物资调运问题的优化模型

物资调运问题的优化模型
物资调运问题的优化模型

物资调运问题的优化模型

肖凤莲 涂礼才 何三才

摘 要:

本题所说的是防洪抗涝物质调运问题.在此问题中我们求各企业、物资仓库及国家级储备库之间物资的运费每一百件最少的路线,把附件2(生产企业,物资仓库及国家级储备库分布图)的分布图转化为数学直观简图(见模型求解中图1),所得图是连通图,设为()E V G ,=,各个边的权为相连两点每百件物资的运费。我们利用“破圈法”和“最短路"求任意企业、物资仓库及国家级储备库两两之间及仓库与仓库之间的最优路线,显然我们建立的数学(简单图形)模型是可行的、合理的。得出最优路线见表二、三、四、五。 我们根据实际情况,在保证国家级储备库的情况下,采用就近原则,在此基础上建立线性规划模型(如下):

)))

()(())

()()(((min 11

11

1111

11∑

∑∑

∑∑

∑∑∑∑∑=++==++==++=====?+?+?+?+??=b

i c

b b k k i k

i a i c

b b k k i ik

b

i c

b b k j i b i b

j j i j i j

i a

i b

j j i j i w z

y x

q w z w z

y x p A F

运用Lingo 软件对我们所建立线性规划问题进行计算。

再把天数为20带入上述线性规划,运用Lingo 运用软件进行计算,可以得到

业2—6—40—储备库1,其他中断路段对物资运输的路线无影响。建立线性规划,运用Lingo 运用软件求解,其结果见问题4的求解。

此模型简单易懂,容易推广。运用了LINGO 数学软件,提高了计算的速度.

解得的结果符合实际.

关键词:破圈法、最短路、线性规划模型、Lingo 。

一、问题的重述

我国地域辽阔,气候多变,各种自然灾害频频发生,特别是每年在长江、淮河、嫩江等流域经常爆发不同程度的洪涝灾害,给国家和人民财产带来重大损失,防洪抗涝成为各级政府的一项重要工作。某地区为做好今年的防洪抗涝工作,根据气象预报及历史经验,决定提前做好某种防洪抗涝物资的储备。

已知该地区有生产该物资的企业三家,大小物资仓库八个,国家级储备库两个,各库库存及需求情况见附件1,其分布情况见附件2.经核算该物资的运输成本为高等级公路2元/公里?百件,普通公路1。2元/公里?百件,假设各企业、物资仓库及国家级储备库之间的物资可以通过公路运输互相调运。

(1)请根据附件2提供的信息建立该地区公路交通网的数学模型.

(2)设计该物资合理的调运方案,包括调运量及调运线路,在重点保证国家级储备库的情况下,为给该地区有关部门做出科学决策提供依据。

(3)根据你的调运方案,20天后各库的库存量是多少?

(4)如果汛期下列路段因洪水交通中断,能否用问题二的模型解决紧急调运的问题,如果不能,请修改你的模型。

中断路段: 14—23,11—25,26—27,9—31

二、模型的假设

1、物资从各企业调运到每个仓库的运输时间不计,即运输能力足够大;

2、在满足仓库和储备库的库存要求之下,我们可以任意的进行物资调运;

3、调运过程无任何意外情况发生;

4、企业之间物资的生产互不影响;

5、企业与企业不存在运输关系;

6、仓库与仓库、储备库与储备库之间权值相同;

7、仓库与储备库之间可以相互运输。

三、符号说明

向仓库

:表示企业j

i

x

运输的货物量;

)

:

(百件

单位

j i

向仓库

表示企业

:j

i

y

运输的最短路程;

)

:

(公里

单位

j i

:k

i

x

表示企业

向储备库

:

(百件

单位

运输的货物量;

)

k i

表示企业

:k

向储备库

i

y

(公里

)

:

单位

运输的最短路程;

k i

表示仓库

:j

向仓库

i

z

(百件

)

运输的货物量;

:

单位

ij

):(公里单位运输的最短路程;

向仓库表示仓库:j i w ij

):(百件单位运输的货物量;向储备库表示仓库:k i z ik ):(公里单位运输的最短路程;向储备库表示仓库:k i w ik ):(百件单位现有的库存量;表示企业:i M i ):(百件单位的最大库存量;

:表示企业i M i x a m

):(百件单位的最大库存量;:表示储备库k C k x a m ):(百件单位的最大库存量;表示仓库:j C j x a m ):(百件单位的最低库存量;表示仓库:j C j n i m ):(;min 百件单位的最低库存量表示储备库:k C k ):(百件单位的预测库存量;

表示仓库:j Y j

):(;百件单位的预测库存量表示储备库:k Y k ):(百件单位的现有库存量;

表示仓库:j X j

):(;百件单位的现有库存量表示储备库:k X k ):(天单位的生产时间;表示企业:i T i ):(;

