lte实验报告

合集下载

lte专项总结报告

lte专项总结报告

lte专项总结报告LTE(Long Term Evolution)是第四代无线通信技术,将带来更高的网络速度和更低的延迟,满足了人们对高速、高质量移动通信的需求。

本文将对我在LTE专项研究中的收获和心得进行总结。

在LTE专项研究中,我主要从以下几个方面进行了探索和学习。

首先,我对LTE的基本原理和架构进行了深入了解。

我学习了LTE的物理层和协议栈结构,明白了它的关键技术和实现原理。

我认识到,LTE采用OFDM(Orthogonal Frequency Division Multiplexing)技术和MIMO(Multiple-Input Multiple-Output)技术等多种先进技术,显著提高了网络的速度和容量。

其次,我学习了LTE的接入技术和资源调度策略。

在LTE网络中,由于频谱资源有限,需要合理利用和分配资源。

我了解了LTE的接入过程和调度算法,熟悉了频谱分配和资源分配的相关策略。

我通过模拟实验和仿真,进一步提高了自己对资源调度的理解和认识。

另外,我还参与了LTE网络规划和优化的工作。

我学习了网络规划和优化的方法和技巧,对于如何设计和配置LTE网络有了更深入的了解。

在实践中,我能够熟练使用网络规划和优化工具,进行网络性能分析和故障排除。

通过不断的实践和总结,我不断提高自己的技术水平和解决问题的能力。

最后,我还了解了LTE的发展趋势和未来的发展方向。

我明白LTE作为第四代移动通信技术,仍然有很大的改进空间和应用场景。

我相信,在物联网、5G等新兴技术的推动下,LTE将继续发展壮大,为人们带来更好的移动通信体验。

通过这一段时间的学习和研究,我不仅对LTE的原理和技术有了更深入的了解,还提高了自己的实践能力和问题解决能力。

我学会了如何分析和解决网络问题,如何优化网络性能。

同时,我也认识到自己在这个领域还有很多需要学习和提高的地方,我将继续努力,不断学习和探索。

总之,LTE专项研究是一次非常宝贵的学习机会。

lte通信组建与运维实训报告拓展学习

lte通信组建与运维实训报告拓展学习

lte通信组建与运维实训报告拓展学习
LTE(Long Term Evolution)通信是第四代移动通信技术,也被称为4G网络。

LTE通信组建与运维是指在LTE网络中进行网络规划、站点建设、参数配置、故障排除、性能优化等一系列工作。

如果你想拓展学习关于LTE通信组建与运维的实训报告,一些建议:
1. 学习LTE网络基础知识:了解LTE网络的架构、信道结构、无线资源分配、移动性管理等基本概念和原理。

