的不加定义的概念,它同平面几何中的“点”、“线”、“面”等概念一样,都只是描述性地说明.(2)整体性:集合是一个整体,暗含“所有”、“全部”、“全体”的含义,因此一些对象一旦组成了集合,这个集合就是这些对象的总体.(3)广泛性:组成集合的对象可以是数、点、图形、多项式、方程,也可以是人或物等.3.集合中元素的三个特性:(1)确定性:对于给定的集合,它的元素必须是确定的.即按照明确的判断标准(不能是模棱两可的)判断给定的元素,或者在这个集合里,或者不在这个集合里,二者必居其一.(2)互异性:一个给定的集合中的元素是互不相同的.也就是说集合中的元素是不能重复出现的. (3)无序性:集合中的元素排列无先后顺序,任意调换集合中的元素位置,集合不变.4.集合的符号表示通常用大写的字母A,B,C,…表示集合,用小写的字母a,b,c表示集合中的元素.5.集合的相等当两个集合的元素是一样时,就说这两个集合相等.集合A与集合B相等记作A B=.6.元素与集合之间的关系(1)属于:如果a是集合A中的元素,就说a属于集合A,记作a A∈,读作a属于A.(2)不属于:如果a不是集合A中的元素,就说a不属于集合A,记作a A∉,读作a不属于A.7.集合的分类(1)有限集:含有有限个元素的集合叫做有限集.如方程21x=的实数根组成的集合.(2)无限集:含有无限个元素的集合叫做无限集.如不等式10x->的解组成的集合.8.常用数集及其记法数学数学数学 2(1)正整数集:全体正整数组成的集合叫做正整数集,记作*N或N.+(2)自然数集:全体非负整数组成的集合叫做自然数集,记作N.(3)整数集:全体整数组成的集合叫做整数集,记作Z.(4)有理数集:全体有理数组成的集合叫做有理数集,记作Q.(5)实数集:全体实数组成的集合叫做实数集,记作R.9.集合表示的方法(1)自然语言:用文字叙述的形式描述集合的方法.如所有正方形组成的集合,所有实数组成的集合.例如,三角形的集合.(2)列举法:把集合的元素一一列举出来表示集合的方法叫做列举法.其格式是把集合的元素一一列举出来并用逗号隔开,然后用花括号括起来.例如,我们可以吧“地球上的四大洋”组成的集合表示为{太平洋,大西洋,印度洋,北冰洋},把“方程(1)(2)0-+=的所有实数根”组成的集合表示为x x-.{1,2}(3)描述法:通过描述集合所含元素的共同特征表示集合的方法叫做描述法.一般格式为{()}x p x,其数学数学数学 3中x是集合中的元素代表,()p x则表示集合中的元素所具有的共同特征.例如,不等式73x-<的解集可以表示为∈-<=∈<.x R x x R x{73}{10}1.2集合间的基本关系1. 子集一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记为A B或(B A)读作集合A包含于集合B(或集合B包含集合A).集合A是集合B的子集可用Venn图表示如下:数学数学数学 4数学 数学 数学 5或关于子集有下面的两个性质: (1)反身性:A A ⊆;(2)传递性:如果A B ⊆,且B C ⊆,那么A C ⊆. 2.真子集如果集合A B ⊆,但存在元素x B ∈,且x A ∉,我们称集合A是集合B 的真子集,记为A B ⊂≠(或B A ⊃≠), 读作集合A 真包含于集合B (或集合B 真包含集合A ). 集合A 是集合B 的真子集可用Venn 图表示如右.数学 数学 数学 63.集合的相等如果集合A B ⊆,且B A ⊆,此时集合A 与集合B 的元素是一样的,我们就称集合A 与集合B 相等,记为 A B =.集合A 与集合B 相等可用Venn 图表示如右. 4.空集我们把不含任何元素的集合叫做空集,记为∅.我们规定空集是任何一个集合的子集,空集是任何一个非空集合的真子集,即 (1)A ∅⊆(A 是任意一个集合); (2)A ⊂∅≠(A ≠∅). 1.3集合的运算 1.并集自然语言:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与B的并集,记作数学 数学 数学 7A B ⋃(读作“A 并B ”). 符号语言: {,}A B x x A x B ⋃=∈∈或. 图形语言:理解:x A ∈或x B ∈包括三种情况:x A ∈且x B ∉;x B ∈且x A ∉;x A ∈且x B ∈. 并集的性质: (1)A B B A ⋃=⋃;(5) A =BA (4)B B(3)A (2)A 与B 没有有公共元素(1)A 与B 有公共元素,相互不包含(2)A A A⋃=;(3)A A⋃∅=;(4)()()⋃⋃=⋃⋃;A B C A B C(5)A A B⊆⋃;⊆⋃,B A B(6)A B B A B⋃=⇔⊆.2.交集自然语言:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A B⋂(读作“A交B”).符号语言:{,}⋂=∈∈A B x x A x B且.图形语言:数学数学数学8数学 数学 数学 9理解:当A 与B 没有公共元素时,不能说A 与B 没有交集,只能说A 与B 的交集是∅. 交集的性质: (1)A B B A ⋂=⋂; (2)A A A ⋂=;BA(5)A=B,A B=A=B(4)B A,A B=B(3)A B,A B=AA B(2)A 与B 没有公共元素,A B=(1)A 与B 有公共元素,且互不包含数学 数学10(3)A ⋂∅=∅;(4)()()A B C A B C ⋂⋂=⋂⋂; (5)A B A ⋂⊆,A B B ⋂⊆; (6)A B A A B ⋂=⇔⊆. 