百件单位每天的产量表示企业:i B i

)百件元(单位:费;表示每公里运输物资的: A

:表示企业的个数;a :表示仓库的个数;b :表示储备库的个数;c :表示仓库的权值;p :表示储备库的权值;q

四、模型的分析和建立

我们根据题目及附件1中的数据信息加以分析,把实际图形转化为数学图形,再根据图论知识,将数学图放在图论中,进行假设与分析,从而建立了比较优化的数学模型。我们分析得到:合理的调运方案实际上就是在满足仓库、储备库各自需求的前提下,要求总运费最少,因此建立了一个线性规划模型。因为高等级公路和普通公路的路程价钱不同,为了使计算过程简单化,我们结合高等级公路和普通公路的路程价钱的比例关系将高等级公路路程转化为普通公路路程,所以我们就避免了路程和价钱同时考虑的现象,从而我们就将价钱和里程的关系转化为单一的里程问题,因此简化了问题。所以我们需要求出企业与物资仓库之间的最短路ij y ,企业与国家级储备库之间的最短路ik y ,物资仓库与国家级储备库之间的最短路ik w ,物资仓库与物资仓库之间的最短路ij w ,而最短路路线可以根据附

件2由图论中的“破圈法1"统计出来。我们的目的是在满足仓库、储备库各自的需

求下,要求总运费最少,即可以转化为转移物资和路程的长度之积。

首先我们只考虑的运输关系为:企业与物资仓库,企业与国家级储备库。建立目标函数1为:

))()((min 11

111k i a

i c

b b k k

i j i a

i b

j j i y x

q y x p A F ?+??=∑

∑∑∑=++===

然后经过分析我们考虑到了物资仓库与国家级储备库还存在着运输关系,因此我们将目标函数1做了进一步的修改,得到目标函数2:

)))

()(())()(((min 11

11

11

112∑

∑∑

∑∑

∑∑∑=++==++==++===?+?+

?+??=b

i c

b b k k i k

i a

i c

b b k k i ik

b

i c

b b k j i j

i a

i b

j j i j i w z

y x

q w z

y x p A F

综合上面的分析,最后我们得出了物资调运的线形规划模型: 目标函数:

)))

()(())

()()(((min 11

11

1111

11∑

∑∑

∑∑

∑∑∑∑∑=++==++==++=====?+?+?+?+??=b

i c

b b k k i k

i a i c

b b k k i ik

b

i c

b b k j i b i b

j j i j i j

i a

i b

j j i j i w z

y x

q w z w z

y x p A F

约束条件:

???

?

?

?

??

???

+≥+≤++≤≤++≤∑∑∑∑∑∑∑∑========3110931813181max 3181max i k ik i j ij i i i i i k k ik ik k i i j

j ij ij j x x T B M C X z x Y C X z x Y

五、模型的求解

我们由图论知识可以把题中给的生产企业,物资仓库及国家级储备库分布

图进行简化可以得以下的简图:

图1

结合上图,我们要找到生产企业、物资仓库及国家级储备库每两两之间的最短路,所以我们使用“破圈法”—-任取一个圈,从圈中去掉一条权(图中为每两点间的距离)最大的边(但如果有两条或两条以上的边上的权都是最大的边,则任意的去掉其中一条)。在余下的图中,重复这个步骤,直至得到一个不含圈的图为止。我们求企业2到仓库1的方法如下:

由图知:企业2到仓库1之间的路径有5条,此图为连通图,但为了求他

们之间的最短路,因此应去掉该图中的权(任意两点之间的距离)最大的边,由“破圈法”得到最终图形为下图1:

所以由最短路的相关知识可以得到企业2到仓库1的最短路程为:5821 y , 路径为:41(企业2)—42—28 (仓库1)。

同理得:ik ij ik ij w w y y ,,,及相关路径(见附件1:表二、表三、表四、表五) 根据以上算出的数据,由题意可得首先应该重点保证国家级储备库;再是考虑公路区间长短及运输货物的费用,采用就近原则进行货物调运。又因为各处发生洪涝灾害的情况是突发的,对时间并没有限制,有附录表1中的数据得到各仓库和储备库的现有库存量都超过最底库存量,所以假定仓库与仓库之间、仓库与储备库之间不进行货物的调运,各个企业之间也不会相互联系的.那么现在只有企业与仓库,企业和储备库才有运输关系,因此我们根据图论中的最短路和破圈法可以得到各个企业和仓库、储备库的调运关系,如下表所示:

企业i 运输目的地 企业1 仓库2 仓库5 储备库1

企业2 仓库1 仓库7 储备库1 储备库2

企业3 仓库3 仓库4 仓库6 仓库8 储备库2

由附录中的表1可知,从仓库1到仓库8和两个储备库的储量来看他们现有的库存都是介于最低库存和预测库存之间,因此我们要从企业调运物资来使得他

们的库存达到预测库存以上。

对于企业1要使得他的库存来满足仓库2、仓库5和储备库1的预测库存,就必须的生产,那么企业一至少要生产多少天才可以达到仓库2、仓库5和储备库1的预测库存呢。 有25.1840))()()((995522=÷-+-+-X Y X Y X Y 天,企业1至少要生产18。25天才可以满足仓库2、仓库5和储备库1的存储量达到预测库存以上;同理可以得企业2要生产22天才可以满足仓库1、仓库7和储备库2的存储量达到预测库存以上,企业3要生产22天才可以满足仓库3、仓库4、仓库6、仓库8和储备库2的存储量达到预测库存以上.