2. 学习LTE网络规划与设计:学习LTE网络规划的方法和过程,包括小区规划、频率规划、物理层参数规划等。

3. 学习LTE基站建设与调试:了解LTE基站的硬件组成和安装调试过程,学习相关设备的配置和操作方法。

4. 学习LTE网络优化:学习LTE网络性能优化的方法和技术,包括覆盖优化、容量优化、干扰管理等方面的知识。

5. 进行LTE网络实操实验:通过实际操作LTE网络设备和工具,进行基站部署、参数调整、故障诊断等实操实验,加深对LTE组网与运维的理解。

6. 学习LTE网络故障排除:了解常见的LTE网络故障现象和排查方法,掌握故障定位与处理的技巧。

7. 学习LTE网络监控与维护:了解LTE网络的监控手段和维护方法,学习相关工具的使用和运维流程。

请注意,以上建议仅供参考,具体的学习内容和实验环境需要根据你的实际情况和学习需求进行调整。

同时,遵守学校和实验室的相关规定,确保实训过程安全和合法。

综合实验报告LTE仿真实验

综合实验报告LTE仿真实验

综合实验报告—LTE学号:姓名:日期:2016/2017学年第一学期实验1 LTE无线接入网设备配置实验目的:1. 掌握LTE无线接入网的网元名称及其作用。

2. 掌握实验中各网元的线缆名称及其作用。

实验内容:1. 完成一个LTE无线接入网站点机房的设备配置。

实验要求:1. 完成大型城市万绿市A站点机房的设备配置。

实验步骤:设备配置步骤如下:1.单击仿真平台中的“设备配置”按钮,然后选择仿真场景中的某站点机房。

2.添加设备:包括BBU、RRU、ANT、PTN、ODF、GPS。

3.连接RRU和ANT。

ANT1连接到RRU1,使用“天线跳线”,将ANT1左边1脚和RRU的1脚,同理将对应的4脚连接起来。

因为默认使用的是2×2的天线模式。

注意相互对应,不能连串。

4.连接RRU和BBU。

使用“成对LC-LC光纤”,把TX0-RX0~TX2-RX2与RRU1~RRU3对应连接起来。

5.连接BBU和GPS。

使用“GPS馈线”,一端将馈线与GPS连接,另一端连接到BBU的IN口。

6.连接BBU与PTN。

使用“成对LC-LC光纤”,点击设备指示图里的BBU,将光纤接到BBU的TXRX端口上,另一端连接到设备指示图里的PTN设备槽位1的GE1端口上。

7.连接ODF和PTN。

单击ODF进入到ODF架内部,使用“成对LC-FC光纤”,将某市站点机房和该市汇聚机房连接起来。

这里要使用两对LC-FC线,分别连接到PTN的端口3和4口上。

至此,该市某站点机房的设备配置就完成了,从“设备指示图”中可观察到设备间的连接情况。

设备之间连接关系表图3-1 万绿市核心网设备配置接口使用情况3.2.1 万绿市A站点机房设备配置表3-3 万绿市A站点机房设备配置设备本端接口对端接口线缆BBUwl-RAN_BBU_TX/RX wl-ACC-A_PTN1_1_4×GE_1 成对LC-LC光纤wl-RAN_BBU_TX0/RX0 wl-RAN_RRU1_OPT1 成对LC-LC光纤wl-RAN_BBU_TX1/RX1 wl-RAN_RRU2_OPT1 成对LC-LC光纤wl-RAN_BBU_TX2/RX2 wl-RAN_RRU3_OPT1 成对LC-LC光纤wl-RAN_BBU_IN wl-RAN_GPS_IN GPS馈线RRU1wl-RAN_RRU1_OPT1 wl-RAN_BBU_TX0/RX0 成对LC-LC光纤wl-RAN_RRU1_ TX0/RX0 wl-ANT1_ANT1 天线跳线wl-RAN_RRU1_ TX1/RX1 wl-ANT1_ANT4 天线跳线RRU2wl-RAN_RRU2_OPT1 wl-RAN_BBU_TX1/RX1 成对LC-LC光纤wl-RAN_RRU2_ TX0/RX0 wl-ANT2_ANT1 天线跳线wl-RAN_RRU2_ TX1/RX1 wl-ANT2_ANT4 天线跳线思考题:1.如何删除配置错误的设备?答:要对某个机架进行操作,则可鼠标点击该机架,之后可对改机架中的设备进行添加或者删除。

LTE测量报告[合集5篇]

LTE测量报告[合集5篇]

LTE测量报告[合集5篇]第一篇:LTE测量报告1.1 测量报告满足测量报告条件时,通过事件报告eUTRAN。

内容包括:测量ID、服务小区的测量结果(RSRP和RSRQ的测量值)、邻小区的测量结果(可选)。

图1 – 3:测量报告消息测量报告方式:按时触发类型,分为周期性和事件触发。

λ周期性触发:按照eNB设定的报告间隔与总次数周期性发送⎫reportStrongestCells :报告最强小区⎫reportCGI :上报全球小区标识λ事件触发:满足报告条件时,发送测量报告第二篇:LTE资料UE eNB Measurement ReportMSG1(Random Access Preamble)RAR(Random Access Response)RRC Connection Reconfiguration(HO Command)RRC Connection ReconfigurationComplete(HO Confirm)基站内小区间切换信令流程2)基站间X2切换流程:UETarget eNBSource eNBMeasurement Report EPC X2AP HandoverRequest X2APHandoverRequestAcknowledge RRCConnectionReconfiguration(HO Command)X2AP SNStatusTransfer S1AP PathSwitchRequest S1APPathSwitchRequestAcknowledge X2AP UEContextRelease RRCConnectionReconfigurationComplete(HOConfirm)MSG1(Random Access Preamble)RAR(Random Access Response)基站间X2切换信令流程3)基站间S1切换流程:UEEPCSource eNBMeasurement Report Target eNB S1AP HandoverRequest S1APHandoverRequestAcknowledge RrcConnectionReconfiguration(HOCommand)S1APUEContextReleaseCommandRrcConnectionReconfigurationComplete(HO Confirm)MSG1(Random Access Preamble)RAR(Random Access Response)S1AP HandoverRequestS1APHandoverRequestAcknowledgeS1AP_EnbStatusTransferMsgS1AP MMEStatusTransferS1AP HandoverNotifyS1APUEContextReleaseComplete基站间S1切换信令流程注:信令流程不在解释,资料很多。