3.补集(1)全集的概念:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U . (2)补集的概念自然语言:对于一个集合A ,由属于全集U 且不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,记为UA .符号语言: {,}UA x x U x A =∈∉且图形语言:数学 数学 数学 11补集的性质 (1)()U A A ⋂=∅; (2)()U A A U ⋃=; (3)()()()U U UA B A B ⋃=⋂; (4)()()()U U UA B A B ⋂=⋃.1.4充分条件与必要条件 1.充分条件与必要条件一般地,“若p ,则q ”为真命题,是指由p 通过推理可以得出q .这时,我们就说,由p 可推出q ,记作p q⇒,并且说p是q的充分条件,q是p的必要条件.在生活中,q是p成立的必要条件也可以说成是: q⌝⇒p⌝(q⌝表示q不成立),其实,这与p q⇒是等价的.但是,在数学中,我们宁愿采用第一种说法.如果“若p,则q”为假命题,那么由p推不出q,记作/p q⇒.此时,我们就说p不是q的充分条件,q不是p的必要条件.2.充要条件如果“若p,则q”和它的逆命题“若q则p”均是真命题,即既有p q⇒,又有q p⇒就记作⇔.p q此时,我们就说p是q的充分必要条件,简称为充要条件.显然,如果p是q的充要条件,那么q也是p 的充要条件.概括地说,如果p q⇔,那么p与q互为充要条件.“p是q的充要条件”,也说成“p等价于q”或“q当且仅当p”等.1.5全称量词与存在量词数学数学数学121.全称量词与存在量词(1)全称量词短语“所有的”,“任意一个”在逻辑中通常叫做全称量词,并用符号“”表示.常见的全称量词还有“一切”,“每一个”,“任给”,“所有的”等.含有全称量词的命题,叫做全称量词命题.全称量词命题“对M中的任意一个x,有()p x成立”可用符号简记为p x,x M,()读作“对任意x属于M,有()p x成立”.(2)存在量词短语“存在一个”,“至少有一个”在逻辑中通常叫做存在量词,并用符号“”表示.常见的存在量词还有“有些”,“有一个”,“对某个”,“有的”等.含有存在量词的命题,叫做存在量词命题.存在量词命题“存在M中的元素x,使()p x成立”可用符号简记为p x,∃∈,()x M数学数学数学13数学 数学 数学 14读作“存在M 中的元素x ,使()p x 成立”. 2.全称量词命题和存在量词命题的否定 (1)全称量词命题的否定 全称量词命题:x M ,()p x ,它的否定:x M ∃∈,()p x ⌝.全称量词命题的否定是存在量词命题. (2)存在量词命题的否定 存在量词命题:x M ∃∈,()p x ,它的否定:x M ,()p x ⌝.存在量词命题的否定是全称量词命题.第二章一元二次函数、方程和不等式2.1等式性质与不等式性质1.比较原理>⇔->;a b a b=⇔-=;a b a ba b a b<⇔-<.2.等式的基本性质性质1 如果a b=,那么b a=;性质2 如果a b=,b c=,那么a c=;性质3 如果a b=,那么a c b c±=±;性质4如果a b=,那么ac bc=;性质5 如果a b=,0=.c≠,那么a bc c数学数学数学15数学 数学 数学 163.不等式的基本性质性质1 如果a b >,那么b a <;如果b a <,那么a b >.即a b b a >⇔<性质2 如果a b >,b c >,那么a c >.即a b >,b c >a c ⇒>.性质3 如果a b >,那么a c b c +=+. 由性质3可得,()()a b c a b b c b a c b +>⇒++->+-⇒>-.这表明,不等式中任何一项可以改变符号后移到不等号的另一边. 性质4 如果a b >,0c >,那么ac bc >;如果a b >,0c <,那么ac bc <. 性质5 如果a b >,c d >,那么a c b d +>+. 性质6 如果0a b >>,0c d >>,那么ac bd >. 性质7 如果0a b >>,那么n n a b >(n N ∈,2n ≥).数学 数学 数学 172.2 基本不等式 1.重要不等式,a b R ∀∈,有222a b ab +≥,当且仅当a b =时,等号成立. 2.基本不等式 如果0a >,0b >,则2a b+≤, 当且仅当a b =时,等号成立.2a b+叫做正数a ,b 的算术平均数a ,b 的几何平均数.基本不等式表明:两个正数的算术平均数不小于它们的几何平均数. 3.与基本不等式相关的不等式 (1)当,a b R ∈时,有数学 数学 数学 1822a b ab +⎛⎫≤ ⎪⎝⎭,当且仅当a b =时,等号成立. (2)当0a >,0b >时,有211a b≤+当且仅当a b =时,等号成立. (3)当,a b R ∈时,有22222a b a b ++⎛⎫≤ ⎪⎝⎭,当且仅当a b =时,等号成立. 4.利用基本不等式求最值 已知0x >,0y >,那么(1)如果积xy 等于定值P ,那么当x y =时,和x y +有最小值;数学 数学 数学 19(2)如果和x y +等于定值S ,那么当x y =时,积xy 有最大值214S .2.3 二次函数与一元二次方程、不等式 1.一元二次不等式只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式. 2.