1、问题二的求解:

有前面的模型和现在分析的情况可以得到一个新的模型: 目标函数:

A y x

y x

y x

F j j j j

j j j j

j j j ji

??+

?+

?=∑∑∑∑∑∑======))()()((

min 310.8.6.4.310

.8.6.4.33210.9.7,110

.9.7.1219.5.19

.5.11'

约束条件:

?????

??

????

?

???

?????

???==-≤-≥?+≤+

≥?+≤≥?+≤≥∑∑∑∑∑∑======10.....1;3,2,1)()(max 10,8,6,4,3310,8,6,4,3310,9,7,1210,9,7,129

.5.219.5.21j i Y C x X Y x T C X x X x T C X x X x T C X x X x k j j i i k j i j i i j j j j j j i i j j j j j i i j j j j j j 企业1到仓库2、仓库5和储备库1的最短路程为:125,80,100公里;企业2

到仓库1、仓库7、储备库1和储备库2的最短路程为:58,118,131。1,148公里;企业3到仓库3、仓库4、仓库6、仓库8和储备库2的最短路程为:123,75,145,93,102公里。在附录表1中有i j i k C C X Y ,,,max 的值i T 的取值为22天。

把数据和目标条件和约束条件放在Lingo 软件去解: 解得最小费的最优解为:315876

最优解为:

700

,100,

20,

120,0,

0,0,110,300,1000,0,33031038363433210292721191512============x x x x x x x x x x x x

即:企业1向仓库2运输330百件,企业1向储备库1运输1000百件;

企业2向仓库1运输300百件,企业2向仓库7运输110百件; 企业3向仓库4运输120百件,企业3向仓库6运输20百件, 企业3向仓库8运输100百件,企业3向储备库2运输700百件。

2、问题三的求解:

我们是规定的20天完成,那么又可以得一个目标规划模型:

A

y x

y x

y x

F j j j j

j j j j

j j j ji

??+

?+

?=∑∑∑∑∑∑======))()()((min 310.8.6.4.310

.8.6.4.33210.9.7,110

.9.7.1219.5.19

.5.11'约束条件:

?????

??

????

?

???

?????

???==-≤-≥?+≤≥?+≤≥?+≤≥∑∑∑∑∑∑======10.....1;3,2,1)()(max 10,8,6,4,3310,8,6,4,3310,9,7,1210,9,7,129

.5.219.5.21j i Y C x X Y x T C X x X x T C X x X x T C X x X x k j j i i k j i j i i j j j j j j i i j j j j j i i j j j j j j 企业1到仓库2、仓库5和储备库1的最短路程为:125,80,100公里;企

业2到仓库1、仓库7、储备库1和储备库2的最短路程为:58,118,131。1,148公里;企业3到仓库3、仓库4、仓库6、仓库8和储备库2的最短路程为:123,75,145,93,102公里。在附录表1中有j i k C X Y max ,,的值,T 的值取20天。

把数据和目标条件和约束条件放在Lingo 软件去解:

那么最小费用的优解为:302532 最优解为:

700

,100,

20,

120,0,

00,550,110,300,1000,0,33031038363433210292721191512============x x x x x x x x x x x x

即:企业1向仓库2运输330百件,企业1向储备库1运输1000百件;

企业2向仓库1运输300百件,企业2向仓库7运输110百件, 企业2向储备库1运输550百件;企业2向储备库2运输0百件; 企业3向仓库4运输120百件,企业3向仓库6运输20百件, 企业3向仓库8运输100百件,企业3向储备库2运输700百件.

3、问题四的求解:

由于汛期路段14—23,11—25,26-27,9—31,因洪水交通中断,26-27影响到了企业1到储备库1,企业2到储备1的路线;我们把这条边去掉,然后在用破圈法和最短路进行计算可得:企业1到储备库1的最短路:6.23411=y ,4——20-—13--27;企业2到储备库1的最短路:2740641,

3.13129------=y 。现

在根据题意可得,我们应该选者企业2到储备库1的路线即:

2740641,

3.13129------=y ,然后对我们先前的模型的数据进行改变可以

的:

)()()(min 310.8.6.4.310

.8.6.4.33210.9.7,110

.9.7.121.5.15

.11'j j j j

j j j j

j j j ji

y x

y x

y x

F ?+

?+

?=

∑∑∑∑∑∑======

约束条件:

?????

??

????

?

???

?????