通信LTE专业实训报告

通信LTE专业实训报告

成绩重庆邮电大学通信与信息工程学院移动通信综合实验报告专业通信工程班级学号姓名实习时间:年月重庆邮电大学通信与信息工程学院通信技术与网络实验中心制一、实验题目LTE无线侧综合实验二、实验目的1.熟悉LTE网络结构2.了解和学习华为eNodeB设备DBS3900系统功能3.掌握华为TDD-LTE的eNodeB数据配置方法4.获得通信网络工程的实际应用技能三、实验内容TD-LTE配置练习一:1、组网拓扑图2、MML命令脚本2.1基本数据2.1.1全局数据MOD ENODEB:ENODEBID=101, NAME="CYTX", ENBTYPE=DBS3900_LTE,LOCATION="CYYF", PROTOCOL=CPRI;ADD CNOPERATOR: CnOperatorId=1, CnOperatorName="CMCC", CnOperatorType=CNOPERATOR_PRIMARY, Mcc="460", Mnc="02";ADD CNOPERATORTA: TrackingAreaId=1, CnOperatorId=1, Tac=100;2.1.2设备数据ADD BRD: CN=0, SRN=0, SN=6, BT=UMPT;ADD BRD: CN=0, SRN=0, SN=2, BT=LBBP, WM=TDD;ADD BRD: CN=0, SRN=0, SN=16, BT=FAN;ADD BRD: CN=0, SRN=0, SN=18, BT=UPEU;ADD BRD: CN=0, SRN=0, SN=19, BT=UPEU;DSP BRD:;ADD RRUCHAIN: RCN=0, TT=CHAIN, AT=LOCALPORT, HCN=0, HSRN=0, HSN=2, HPN=0, CR=9.8;ADD RRU: CN=0, SRN=60, SN=0, TP=TRUNK, RCN=0, PS=0, RT=MRRU, RN="YFLRRU", ALMPROCSW=ON, ALMPROCTHRHLD=30, ALMTHRHLD=20, RS=TDL, RXNUM=1, TXNUM=1;2.1.3时钟数据ADD GPS: GN=0, CN=0, SRN=0, SN=6, CABLETYPE=COAXIAL, CABLE_LEN=20, MODE=GPS, PRI=4;SET CLKMODE: MODE=AUTO;SET CLKSYNCMODE: CLKSYNCMODE=TIME;频率同步(时钟同步,基本要求);时间同步(要求高,时间同步,频率一定同步)2.2传输数据2.2.1底层数据A、物理层ADD ETHPORT: CN=0, SRN=0, SN=6, SBT=BASE_BOARD, PN=0, PA=COPPER, MTU=1500, SPEED=100M, ARPPROXY=DISABLE, FC=CLOSE, FERAT=10, FERDT=8, DUPLEX=FULL;B、传输层ADD DEVIP: CN=0, SRN=0, SN=6, SBT=BASE_BOARD, PT=ETH, PN=0, IP="110.110.110.3", MASK="255.255.255.0";C、网络层ADD IPRT: CN=0, SRN=0, SN=6, SBT=BASE_BOARD, DSTIP="134.134.134.10", DSTMASK="255.255.255.0", RTTYPE=NEXTHOP, NEXTHOP="110.110.110.1", PREF=60, DESCRI="TO MME";ADD IPRT: CN=0, SRN=0, SN=6, SBT=BASE_BOARD, DSTIP="172.100.100.16", DSTMASK="255.255.255.0", RTTYPE=NEXTHOP, NEXTHOP="110.110.110.1", PREF=60, DESCRI="TO OMC";ADD IPRT: CN=0, SRN=0, SN=6, SBT=BASE_BOARD, DSTIP="135.135.135.10", DSTMASK="255.255.255.0", RTTYPE=NEXTHOP, NEXTHOP="110.110.110.1", PREF=60, DESCRI="TO SGW";D、数据链路层ADD VLANMAP: NEXTHOPIP="110.110.110.1", MASK="255.255.255.0", VLANMODE=SINGLEVLAN, VLANID=100, SETPRIO=DISABLE;2.2.2控制面ADD S1SIGIP: CN=0, SRN=0, SN=6, S1SIGIPID="TO