二次函数与一元二次方程、不等式的解的对应关系第三章函数的概念与性质3.1 函数的概念及其表示1.函数的概念设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的的数y和它对应,那么就称:f A B→为从集合A到集合B的一个函数,记作数学数学数学20数学 数学 数学 21()y f x =,x A ∈.其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合{|(})f x x A ∈叫做函数的值域,显然,值域是集合B 的子集. 2.区间:设a ,b 是两个实数,而且a b <,我们规定:(1)满足不等式a x b ≤≤的实数x 的集合叫做闭区间,表示为[,]a b ; (2)满足不等式a x b <<的实数x 的集合叫做开区间,表示为(,)a b ;(3)满足不等式a x b ≤<或a x b <≤的实数x 的集合叫做半开半闭区间,分别表示为:[,)a b , (,]a b . 这里的实数a ,b 都叫做相应区间的端点.数学 数学 数学 22(4)实数集R 可以表示为(,)-∞+∞,“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞” 读作“正无穷大”.满足x a ≥,x a >,x b ≤,x b <的实数x 的集合,用区间分别表示为[,)a +∞ ,(,)a +∞ (,]b -∞,(,)b -∞.这些区间的几何表示如下表所示.注意:(1)“∞”是一个趋向符号,表示无限接近,却永远达不到,不是一个数.(2)以“-∞”或“+∞”为区间的一端时,这一端点必须用小括号.3.函数的三要素(1)定义域;(2)对应关系;(3)值域.值域随定义域和对应关系的确定而确定.4.函数的相等如果两个函数的定义域和对应关系分别相同,那么就说这两个函数是同一个函数.5.函数的表示方法(1)解析法用数学表达式表示两个变量之间的对应关系的方法叫做解析法.数学数学数学23数学 数学 数学 24解析法是表示函数的一种重要的方法,这种表示法从“数”的方面简明、全面地概括了变量之间的数量关系. (2)图象法用图象表示两个变量之间的对应关系的方法叫做图象法.图象法直观地表示了函数值随自变量值改变的变化趋势,从“形”的方面刻画了变量之间的数量关系. 说明:将自变量的一个值0x 作为横坐标,相应的函数值0()f x 作为纵坐标,就得到坐标平面上的一个点00(,())x f x .当自变量取遍函数的定义域A 中的每一个值时,就得到一系列这样的点,所有这些点组成的图形就是函数()y f x =的图象.函数()y f x =的图象在x 轴上的射影构成的集合就是函数的定义域,在y 轴上的射影构成的集合就是函数的值域.函数的图象既可以是连续的曲线,也可以是直线、折线、离散的点,等等. (3)列表法通过列表来表示两个变量之间的对应关系的方法叫做列表法.例如,初中学习过的平方表、立方表都是表示函数关系的.数学 数学 数学 256.分段函数(1)分段函数的概念有些函数在其定义域内,对于自变量x 的不同取值区间,有着不同的对应关系,这样的函数称为分段函数.如 (1),0,(),0x x f x x x x -<⎧==⎨≥⎩ , (2)22,0,(),0x x f x x x ⎧≤⎪=⎨->⎪⎩. 说明:①分段函数是一个函数,而不是几个函数.处理分段函数问题时,要先确定自变量的取值在哪个区间,从而选取相应的对应关系.②分段函数在书写时用大括号把各段函数合并写成一个函数的形式.并且必须指明各段函数自变量的取值范围.③分段函数的定义域是自变量所有取值区间的并集,分段函数的定义域只能写成一个集合的形式,不能分开写成几个集合的形式.④分段函数的值域是各段函数在对应自变量的取值范围内值域的并集.数学26(2)分段函数的图象分段函数有几段,它的图象就由几条曲线组成.在同一坐标系中,根据每段的定义区间和表达式依次画出图象,要注意每段图象的端点是空心点还是实心点,组合到一起就得到整个分 段函数的图象. 3.2 函数的基本性质函数的性质是指在函数变化过程中的不变性和规律性. 1.单调性与最大(小)值 (1)增函数设函数()f x 的定义域为I ,区间D ⊆I .如果∀1x ,2x D ∈,当12x x <时,都有12()()f x f x <,那么就称函数()f x 在区间D 上单调递增.特别地,当函数()f x 在它的定义域上单调递增时,我们就称它是增函数.数学 数学 数学 27(2)减函数设函数()f x 的定义域为I ,区间D ⊆I.如果∀1x ,2x D ∈,当12x x <时,都有12()()f x f x >,那么就称函数()f x 在区间D 上单调递增.特别地,当函数()f x 在它的定义域上单调递减时,我们就称它是减函数. (3)单调性、单调区间、单调函数数学 数学 数学 28如果函数()y f x =在区间D 上单调递增或单调递减,那么就说函数()y f x =在区间D 上具有(严格的)单调性,区间D 叫做()y f x =的单调区间.如果函数在某个区间上具有单调性,那么就称此函数在这个区间上是单调函数. (4)证明函数()f x 在区间D 上单调递增或单调递减,基本步骤如下: ①设值:设12,x x D ∈,且 12x x <; ②作差:12()()f x f x - ;③变形:对12()()f x f x -变形,一般是通分,分解因式,配方等.