???==-≤-≥?+≤≥?+≤≥?+≤≥∑∑∑∑∑∑======10.....1;3,2,1)()(max 10,8,6,4,3310,8,6,4,3310,9,7,1210,9,7,125

.215.21j i Y C x X Y x T C X x X x T C X x X x T C X x X x k j j i i k j i j i j j j j

j j i j j j j j i j j j j j j 这里的T=20,用问题三的求解方法对问题四的求解得结果为; 那么最小费用的优解为:324234 最优解为:

700

,100,

20,

120,0,

0,550,110,300,0,200,40031038363433210292721191512============x x x x x x x x x x x x

即:企业1向仓库2运输400百件,企业1向仓库5运输200百件;

企业2向仓库1运输300百件,企业2向仓库7运输110百件,

企业2向储备库1运输550百件,企业2向储备库2运输0百件;

企业3向仓库4运输120百件,企业3向仓库6运输20百件,

企业3向仓库8运输100百件,企业3向储备库2运输700百件。

六、模型的结果和分析

我们在本问题的求解中没有考虑各个仓库之间的调运关系,也没有考虑仓库和储备库之间的调运关系,而在实际生活当中它们的关系是存在的。但在特殊的情况下有特殊的处理,灾害具有突发性,不是人们所能控制的,所以我们在处理这道题的过程当中就没有必要去考虑各个仓库之间的调运关系、仓库和储备库之间的调运关系。在运输货物的时候是需要时间的,然而我们在题中也没有考虑时间的关系,因此我们还可以增加货物调运过程中的时间因素,并且为了预防某些路段因紧急情况而不能使用,则应该设有预备方案,从而确保防洪工作做得更好.

在现实生活中,每一次运输的运输量会有一定的限制,在某种情况还会因为运量的多少而改变运费,例如运量过少,负责运输单位会因运输过程中的物质耗费而亏本,因此负责运输单位会为确保其利益,增加本次运输费用,故无形中就会增加单位货物的运输费用。所以在模型的改进中,应该考虑这个因素,从而使该模型更具有现实性

七、模型的评价及推广

优点:

我们利用图论有关知识把复杂的交通路线图简化为带权图,再根据权的大小及“破圈法”和“最短路”来判定欲求两点的最短路径,即为调运路线。根据实际情况(就近原则)来确定具体的调运方案,既有理论依据,又符合实际要求.

缺点:

我们在运算中假设仓库与仓库之间没有调运,利用直观就近原则可能忽略了其它的调运路线,使得我们的调运方案具有局限性,从而使总路费存在误差。我们考虑在调运过程中与时间无关的情况,但是在实际情况中,如果遇到紧急情况时,可能使得防洪物质短缺或者路段被冲断,从而被迫我们必须得改变调运路线,导致运费改变。

本文是关于物资调运问题,在实际的社会当中涉及许多领域,就此模型进行推广。此模型可以推广到商品的发放问题中。但还需要考虑更多的因素,如运输过程中商品的变质期限、商品的保鲜费用、市场变动情况等等.其中最短路问题是重要的最优化问题之一,他不仅可以直接应用与解决生产实际的许多问题,如:管道铺设、线路安排、厂区布局、设备更新、南水北调工程和西气东输等问题。

参考文献:

[1]萧树铁,数学实验,北京:高等教育出版社,2002,2。

[2] 李大潜,中国大学生数学建模竞赛,北京:高等教育出版社,1998,8. [3]许国志,运筹学,北京:清华大学出版社,2005,6。

[4] 何聪,规划论,成都:四川大学出版社,2005,9。

飞行管理问题优化模型

飞行管理问题优化棋型内部编号:(YUUT?TBBY?MMUT?URRUY?UOOY?DBUYI?0128)

飞行管理问题的优化模型 摘要 根据问题我们知道,飞机如果要避免在区域内发生碰撞,则需要调整各自的飞行角,并强调要使调整幅度尽量小,所以这是个最优控制问题。 首先,我们根据本题所给的数据,利用matlab软件绘制出图形,对正方形区域内有可能发生的碰撞做一个大致的估计,并利用ling。软件找出了碰撞发生的飞机、碰撞发生的点和时间。同时寻找判断两架飞机是否会相撞的方法,经探 讨,我们发现可以在飞机0出区域之前每隔一段较短的时间对飞机进行监控,看是否与别的飞机相撞。 然后,我们根据问题讨论了飞行方向角的调整时间和次数对最优解的影响,发现调整时间越早,调整角度就越小,所以我们决定在第六架飞机刚飞到区域边 缘的时候就进行飞行角度的调整;同时我们发现调整次数是越少,调整角度总和 就越小,所以我们决定只在第六架飞机刚飞到区域边缘时对所有的飞机的飞行角 度进行一次调整。我们由此简化了飞机碰撞模型,使飞机在区域内的飞行轨迹更 加明了,同时找到了我们的优化目标一一调整角度总和最小。 针对优化目标,我们找到约束条件,然后把这些约束条件在lin曲中用语言描述出来,再针对运算方面进行改进,得到我们的ling。程序,运行后我们得到了飞机调整的飞行方向角和方案。 最后我们考虑模型的改进和推广。针对模型求解过程中,ling。程序运行时间过长,我们对6架飞机的飞行方向角改变的大小进行预估,然后代入程序中的角度约束,使程序运行量减少。同样我们发现在对飞机进行实时监控时的间隔时