MME", LOCIP="110.110.110.3", LOCIPSECFLAG=DISABLE, SECLOCIP="0.0.0.0", SECLOCIPSECFLAG=DISABLE, LOCPORT=3000, RTOMIN=1000, RTOMAX=3000, RTOINIT=1000, RTOALPHA=12, RTOBETA=25, HBINTER=5000, MAXASSOCRETR=10, MAXPATHRETR=5, CHKSUMTX=DISABLE, CHKSUMRX=DISABLE, CHKSUMTYPE=CRC32, SWITCHBACKFLAG=ENABLE, SWITCHBACKHBNUM=10, TSACK=200, CNOPERATORID=1;ADD MME: MMEID=0, FIRSTSIGIP="134.134.134.10", FIRSTIPSECFLAG=DISABLE, SECSIGIP="0.0.0.0", SECIPSECFLAG=DISABLE, LOCPORT=3000, CNOPERATORID=1, MMERELEASE=Release_R8;2.2.3用户面ADD S1SERVIP: CN=0, SRN=0, SN=6, S1SERVIPID="TO SGW", S1SERVIP="110.110.110.3", IPSECFLAG=DISABLE, PATHCHK=DISABLE, CNOPERATORID=1;ADD SGW: SGWID=0, SERVIP1="135.135.135.10", SERVIP1IPSECFLAG=DISABLE, SERVIP2="0.0.0.0", SERVIP2IPSECFLAG=DISABLE, SERVIP3="0.0.0.0", SERVIP3IPSECFLAG=DISABLE, SERVIP4="0.0.0.0", SERVIP4IPSECFLAG=DISABLE, CNOPERATORID=1;2.2.4维护面ADD OMCH: FLAG=MASTER, IP="110.110.110.3", MASK="255.255.255.0", PEERIP="172.100.100.16", PEERMASK="255.255.255.0", BEAR=IPV4, CN=0, SRN=0, SN=6, SBT=BASE_BOARD, BRT=NO;2.2.5无线数据ADD SECTOR: SECN=0, GCDF=DEG, LONGITUDE=0, LATITUDE=0, SECM=NormalMIMO, ANTM=1T1R, COMBM=COMBTYPE_SINGLE_RRU, SECTORNAME="SEC1", ALTITUDE=25, UNCERTSEMIMAJOR=3, UNCERTSEMIMINOR=3, ORIENTOFMAJORAXIS=0, UNCERTALTITUDE=3, CONFIDENCE=0, OMNIFLAG=FALSE, CN1=0, SRN1=60, SN1=0, PN1=R0A;ADD CELL: LocalCellId=0, CellName="CYTX_1", SectorId=0, CsgInd=BOOLEAN_FALSE, UlCyclicPrefix=NORMAL_CP, DlCyclicPrefix=NORMAL_CP, FreqBand=39, UlEarfcnCfgInd=NOT_CFG, DlEarfcn=38250, UlBandWidth=CELL_BW_N100, DlBandWidth=CELL_BW_N100, CellId=0, PhyCellId=99, AdditionalSpectrumEmission=1, FddTddInd=CELL_TDD, SubframeAssignment=SA2, SpecialSubframePatterns=SSP5, CellSpecificOffset=dB0, QoffsetFreq=dB0, RootSequenceIdx=1, HighSpeedFlag=LOW_SPEED, PreambleFmt=0, CellRadius=10000, CustomizedBandWidthCfgInd=NOT_CFG, EmergencyAreaIdCfgInd=NOT_CFG, UePowerMaxCfgInd=NOT_CFG, MultiRruCellFlag=BOOLEAN_FALSE, CPRICompression=NO_COMPRESSION;ADD CELLOP: LocalCellId=0, TrackingAreaId=1, CellReservedForOp=CELL_NOT_RESERVED_FOR_OP, OpUlRbUsedRatio=25, OpDlRbUsedRatio=25;ACT CELL: LocalCellId=0;TD-LTE配置练习二:1、组网拓扑图2、MML命令脚本2.1基本数据2.1.1全局数据MOD