这一步是核心 ,要注意变形到底; ④判断符号,得出函数的单调性. (5)函数的最大值与最小值 ①最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =. 那么我们称M 是函数()y f x =的最大值.数学 数学 数学 29②最小值:设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥; (2)存在0x I ∈,使得0()f x m =. 那么我们称m 是函数()y f x =的最小值.2.奇偶性 (1)偶函数设函数()f x 的定义域为I ,如果x I ∀∈,都有x I -∈,且()()f x f x -=,那么函数()f x 就叫做偶函数.关于偶函数有下面的结论:①偶函数的定义域一定关于原点对称.也就是说定义域关于原点对称是函数为偶函数的一个必要条件; ②偶函数的图象关于y 轴对称.反之也成立;③偶函数在关于原点对称的两个区间上的增减性相反. (2)奇函数设函数()f x 的定义域为I ,如果x I ∀∈,都有x I -∈,且()()f x f x -=-,那么函数()f x 就叫做奇函数.数学30关于奇函数有下面的结论:①奇函数的定义域一定关于原点对称.也就是说定义域关于原点对称是函数为奇函数的一个必要条件; ②奇函数的图象关于坐标原点对称.反之也成立;③如果奇函数当0x =时有意义,那么(0)0f =.即当0x =有意义时,奇函数的图象过坐标原点; ④奇函数在关于原点对称的两个区间上的增减性相同. 3.3幂函数 1.幂函数的概念一般地,形如y x α=(R α∈,α为常数)的函数称为幂函数.对于幂函数,我们只研究1α=,2,3,12,1-时的图象与性质.2.五个幂函数的图象和性质x 12xx -1数学数学数学31数学 数学 数学 323.4函数的应用(一) 略.第四章 指数函数与对数函数4.1 指数1.n 次方根与分数指数幂 (1)方根如果n x a =,那么x 叫做a 的n 次方根,其中1n >,且*n N ∈.①当n 是奇数时,正数的n 次方根是正数,负数的n 方根是负数.这时,a 的n表示. ②当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数.这时,正数a 的正的n表示,负的n次方根用符号. 正的n 次方根与负的n 次方根可以合并写成0a >). 负数没有偶次方根.0的任何次方根都是00=.根式,这里n 叫做根指数,a 叫做被开方数. 关于根式有下面两个等式:n a =;数学 数学 数学33,,a n a n ⎧⎪=⎨⎪⎩为奇数为偶数..2.分数指数幂(1)正分数指数幂m na =0a >,m ,*n N ∈,1n >).0的正分数指数幂等于0. (2)负分数指数幂1=m nmnaa-=0a >,m ,*n N ∈,1n >).0的负分数指数幂没有意义. (3)有理数指数幂的运算性质①r s r s a a a +=(0a >,r ,s Q ∈); ②()r s rs a a =(0a >,r ,s Q ∈);③()r r r ab a b =(0a >,0b >,r Q ∈).3. 无理数指数幂及其运算性质 (1)无理数指数幂的概念当x 是无理数时,x a 是无理数指数幂.我们可以通过有理数指数幂来认识无理数指数幂.当x 的不足近似值m 和过剩近似值n 逐渐逼近x 时,m a 和n a 都趋向于同一个数,这个数就是x a .所以无理数指数幂x a (0a >,x 是无理数)是一个确定的数.(2)实数指数幂的运算性质整数指数幂的运算性质也适用于实数指数幂,即对于任意实数r,s,均有下面的运算性质.①r s r s=(0a a a+∈);a>,r,s R②()r s rs=(0a a∈);a>,r,s R③()r r r=(0ab a b∈).a>,0b>,r R4.2 指数函数1.指数函数的概念函数x=(0y aa≠)叫做指数函数,其中指数x是自变量,定义域是R.a>,且12.指数函数的图象和性质一般地,指数函数x=(0y aa>,且1a≠)的图象和性质如下表所示:数学数学数学344.3 对数1.对数的概念数学数学数学35数学 数学 数学 36一般地,如果x a N =(0,1)a a >≠,那么数x 叫做以a 为底N 的对数,记作Nx a log =.其中a 叫做对数的底数,N 叫做真数. 当0a >,且1a ≠时,log N x a a N x =⇔=. 2. 两个重要的对数(1)常用对数:以10为底的对数叫做常用对数,并把10log N 记为lg N .(2)自然对数:以e (e 是无理数, 2.71828e =…)为底的对数叫做自然对数,并把log e N 记作ln N . 3. 关于对数的几个结论 (1)负数和0没有对数; (2)log 10a =; (3)log 1a a =. 4. 对数的运算如果0a >,且1a ≠,0M >,0N >,那么数学 数学 数学 37(1)log ()log log a a a MN M N =+; (2)log log log a a a MM N N=-;(3)log log n a a M n M =(n R ∈).5. 换底公式log log log c a cbb a=(0a >,且1a ≠,0b >,0c >,1c ≠).4.4 对数函数 1. 对数函数的概念一般地,函数log a y x =(0a >,且1a ≠)叫做对数函数,其中x 是自变量,定义域是(0,)+∞. 2.对数函数的图象和性质数学数学数学38数学 数学 数学 393. 