间可以加大,这样可加快程序运行速度,减少运行时间。这样就对模型进行了优化。关键词:简化,最小调整幅度,最优 一、问题重述 在约10000米的高空某边长为160公里的正方形区域内,经常有若干架飞机作水平飞行。区域内每架飞机的位置和速度向量均由计算机记录其数据,以便进行飞行管理。当一架欲进入该区域的飞机到达区域边缘时,记录其数据后,要立即计算并判断是否会与区域内的飞机发生碰撞。如果会碰撞,则应计算如何调整各架(包括新进入的)飞机飞行的方向角,以避免碰撞。现假定条件如下: 1)不碰撞的标准为任意两架飞机的距离大于8公里; 2)E机飞行方向角调整的幅度不应超过30度; 3)所有飞机飞行速度均为每小时800公里; 4)进入该区域的飞机在到达区域边缘时,与区域内飞机的距离应在60公里以 上; 5)最多需考虑6架飞机; 6)不必考虑飞机离开此区域后的状况。请你对这个避免碰撞的飞机管理问题建立数学模型,列出计算步骤,对以下数据进行计算(方向角误差不超过0.01 度),要求飞机飞行方向角调整的幅度尽量小。设该区域内4个顶点的坐标为(0, 0), (160, 0), (160,160), (0,160)。记录数据为:

优化调度的数学模型

1)目标函数 假设系统可运行的机组数为n,总负荷为d P,以电厂内所有机组的总煤耗量最小为目标,建立如下的数学模型: 其中:——机组序号; ——第i台机组的煤耗量; ——n 台机组的总煤耗; ——第i台机组的负荷; ——第i台机组的煤耗量与负荷的函数关系。 2)约束条件 约束条件包括功率平衡约束和机组出力约束。 (1)功率平衡约束: (2)机组出力约束: 其中:——n台机组的总负荷; ——第i台机组的负荷下限和负荷上限。

假设系统可运行的机组数为,总负荷为,以调度周期为一昼夜来考虑,分为h个时段。 1)目标函数 机组优化组合的目标函数如下: 式中——机组序号; ——n 台机组的总煤耗; ——机组i运行状态的变量,仅取0、1 两个值,表示停机,表示运行。 ——第i台机组在t时刻的负荷; ——第i台机组在t时刻的煤耗量与负荷的函数关系; ——机组的启动耗量。 2)约束条件 考虑机组运行的实际情况,本文确定的机组约束条件包括功率平衡约束、机组出力约束、最小停机时间约束、最小运行时间约束以及功率响应速度约束。 (1)功率平衡约束: 式中——机组序号; ——第i台机组在t时刻的负荷;

——n台机组的总负荷。 (2)机组出力约束: 式中——机组的启停状态,0 表示停机,1 表示运行。 ——第i台机组的负荷下限和负荷上限。 (3)最小停机时间约束: 式中——机组i的最小停机时间。 (4)最小运行时间约束: 式中——机组i的最小运行时间。 (5)功率响应速度约束: 式中——机组i每分钟输出功率的允许最大下降速率和最大上升速率。 由于是在火电厂内部进行优化组合,可不考虑网损和系统的旋转热备用约束(这两项通常是电网调度中需要考虑的)。因此,机组优化组合从数学角度上讲就是在(5)~(9)的约束条件下求式(4)的最小值。 3)机组启停耗量能耗Si 的确定 通常情况下,对Si的处理采用如下的方法:机组的启动耗量包括汽机和锅炉两部分,由于汽机的热容量很小,其启动耗量一般可近似当

数学建模论文-物资调度问题

物资调度问题 摘要 “运输调度”数学模型是通过运输车运输路线的确定以及运输车调配方案的确定来使运输的花费最小。本文首先分析了物资调度中运费、载重量及各站点需求量间相互关系。而后,紧抓住总运营费用最小这个目标,找出最短路径,最后完成了每辆运输车的最优调度具体方案。 问题一:根据题目及实际经验得出运输车运输物资与其载重量及其行驶的路程成正比例关系,又运输的价格一定,再结合题目给出的条件“运输车重载运费2元/吨公里”,其重载运费的单位“元/吨公里”给我们的启发。于是结合题目给定的表,我们将两个决策变量(载重量,路程)化零为整为一个花费因素来考虑,即从经济的角度来考虑。同理我们将多辆车也化零为整,即用一辆“超大运输车”来运输物资。根据这样从经济的角度来考虑,于是我们将需求点的需求量乘入需求点的坐标得到一个新的表,即花费经济表,我们再运用数学软件Mathematic 作出一个新的坐标,这样可以得到一个花费坐标。于是按照从经济花费最少的角度,根据我们所掌握的最短路径及Dijkstra 算法再结合数学软件Mathematic ,可求得经济花费坐标上的最短路径。具体求法上,采用了 Dijkstra 算法结合“最优化原理” ,先保证每个站点的运营费用最小,从而找出所有站点的总运营费用最小,即找出了一条总费用最低的最短路径。用我们的“超大运输车”走这条最小花费的路线,我们发现时间这个因素不能满足且计算结果与实际的经验偏差较大。于是我们重新分配路线,并且同时满足运输车工作时间这个因素的限制,重新对该方案综合考虑,作出了合理的调整.此处我们运用了“化整为零”的思想,将该路线分为八条路径。同时也将超大车进行分解,于是派八辆运输车向29个需求点运送物资。同样的道理我们也将运输车运送物资从经济的角度看,即将运量乘以其速度,又因运输的价格一定,因此便可以将运输车在整体上从经济考虑。于是便可以将整体从经济上来考虑。将运输最小花费转化从经济方面来考虑比较合理。由此可求解出运输车全程的最低费用: 结合各约束条件求得最低费用为1980.16元。 问题二:由题目知运输车的载重量不同,但由于我们从整体的经济上来考虑运输物资的花费最少问题,因此花费坐标的最短路径仍然不变。因此结合运输车工作时间的这个因素,我们仍用问题一的思路,运用“化零为整”,“化整为零”的思想来考虑第二问。按照这样的的思路我们制定了八条路线,派了七辆运输车来运送物资。同样在整体上对问题从经济上来考虑比较合理。 29 1 1234302+0.5527213420+34+18+242+0.5527213420341824i i T T T T T T ='??'''''=?+++++?+++++++∑(++++) ()() 结合各约束条件求得最低费用为1969.66元,需要7辆车 关键词:物资调度 最短路线 最优化原理 Dijkstra 算法 0-1规划 一、问题重述 29 ij 1231Min Min Min 0.5()S S d n ij i S c c c c μ==+=?+?++++∑总去返