ENODEB:ENODEBID=101, NAME="CYZW", ENBTYPE=DBS3900_LTE, LOCATION="YF3L", PROTOCOL=CPRI;ADD CNOPERATOR: CnOperatorId=1, CnOperatorName="CYTX",CnOperatorType=CNOPERATOR_PRIMARY, Mcc="460", Mnc="04";ADD CNOPERATORTA: TrackingAreaId=0, CnOperatorId=1, Tac=123;2.1.2设备数据ADD BRD: CN=0, SRN=0, SN=6, BT=UMPT;ADD BRD: CN=0, SRN=0, SN=2, BT=LBBP, WM=TDD;ADD BRD: CN=0, SRN=0, SN=16, BT=FAN;ADD BRD: CN=0, SRN=0, SN=18, BT=UPEU;ADD BRD: CN=0, SRN=0, SN=19, BT=UPEU;DSP BRD:;ADD RRUCHAIN: RCN=0, TT=CHAIN, AT=LOCALPORT, HCN=0, HSRN=0, HSN=2, HPN=0, CR=9.8;ADD RRU: CN=0, SRN=60, SN=0, TP=TRUNK, RCN=0, PS=0, RT=MRRU, RN="YFLRRU", ALMPROCSW=ON, ALMPROCTHRHLD=30, ALMTHRHLD=20, RS=TDL, RXNUM=8, TXNUM=8;2.1.3时钟数据ADD GPS: GN=0, CN=0, SRN=0, SN=6, CABLETYPE=COAXIAL, CABLE_LEN=20, MODE=GPS, PRI=4;SET CLKMODE: MODE=AUTO;SET CLKSYNCMODE: CLKSYNCMODE=TIME;频率同步(时钟同步,基本要求);时间同步(要求高,时间同步,频率一定同步)2.2传输数据2.2.1底层数据A、物理层ADD ETHPORT: CN=0, SRN=0, SN=6, SBT=BASE_BOARD, PN=1, PA=FIBER, MTU=1500, SPEED=1000M,ARPPROXY=DISABLE, FC=CLOSE, FERAT=10, FERDT=8, DUPLEX=FULL;B、传输层ADD DEVIP: CN=0, SRN=0, SN=6, SBT=BASE_BOARD, PT=ETH, PN=1, IP="110.110.110.3", MASK="255.255.255.0";C、网络层ADD IPRT: CN=0, SRN=0, SN=6, SBT=BASE_BOARD, DSTIP="134.134.134.10", DSTMASK="255.255.255.0", RTTYPE=NEXTHOP, NEXTHOP="110.110.110.1", PREF=60, DESCRI="TO MME";ADD IPRT: CN=0, SRN=0, SN=6, SBT=BASE_BOARD, DSTIP="135.135.135.10", DSTMASK="255.255.255.0", RTTYPE=NEXTHOP, NEXTHOP="110.110.110.1", PREF=60, DESCRI="TO SGW";ADD IPRT: CN=0, SRN=0, SN=6, SBT=BASE_BOARD, DSTIP="172.100.100.16", DSTMASK="255.255.255.0", RTTYPE=NEXTHOP, NEXTHOP="110.110.110.1", PREF=60, DESCRI="TO OME";D、数据链路层ADD VLANMAP: NEXTHOPIP="110.110.110.1", MASK="255.255.255.0", VLANMODE=SINGLEVLAN, VLANID=1011, SETPRIO=DISABLE;2.2.2控制面ADD S1SIGIP: CN=0, SRN=0, SN=6, S1SIGIPID="TO MME", LOCIP="110.110.110.3", LOCIPSECFLAG=DISABLE, SECLOCIP="0.0.0.0", SECLOCIPSECFLAG=DISABLE, LOCPORT=2900,RTOMIN=1000, RTOMAX=3000, RTOINIT=1000, RTOALPHA=12, RTOBETA=25, HBINTER=5000, MAXASSOCRETR=10, MAXPATHRETR=5, CHKSUMTX=DISABLE, CHKSUMRX=DISABLE,CHKSUMTYPE=CRC32, SWITCHBACKFLAG=ENABLE, SWITCHBACKHBNUM=10, TSACK=200, CNOPERATORID=1;ADD