反函数指数函数x y a =(0a >,且1a ≠)与对数函数log a y x =(0a >,且1a ≠)互为反函数,它们的定义域与值域正好互换.互为反函数的两个函数的图象关于直线y x =对称. 4. 不同函数增长的差异对于对数函数log a y x =(1a >)、一次函数y kx =(0k >)、指数函数x y b =(1b >)来说,尽管它们在(0,)+∞上都是增函数,但是随着x 的增大,它们增长的速度是不相同的.其中对数函数log a y x =(1a >)的增长数学 数学 数学 40速度越来越慢;一次函数y kx =(0k >)增长的速度始终不变;指数函数x y b =(1b >)增长的速度越来越快.总之来说,不管a (1a >),k (0k >),b (1b >)的大小关系如何,x y b =(1b >)的增长速度最终都会大大超过y kx =(0k >)的增长速度;y kx =(0k >)的增长速度最终都会大大超过log a y x =(1a >)的增长速度.因此,总会存在一个0x ,当0x x >时,恒有log x a b kx x >>.4.5 函数的应用(二) 1. 函数的零点与方程的解 (1)函数零点的概念 对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点.函数()y f x =的零点就是方程()0f x =的实数解,也是函数()y f x =的图象与x 轴的公共点的横坐标.所以方程()0f x =有实数解⇔函数()y f x =有零点⇔函数()y f x =的图象与x 轴有公共点.数学 数学 数学 41(2)函数零点存在定理 如果函数()y f x =在区间[,]a b 上的图象是一条连续不断的曲线,且有()()0f a f b <,那么,函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,)c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的解. 2. 用二分法求方程的近似解对于在区间[,]a b 上图象连续不断且()()0f a f b <的函数()y f x =,通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法. 给定精确度ε,用二分法求函数()y f x =零点0x 的近似值的一般步骤如下:(1)确定零点0x 的初始区间[,]a b ,验证()()0f a f b <. (2)求区间(,)a b 的中点c .(3)计算()f c ,并进一步确定零点所在的区间: ①若()0f c =(此时0x c =),则c 就是函数的零点; ②若()()0f a f c <(此时0(,)x a c ∈),则令b c =; ③若()()0f c f b <(此时0(,)x c b ∈),则令a c =.(4)判断是否达到精确度ε:若a bε-<,则得到零点的近似值a(或b);否则重复步骤(2)~(4). 由函数零点与相应方程解的关系,我们可以用二分法来求方程的近似解.3. 函数模型的应用用函数建立数学模型解决实际问题的基本过程如下:Array这一过程包括分析和理解实际问题的增长情况(是“对数增长”“直线上升”还是“指数爆炸”);根据增长情况选择函数类型构建数学模型,将实际问题化归为数学问题;通过运算、推理、求解函数模型;用得到的函数模型描述实际问题的变化规律,解决有关问题.在这一过程中,往往需要利用信息技术帮助画图、运算等.数学数学数学42第五章三角函数5.1 任意角和弧度制1.任意角(1)角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.射线的端点叫做角的顶点,射线在起始位置和终止位置分别叫做角的始边和终边. (2)正角、负角、零角按逆时针方向旋转所成的角叫正角;按顺时针方向旋转所成的角叫负角;一条射线没有作任何旋转而形成的角叫零角. 这样,我们就把角的概念推广到了任意角. ABO数学数学数学43数学 数学 数学 44(3)象限角当角的顶点与坐标原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(除端点外)在第几象限,就说这个角是第几象限角.如果角的终边落在坐标轴上,这时这个角不属于任何象限. (4)终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合{}|360,S k k Z ββα==+⋅︒∈即任一与角α终边相同的角,都可以表示成角α与整数个周角的和. 终边相同的角不一定相等,但相等的角,终边一定相同; 终边相同的角有无数多个,它们相差360︒的整数倍; 象限角的表示: 第一象限角的集合{}|36090360,k k k Z αα⋅︒<<︒+⋅︒∈第二象限角的集合数学 数学 数学 45{}|90360180360,k k k Z αα︒+⋅︒<<︒+⋅︒∈第三象限角的集合{}|180360270360,k k k Z αα︒+⋅︒<<︒+⋅︒∈第四象限角的集合{}|270360360360,k k k Z αα︒+⋅︒<<︒+⋅︒∈终边落在坐标轴上的角在以后的学习中很重要,它们的表示如下表.2. 弧度制(1)弧度的概念长度等于半径长的圆弧所对的圆心角叫做1弧度的角.