飞行管理问题优化模型

飞行管理问题优化模型内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

飞行管理问题的优化模型 摘要 根据问题我们知道,飞机如果要避免在区域内发生碰撞,则需要调整各自的飞行角,并强调要使调整幅度尽量小,所以这是个最优控制问题。 首先,我们根据本题所给的数据,利用matlab软件绘制出图形,对正方形区域内有可能发生的碰撞做一个大致的估计,并利用lingo软件找出了碰撞发生的飞机、碰撞发生的点和时间。同时寻找判断两架飞机是否会相撞的方法,经探讨,我们发现可以在飞机飞出区域之前每隔一段较短的时间对飞机进行监控,看是否与别的飞机相撞。 然后,我们根据问题讨论了飞行方向角的调整时间和次数对最优解的影响,发现调整时间越早,调整角度就越小,所以我们决定在第六架飞机刚飞到区域边缘的时候就进行飞行角度的调整;同时我们发现调整次数是越少,调整角度总和就越小,所以我们决定只在第六架飞机刚飞到区域边缘时对所有的飞机的飞行角度进行一次调整。我们由此简化了飞机碰撞模型,使飞机在区域内的飞行轨迹更加明了,同时找到了我们的优化目标——调整角度总和最小。 针对优化目标,我们找到约束条件,然后把这些约束条件在lingo中用语言描述出来,再针对运算方面进行改进,得到我们的lingo程序,运行后我们得到了飞机调整的飞行方向角和方案。 最后我们考虑模型的改进和推广。针对模型求解过程中,lingo程序运行时间过长,我们对6架飞机的飞行方向角改变的大小进行预估,然后代入程序中的角度约束,使程序运行量减少。同样我们发现在对飞机进行实时监控时的间隔时

间可以加大,这样可加快程序运行速度,减少运行时间。这样就对模型进行了优化。 关键词:简化,最小调整幅度,最优 一、问题重述 在约10000米的高空某边长为160公里的正方形区域内,经常有若干架飞机作水平飞行。区域内每架飞机的位置和速度向量均由计算机记录其数据,以便进行飞行管理。当一架欲进入该区域的飞机到达区域边缘时,记录其数据后,要立即计算并判断是否会与区域内的飞机发生碰撞。如果会碰撞,则应计算如何调整各架(包括新进入的)飞机飞行的方向角,以避免碰撞。现假定条件如下: 1)不碰撞的标准为任意两架飞机的距离大于8公里; 2)飞机飞行方向角调整的幅度不应超过30度; 3)所有飞机飞行速度均为每小时800公里; 4)进入该区域的飞机在到达区域边缘时,与区域内飞机的距离应在60公里以上; 5)最多需考虑6架飞机; 6)不必考虑飞机离开此区域后的状况。请你对这个避免碰撞的飞机管理问题建立数学模型,列出计算步骤,对以下数据进行计算(方向角误差不超过0.01度),要求飞机飞行方向角调整的幅度尽量小。设该区域内4个顶点的坐标为(0,0),(160,0),(160,160),(0,160)。记录数据为:

智能公交动态调度优化模型

Abstract An intelligent bus dispatching system can better meet people's travel needs.The optimized algorithm takes advantage of advanced technology and equipments.However,in recent years the development of Chinese intelligent bus dispatching systems is not satisfactory with an.excessive attention to advanced technology but less to practicality.Dynamic scheduling has yet to be fully exploited.In this paper,intelligent transportation scheduling systems and scheduling characteristics are analyzed. The information about dynamic transportation and vehicle locations is acquired and merged.An optimization model for intelligent dispatching of buses is proposed on basis of real data.This model is under the support of GPS positioning,communications,computers and other technologies,where intelligent algorithms are used in bus operation and dispatching and both passengers satisfaction and company profit are considered.The method of collecting data automatically and the algorithm of this model are presented.This model is shown to be able to significantly improve the rate of bus full loading,shorten the waiting time of passengers,and reduce the total vehicle trips,with an evident effect of optimized dispatching. Keywords intelligent transportation;optional model;dynamic dispatching;intelligent bus;Matlab software 0引言 伴随经济社会的发展,中国城市交通问题日益突出。交 通问题的出现,严重影响了城市的生产生活,而且从长远来看,影响了城市功能的发挥,制约了城市的健康发展。国际上城市交通发展的经验证明,解决城市交通问题,关键是要树立城市公共交通在城市交通体系中的主导地位,大力优先发展公共交通,建立先进的公共交通系统APTS (Advanced Public Traffic System )[1],实现公交调度智能化,提高道路通行 能力和公交运营管理水平。 近年来,由于科学技术的进步和政府对公交投入力度的加大,中国智能公共交通调度系统初现端倪,已经有杭州、上海、北京等地安装了电子站牌,车载GPS 定位设备,实现了车辆的实时跟踪、定位,公交车与调度室的双向通讯,以及电子站牌上实时显示下班车位置信息等功能。青岛、贵阳、石家庄等城市在实现公交系统智能化管理方面,已经有了一系列有益的探索[2]。但是,这些系统普遍存在先进的系统与静态、原始的调度方法共存现象,未能充分利用智能系统提供的动态 智能公交动态调度优化模型 摘要 利用先进的技术和设备实现公交的优化调度,充分满足人们的出行需要,是智能公交系统发展的目标。然而近年来中国智 能公交发展在一定程度上出现过于追求先进性、忽略实用性、运营效果不理想、动态调度尚待充分开发等问题。结合中国智能公交系统现状,通过对智能公交调度系统和调度特点深入分析,在GPS 定位、通信、计算机等技术的支持下,将动态交通状态信息与车辆定位信息有效融合,将智能化算法引入到公交运营调度中,建立了基于实时动态数据,兼顾乘客满意度和企业效益的动态调度优化模型。并且阐述了模型数据的自动采集方法、模型Matlab 程式化的解法。结果表明,该模型可以显著提高公交车辆满载率、缩短乘客等车时间和减少车辆总班次,优化调度效果明显。 关键词智能交通;优化模型;动态调度;智能公交;Matlab 软件 中图分类号U494.22,TP29文献标识码A 文章编号1000-7857(2009)17-0069-04 李志强,周建立,张毅 河南科技大学车辆和动力工程学院,河南洛阳471003 An Optimization Model for Dynamic Intelligent Dispatching of Buses 收稿日期:2009-05-11 基金项目:河南教育厅自然科学基金项目(200510464028);河南科技大学科研基金项目(2004ZY030,2006ZY027)作者简介:李志强,经济师,研究方向为智能交通,电子信箱:liqiangsqjt@https://www.360docs.net/doc/916909584.html, LI Zhiqiang,ZHOU Jianli,ZHANG Yi Vehicle &Motive Power Engineering College,Henan University of Science and Technology,Luoyang 471003,Henan Province,China

飞行器管理问题

飞机碰撞调整优化模型 摘要 本文研究的是在一定区域内水平飞行的n(n<=6)架飞机的飞行管理问题。本文通过建立一个非线性规划模型来求解出飞机飞行的调整角度。 首先,根据题目中“要立即计算并判断新进入飞机是否会与区域内的飞机发生碰撞“的要求,我们在编程给出判断是否碰撞的算法之后,需要求出进行判断碰撞所需要的时间。我们运用题目中所给假设中的条件作为约束条件,通过判断在区域内任两架飞机之间在区域内飞行时任意时刻的距离是否小于8公里作为碰撞标准,进行判断是否会发生碰撞。利用MATLAB中tic和toc函数进行计时。以题目中飞机的初始状态求解,实验得出判断结果的用时均在0.3s以内,且存在飞机会发生碰撞。 为了得出飞机的调整角度,我们首先运用蒙特卡洛法随机产生200组飞行调整角度。其中每组数据包含6个数据项,分别作为架飞机的调整角度。然后,我们通过碰撞条件筛选出这200组数据中能使飞机进行角度调整后不发生碰撞的数据。继而将上一步中所得数据中的调整角度绝对值之和最小的那组数据作为 进一步优化的对象。接着,我们以o 0.01为步长对上一步得到的优化对象按飞机编号顺序进行逐角优化,使每一个调整角度逐步减小。每优化一步进行一次碰撞判断,直到该飞机的调整角度绝对值为0或将导致飞机发生碰撞为止,然后再按同样的算法优化下一个飞机的调整角度。从而得出近似最优解。通过模型求解后 4.5之内。 结果显示各飞机调整角度绝对值之和均在o 最后,为了对我们所建的模型进行推广,说明我们所建的模型是具有普适性的,我们又自行随机设计了两组符合初始状态要求即进入该区域的飞机在到达该区域边缘时,与区域内飞机的距离应在60公里以上的数据来作为6架飞机的初始状态,并利用我们所建的模型得出了调整角度结果。实验结果比较理想,各飞机调整角度绝对值之和均在o 1.5之内。 关键词:飞行管理判断调整蒙特卡罗逐步优化