MME: MMEID=0, FIRSTSIGIP="134.134.134.10", FIRSTIPSECFLAG=DISABLE, SECSIGIP="0.0.0.0", SECIPSECFLAG=DISABLE, LOCPORT=2900, CNOPERATORID=1, MMERELEASE=Release_R8;2.2.3用户面ADD S1SERVIP: CN=0, SRN=0, SN=6, S1SERVIPID="TO SGW", S1SERVIP="110.110.110.3", IPSECFLAG=DISABLE, PATHCHK=DISABLE, CNOPERATORID=1;ADD SGW: SGWID=0, SERVIP1="135.135.135.10", SERVIP1IPSECFLAG=DISABLE, SERVIP2="0.0.0.0", SERVIP2IPSECFLAG=DISABLE, SERVIP3="0.0.0.0", SERVIP3IPSECFLAG=DISABLE, SERVIP4="0.0.0.0", SERVIP4IPSECFLAG=DISABLE, CNOPERATORID=1;2.2.4维护面ADD OMCH: FLAG=MASTER, IP="110.110.110.3", MASK="255.255.255.0", PEERIP="172.100.100.16", PEERMASK="255.255.255.0", BEAR=IPV4, CN=0, SRN=0, SN=6, SBT=BASE_BOARD, BRT=NO;2.2.5无线数据ADD SECTOR: SECN=0, GCDF=DEG, LONGITUDE=0, LATITUDE=0, SECM=NormalMIMO, ANTM=8T8R, COMBM=COMBTYPE_SINGLE_RRU,SECTORNAME="SEC1",ALTITUDE=25,UNCERTSEMIMAJOR=3,NCERTSEMIMINOR=3, ORIENTOFMAJORAXIS=0, UNCERTALTITUDE=3, CONFIDENCE=0, OMNIFLAG=FALSE, CN1=0, SRN1=60, SN1=0, PN1=R0A, CN2=0, SRN2=60, SN2=0, PN2=R0B, CN3=0, SRN3=60, SN3=0, PN3=R0C, CN4=0, SRN4=60, SN4=0, PN4=R0D, CN5=0, SRN5=60, SN5=0, PN5=R0E, CN6=0, SRN6=60, SN6=0, PN6=R0F, CN7=0, SRN7=60, SN7=0, PN7=R0G, CN8=0, SRN8=60, SN8=0, PN8=R0H;ADD CELL: LocalCellId=0, CellName="CYTX_TEST_1",SectorId=0, CsgInd=BOOLEAN_FALSE, UlCyclicPrefix=NORMAL_CP, DlCyclicPrefix=NORMAL_CP, FreqBand=39, UlEarfcnCfgInd=NOT_CFG, DlEarfcn=38350, UlBandWidth=CELL_BW_N100, DlBandWidth=CELL_BW_N100, CellId=0, PhyCellId=112, AdditionalSpectrumEmission=1,FddTddInd=CELL_TDD,SubframeAssignment=SA2, SpecialSubframePatterns=SSP5, CellSpecificOffset=dB0, QoffsetFreq=dB0, RootSequenceIdx=156, HighSpeedFlag=LOW_SPEED,PreambleFmt=0,CellRadius=10000, CustomizedBandWidthCfgInd=NOT_CFG, EmergencyAreaIdCfgInd=NOT_CFG, UePowerMaxCfgInd=NOT_CFG, MultiRruCellFlag=BOOLEAN_FALSE, CPRICompression=NO_COMPRESSION;ADD CELLOP: LocalCellId=0, TrackingAreaId=0, CellReservedForOp=CELL_NOT_RESERVED_FOR_OP, OpUlRbUsedRatio=25, OpDlRbUsedRatio=25;ACT CELL: LocalCellId=0四、实习收获与体会A、问题及解决方法1.练习一,配置路由表时,将目的地址写成了135.135.135.16,而在逻辑规划拓扑图中配置的135.135.135.10,导致路由不可达。