在半径为r的圆中,弧长为l的弧所对的圆心角为αrad,那么lα=.r正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)弧度与角度的换算数学数学数学46数学 数学 数学47(3)关于扇形的几个公式设扇形的圆心角为α(rad ),半径为R ,弧长为l ,则有①l R α=; ②212S R α=; ③12S lR =.5.2 三角函数的概念 1. 三角函数的概念 (1)三角函数的定义一般地,任意给定一个角R α∈,它的终边OP数学 数学 数学48与单位圆相交于点(,)P x y .把点P 的纵坐标y 叫做α的正弦函数,记作sin α,即sin y α=;把点P 的横坐标x 叫做α的余弦函数,记作cos α,即cos x α=;把点P 的纵坐标与横坐标的比值yx 叫做α的正切函数,记作tan α,即tan yxα=(0x ≠). 正弦函数、余弦函数和正切函数统称为三角函数,通常将它们记为: 正弦函数 sin y α=,x R ∈; 余弦函数 cos y α=,x R ∈;正切函数 tan y α=,2x k ππ≠+(k Z ∈).数学 数学 数学 49设α是一个任意角,它的终边上任意一点P (不与原点 重合)的坐标为(,)x y ,点P与原点的距离为r =可以证明:sin yr α=; cos xr α=; tan y xα=. (2)几个特殊角的三角函数值0,2π,π,32π的三角函数值如下表所示:数学 数学 数学 50(3)三角函数值的符号(4)诱导公式(一)终边相同的角的同一三角函数值相等.sin(2)sin k απα+⋅=, cos(2)cos k απα+⋅=, tan(2)tan k απα+⋅=,其中k Z ∈.2. 同角三角函数间的基本关系tan αcos αsin α。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

)高一数学必修4 ⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l rα=. 7、弧度制与角度制的换算公式:2360π=,1180π= ,180157.3π⎛⎫=≈ ⎪⎝⎭. 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .12、同角三角函数的基本关系:()221sin cos 1αα+=()2222sin1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα= sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.14、函数sin y x =的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()siny xϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()siny xωϕ=+的图象;再将函数()siny xωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A倍(横坐标不变),得到函数()siny xωϕ=A+的图象.函数siny x=的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数siny xω=的图象;再将函数siny xω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()siny xωϕ=+的图象;再将函数()siny xωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A倍(横坐标不变),得到函数()siny xωϕ=A+的图象.函数()()sin0,0y xωϕω=A+A>>的性质:①振幅:A;②周期:2πωT=;③频率:12fωπ==T;④相位:xωϕ+;⑤初相:ϕ.函数()siny xωϕ=A++B,当1x x=时,取得最小值为miny;当2x x=时,取得最大值为maxy,则()max min12y yA=-,()max min12y yB=+,()21122x x x xT=-<.15、正弦函数、余弦函数和正切函数的图象与性质:siny x=cosy x=tany x=图象定义域R R,2x x k kππ⎧⎫≠+∈Z⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x kππ=+()k∈Z时,max1y=;当当()2x k kπ=∈Z时,max1y=;当2x kππ=+既无最大值也无最小值函数性质22x k ππ=-()k ∈Z 时,min 1y =-.()k ∈Z 时,min 1y =-.周期性 2π2ππ奇偶性奇函数 偶函数 奇函数单调性 在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性 对称中心()(),0k k π∈Z 对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭ 对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量.17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++ ;③00a a a +=+= .⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++.18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y A B=-- .19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ 的方向与a的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+;③()a b a b λλλ+=+ .⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、()0b b ≠ 共线.21、平面向量基本定理:如果1e 、2e是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫ ⎪++⎝⎭.23、平面向量的数量积:⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0.⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b 同向时,a b a b ⋅= ;baCBAa b C C -=A -AB =B当a 与b 反向时,a b a b ⋅=- ;22a a a a ⋅==或a = .③a b a b ⋅≤ .⑶运算律:①a b b a ⋅=⋅;②()()()a b a b a b λλλ⋅=⋅=⋅ ;③()a b c a c b c +⋅=⋅+⋅ .⑷坐标运算:设两个非零向量()11,a x y = ,()22,b x y = ,则1212a b x x y y ⋅=+.若(),a x y = ,则222a x y =+,或a =设()11,a x y =,()22,b x y =,则12120a b x x y y ⊥⇔+=.设a 、b 都是非零向量,()11,a x y =,()22,b x y = ,θ是a 与b 的夹角,则c o s a ba b θ⋅==24、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=-(()()tan tan tan 1tan tan αβαβαβ+=+-).25、二倍角的正弦、余弦和正切公式: ⑴sin 22sin cos ααα=. ⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-(2cos 21cos 2αα+=,21cos 2sin 2αα-=). ⑶22tan tan 21tan ααα=-. 26、()sin cos αααϕA +B =+,其中tan ϕB =A.高中数学必修5知识点1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2b R B =,sin 2cC R=;③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B .3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac+-B =,222cos 2a b c C ab +-=.6、设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =; ②若222a b c +>,则90C < ;③若222a b c +<,则90C >. 7、数列:按照一定顺序排列着的一列数. 8、数列的项:数列中的每一个数. 9、有穷数列:项数有限的数列. 10、无穷数列:项数无限的数列.11、递增数列:从第2项起,每一项都不小于它的前一项的数列. 12、递减数列:从第2项起,每一项都不大于它的前一项的数列. 13、常数列:各项相等的数列.14、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 15、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式.16、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式. 17、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.18、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2a cb +=,则称b 为a 与c 的等差中项.19、若等差数列{}n a 的首项是1a ,公差是d ,则()11naa n d =+-.20、通项公式的变形:①()n m a a n m d =+-;②()11n a a n d =--;③11n a a d n -=-;④11n a a n d-=+;⑤n m a a d n m -=-.21、若{}n a 是等差数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a +=+;若{}n a 是等差数列,且2n p q =+(n 、p 、*q ∈N ),则2np q a a a =+.22、等差数列的前n 项和的公式:①()12n n n a a S +=;②()112n n n S na d -=+. 23、等差数列的前n 项和的性质:①若项数为()*2n n ∈N ,则()21nn n S n a a +=+,且S S nd -=偶奇,1nn S a S a +=奇偶.②若项数为()*21n n -∈N ,则()2121n n S n a -=-,且n S S a -=奇偶,1S nS n =-奇偶(其中n S na =奇,()1n S n a =-偶). 24、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.25、在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2G ab =,则称G 为a 与b 的等比中项.26、若等比数列{}n a 的首项是1a ,公比是q ,则11n n a a q -=.27、通项公式的变形:①n mn m a a q -=;②()11n n a a q--=;③11n na q a -=;④n m n ma q a -=.28、若{}n a 是等比数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a ⋅=⋅;若{}n a 是等比数列,且2n p q =+(n 、p 、*q ∈N ),则2np q a a a =⋅.29、等比数列{}n a 的前n 项和的公式:()()()11111111n n n na q S a q a a q q q q =⎧⎪=-⎨-=≠⎪--⎩.30、等比数列的前n 项和的性质:①若项数为()*2n n ∈N ,则S q S =偶奇.②n n mn m S S q S +=+⋅.③n S ,2n n S S -,32n n S S -成等比数列.31、0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.32、不等式的性质: ①a b b a >⇔<;②,a b b c a c >>⇒>;③a b a c b c >⇒+>+; ④,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<;⑤,a b c d a c b d >>⇒+>+;⑥0,0a b c d ac bd >>>>⇒>;⑦()0,1n na b a b n n >>⇒>∈N >;⑧)0,1a b n n >>⇒∈N >.33、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式. 34、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2y ax bx c =++()0a >的图象一元二次方程20ax bx c ++=()0a >的根有两个相异实数根1,22b x a-±=()12x x <有两个相等实数根122b x x a==-没有实数根一元二次不等式的解集20ax bx c ++>()0a >{}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭R20ax bx c ++<{}12x xx x <<∅∅()0a >35、二元一次不等式:含有两个未知数,并且未知数的次数是1的不等式.36、二元一次不等式组:由几个二元一次不等式组成的不等式组.37、二元一次不等式(组)的解集:满足二元一次不等式组的x 和y 的取值构成有序数对(),x y ,所有这样的有序数对(),x y 构成的集合.38、在平面直角坐标系中,已知直线0x y C A +B +=,坐标平面内的点()00,x y P . ①若0B >,000x y C A +B +>,则点()00,x y P 在直线0x y C A +B +=的上方. ②若0B >,000x y C A +B +<,则点()00,x y P 在直线0x y C A +B +=的下方.39、在平面直角坐标系中,已知直线0x y C A +B +=.①若0B >,则0x y C A +B +>表示直线0x y C A +B +=上方的区域;0x y C A +B +<表示直线0x y C A +B +=下方的区域.②若0B <,则0x y C A +B +>表示直线0x y C A +B +=下方的区域;0x y C A +B +<表示直线0x y C A +B +=上方的区域.40、线性约束条件:由x ,y 的不等式(或方程)组成的不等式组,是x ,y 的线性约束条件.目标函数:欲达到最大值或最小值所涉及的变量x ,y 的解析式.线性目标函数:目标函数为x ,y 的一次解析式.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题. 可行解:满足线性约束条件的解(),x y .可行域:所有可行解组成的集合.最优解:使目标函数取得最大值或最小值的可行解.41、设a 、b 是两个正数,则2a b +称为正数a 、b a 、b 的几何平均数.42、均值不等式定理: 若0a >,0b >,则a b +≥2a b +≥ 43、常用的基本不等式:①()222,a b ab a b R +≥∈;②()22,2a b ab a b R +≤∈;③()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;④()222,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭. 44、极值定理:设x 、y 都为正数,则有 ⑴x y s +=(和为定值),则当x y =时,积xy 取得最大值24s .⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值。

相关文档
最新文档