移动通信实验实验报告

移动通信实验实验报告

一、实验目的1. 理解移动通信系统的基本组成和功能;2. 掌握移动通信系统中基带话音的基本特点;3. 学习并掌握移动通信系统中常见的调制解调技术;4. 了解移动通信信道的特性及其对信号传输的影响;5. 熟悉移动通信实验设备和软件的使用。

二、实验设备与软件1. 实验设备:移动通信实验箱、示波器、频谱分析仪、计算机等;2. 实验软件:MATLAB、C++等编程语言及相关移动通信仿真软件。

三、实验内容1. 移动通信系统组成及功能(1)实验目的:了解移动通信系统的组成,掌握移动通信系统的基本功能。

(2)实验内容:1)观察移动通信实验箱的组成,了解各个模块的功能;2)根据实验指导书,搭建移动通信实验系统;3)观察实验系统工作状态,分析各个模块的作用;4)总结移动通信系统的基本组成和功能。

2. 基带话音的基本特点(1)实验目的:了解基带话音的基本特点,掌握话音信号的传输特性。

(2)实验内容:1)观察实验箱中的话音信号发生器,了解话音信号的生成过程;2)使用示波器观察话音信号的波形,分析其时域和频域特性;3)总结基带话音的基本特点。

3. 调制解调技术(1)实验目的:学习并掌握移动通信系统中常见的调制解调技术。

(2)实验内容:1)观察实验箱中的调制解调模块,了解其工作原理;2)搭建调制解调实验系统,进行模拟信号的调制和解调;3)使用频谱分析仪观察调制信号的频谱特性,分析调制效果;4)总结常见的调制解调技术及其特点。

4. 移动通信信道特性(1)实验目的:了解移动通信信道的特性及其对信号传输的影响。

(2)实验内容:1)观察实验箱中的信道模拟模块,了解信道特性;2)搭建信道模拟实验系统,进行信道特性分析;3)使用示波器观察信道模拟结果,分析信道对信号传输的影响;4)总结移动通信信道的特性。

5. 实验软件使用(1)实验目的:熟悉MATLAB、C++等编程语言及相关移动通信仿真软件的使用。

(2)实验内容:1)学习MATLAB、C++等编程语言的基本语法和编程技巧;2)使用相关移动通信仿真软件进行信号处理和系统仿真;3)总结实验软件的使用方法和技巧。

综合实验报告LTE仿真实验要求

综合实验报告LTE仿真实验要求

综合实验报告LTE仿真实验要求第一篇:综合实验报告LTE仿真实验要求南京邮电大学综合实验报告— LTE学号:姓名:日期:此处写学号手写此处写姓名手写此处写实验日期2016/2017学年第一学期实验1 LTE无线接入网设备配置实验目的:1.掌握LTE无线接入网的网元名称及其作用。

2.掌握实验中各网元的线缆名称及其作用。

实验内容:1.完成一个LTE无线接入网站点机房的设备配置。

实验要求:1.完成大型城市万绿市A站点机房的设备配置。

(后面实验,手写部分,与实验1相同。

)实验步骤:手写(填写实验步骤)设备之间连接关系表手写思考题:手写1.如何删除配置错误的设备?2.如果RRU与天线的连接接反,会产生什么结果? BBU数据配置(参考实验1和实验指导书。

上交的实验报告中此行删除。

)实验3 无线射频数据配置(参考实验1和实验指导书。

上交的实验报告中此行删除。

)实验4 LTE核心网设备配置(参考实验1和实验指导书。

上交的实验报告中此行删除。

)实验5 MME数据配置(参考实验1和实验指导书。

上交的实验报告中此行删除。

)实验6 SGW数据配置(参考实验1和实验指导书。

上交的实验报告中此行删除。

)实验7 PGW数据配置(参考实验1和实验指导书。

上交的实验报告中此行删除。

)实验8 HSS数据配置(参考实验1和实验指导书。

上交的实验报告中此行删除。

)实验9 故障排查-LTE网络附着不成功(参考实验1和实验指导书。

上交的实验报告中此行删除。

)实验总结手写第二篇:大学物理仿真实验实验报告大学物理仿真实验实验报告实验名称:空气比热容测定学院:机械工程学院专业班号:车辆11姓名:刘娟娟学号:2110105001第三篇:TMT外贸仿真实验实验报告(定稿)《外贸仿真实验》学习总结院系:年级:专业:班级:姓名:一、实习概述(一)实验时间本次实习时间从2012年9月22日至2012年11月22日(二)实验地点本次实习的地点采用集中的方式,有学校统一安排,学生由同一时间进行模拟操作(三)实验内容根据相关的国际法律与惯例,结合我国的实际情况与国际贸易实践,以出口贸易的基本过程为主线,以模拟设定的具体出口商品交易作背景,针对出口贸易中业务函电的草拟,商品价格的核算、交易条件的磋商、买卖合同的签订、信用证的审核与修改、出口货物的托运订舱、报检通关、保险及贸易文件制作和审核等主要业务操作技能。

LTE实训报告范文

LTE实训报告范文

LTE实训报告范文LTE(Long Term Evolution)是一种4G无线通信技术,旨在提供更高的数据速率、更低的时延和更好的用户体验。

本实训报告将介绍我在LTE实训中所学到的内容。

在实训的第一部分,我们学习了LTE的基础知识。

LTE是一种基于OFDM(正交频分复用)和MIMO(多输入多输出)技术的无线通信系统。

它采用了以IP(Internet Protocol)为核心的网络架构,以实现快速而高效的数据传输。

我们学习了LTE的系统架构、无线接口、物理层和协议栈等内容。

在实训的第二部分,我们学习了LTE的物理层技术。

LTE的物理层采用OFDM技术来实现高速的数据传输。

我们学习了OFDM的原理、调制方式、信道估计和信道编码等内容。

我们还学习了MIMO技术,该技术可以利用多个天线来增加信道容量和提高系统性能。

在实训的第三部分,我们学习了LTE的无线接口技术。

LTE的无线接口分为UE(User Equipment)到eNodeB(Evolved Node B)的接口和eNodeB到EPC(Evolved Packet Core)的接口。

我们学习了UE和eNodeB之间的物理层协议、MAC(Media Access Control)协议和RLC (Radio Link Control)协议等内容。

我们还学习了eNodeB和EPC之间的S1接口、X2接口和SGi接口等内容。

在实训的最后部分,我们进行了LTE网络的搭建和性能测试。

我们利用实验室提供的LTE设备,搭建了一个小型的LTE网络。

我们配置了基站和用户终端,测试了LTE网络的数据传输速率、时延和稳定性等指标。

通过这些测试,我们能够评估LTE网络的性能,并对其进行优化。

通过这次LTE实训,我对LTE技术有了更深入的了解。

我学会了LTE 的基础知识、物理层技术和无线接口技术。

我也学会了搭建和测试LTE网络的方法。

这些知识对我今后的学习和工作都有很大的帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

lte实验报告
LTE实验报告
引言:
随着移动通信技术的不断发展,4G LTE(Long Term Evolution)成为当前最先
进的移动通信技术之一。

本实验旨在通过对LTE系统的搭建和性能测试,深入
了解和掌握其工作原理和性能特点。

一、LTE系统搭建
1. 硬件准备
在搭建LTE系统前,需要准备一些必要的硬件设备,如基站设备、天线、信号
发生器等。

这些设备构成了一个完整的LTE系统,为后续的实验提供了基础。

2. 网络配置
在搭建LTE系统时,需要进行网络配置,包括设置基站和终端的IP地址、子网
掩码等。

通过网络配置,可以实现基站与终端之间的通信。

3. 基站配置
基站是LTE系统的核心组成部分,负责信号的发射和接收。

在搭建LTE系统时,需要进行基站的配置,包括频率选择、功率控制、天线设置等。

通过基站的配置,可以实现对LTE系统的控制和管理。

二、LTE系统性能测试
1. 信号覆盖测试
LTE系统的一个重要指标是信号覆盖范围。

通过在不同位置放置终端设备,测
试其在不同距离下的信号接收情况,可以评估LTE系统的信号覆盖能力。

实验
结果显示,LTE系统具有较广的信号覆盖范围,能够满足大范围的通信需求。

2. 信道容量测试
LTE系统的另一个重要指标是信道容量,即系统能够传输的最大数据量。

通过
在不同网络负载下进行测试,可以评估LTE系统的信道容量。

实验结果显示,LTE系统具有较高的信道容量,能够支持大规模的数据传输。

3. 时延测试
时延是衡量LTE系统性能的重要指标之一。

通过发送和接收数据包,并记录其
传输时间,可以计算出LTE系统的时延。

实验结果显示,LTE系统具有较低的
时延,能够实现实时的数据传输。

4. 抗干扰性测试
LTE系统的抗干扰性是其性能的重要保证。

通过在干扰环境下进行测试,可以
评估LTE系统的抗干扰能力。

实验结果显示,LTE系统具有较好的抗干扰性能,能够在干扰环境下保持较高的通信质量。

三、LTE系统优化
1. 频率规划
频率规划是LTE系统优化的重要环节。

通过合理规划和配置频率资源,可以避
免频谱资源的浪费和冲突,提高系统的容量和覆盖范围。

2. 功率控制
LTE系统的功率控制是优化的关键。

通过合理控制基站和终端的发射功率,可
以降低系统的干扰和能耗,提高系统的性能和效率。

3. 天线优化
天线是LTE系统的重要组成部分,对系统性能有着重要影响。

通过优化天线的
布局和参数设置,可以提高系统的覆盖范围和信号质量,提高系统的性能。

结论:
通过本次LTE实验,我们深入了解和掌握了LTE系统的工作原理和性能特点。

通过搭建LTE系统和进行性能测试,我们评估了LTE系统的信号覆盖能力、信道容量、时延和抗干扰性能。

同时,我们也了解到LTE系统的优化方法,包括频率规划、功率控制和天线优化等。

通过不断优化和改进,LTE系统将能够更好地满足人们对移动通信的需求,为人们的生活和工作带来更多便利。

相关文档
最新文档