计划动态调度及路由模型

计划/动态调度和路由模型 重新计划物流活动以应对地震不可预测性和毁灭性的地震影响着执行政府对灾害易发地区提供实用的应对计划以及时减少地震带来的破坏和损失。物流管理是其中一个关键问题,应考虑一个适当的规划,特别是规划所需商品的运输在响应和疏散受伤的人。在本文中,我们提供了一个动态调度模型和路由汽车以应对地震。我们关注的是两个商品的运输和受伤的人送到医院。该模型是在任何时间收到更新的信息并相有能力的改变调整计划。速度是一个关键的和一个成功的地震响应因素,模型分层次对受伤的人直到抵达医院的总时间最小化,以及总时间满足大众商品需求。我们设计的实验进行了从提高地震响应效率拓展到提高地震响应质量。 地震是最普遍的自然灾害,强大的地震影响更是毁灭性的。尽管成千上万的网络化的地震仪电台安装在世界各地不断分析和强大的电脑数据生成的这些站,我们仍无法准确预测何时何地地震将罢工。这个随机和不可预测性地震地震实施政府制定全面计划响应来减轻损害和损失。精心策划的后勤支持业务贡献显著减少地震损失和赔偿和保持一场灾难后幸存者。 在灾难发生后立即,工作主要集中在寻找和营救幸存者。这需要后勤支持通过运送受伤人们从受灾地区医院或其他紧急医疗中心。这是皮毛,具有必要分派商品(如食物和帐篷)和设备受影响的地区。这些商品可以来自指定的仓库或直接从供应商。相当大的不确定性的情况下赖斯-规划设计、调度和运输商品来自各种地方的不同规划区域可能会导致相当大的复杂性。

进一步的并发症救灾规划相关的物流数据的事实可能会改变在响应(易建联和Ozdamar 2007;Ozdamar et al . 2004年)。例子是项目需求的变化,计划供应商的订货情况在医院(包括例如能力和服务利率)或运输基础设施(道路可能被阻塞由于余震)。反应组织因此遇到一个动态的情况下,数据可能会改变突然和意外。此外,规则和程序可能需要被改变。例如,要提供更多的道路容量从海岸,在飓风疏散部分在美国公路I-16可能完全西行方向操作。这两个往东的车道I-16可以转化为西行的车道时必需的(CEMA 2011)。这些变化可能对响应计划和有很大的影响因此可以根据这些变化是有益的调整计划。一个决策支持系统提供可能性轻易调整计划基于这样的新信息可以更好地促进物流活动的计划组织参与灾难的反应。 本文旨在建立一个数学模型,使中央的身体协调和(重新)计划物流活动同时考虑现有的计划和新网络中可用的数据变化情况和需求。政府经常设置这样的灾难灾难发生后协调中心。我们也考虑两个层次目标函数关注减少运输时间货物和受伤的人。第一个目标打算最小化总等待时间的伤员灾难响应到达的时刻医院在规划周期。第二个目标是最小化总等待规划周期期间从需要的那一刻起,直到货物到达在该地区的影响。 提出了混合整数,多目标,多种商品,综合模型包含条件和约束中遇到地震的现实响应。它包含了各种车辆和车辆的能力以及多样性联合运输的模式允许商品和受伤的人。此外,我们的模型能够在任意时刻处理更新计划动态条件下的响应。我们的模型可以选择另外的车了每次需要重新规划。此外,我们的模型的区别 之间流动的商品和受伤人员的流动。 此外,值得注意的是,该模型和算法实现物流决策支持系统(LDSS),可以使用

水库优化调度

水库调度研究现状及发展趋势 摘要:实施梯级水电站群联合优化运行是统筹流域上下游各电站流量、水头间的关系,从而实现科学利用水能资源的重要手段,符合建设资源节约型、环境友好型社会的要求,是实现节能减排目标的重要途径,对贯彻落实科学发展观,促进流域又好又快发展具有重要意义。本文拟介绍水库调度研究现状及发展趋势,对工程实际具有重要的理论意义。 关键词:水库;优化调度;研究形状;发展趋势 随着水电发展的规划推进落实,大型流域梯级水库群将逐步形成,其联合调度运行必将获得巨大的电力补偿效益和水文补偿效益,同时在实际工程中也会不断涌现新的现象和问题。在新形势下综合考虑梯级上下游电站之间复杂的水力、电力联系,开展梯级水库群联合调度新的优化理论与方法应用研究,统筹协调梯级水库群上下游电站各部门的利益及用水需求,结合工程实际探索梯级水库群联合优化调度的多目标优化及决策方法,实现流域水能资源的高效利用、提高流域梯级水库群的联合运行管理水平乃至达到流域梯级整体综合效益的最大化,对缓解能源短缺、落实科学发展观、贯彻国家“节能 减排”战略以及履行减排承诺均具有重要的理论指导意义和工程实用价值[1]。 1 水库调度研究现状 水库调度研究,按其采用的基本理论性质划分,可分为常规调度(或传统方法)和优 化调度[2]。常规调度,一般指采用时历法和统计法进行水库调度;优化调度则是一种以 一定的最优准则为依据,以水库电站为中心建立目标函数,结合系统实际,考虑其应满足的各种约束条件,然后用最优化方法求解由目标函数和约束条件组成的系统方程组, 使目标函数取得极值的水库控制运用方式 [3]。 常规调度 常规调度主要是利用径流调节理论和水能计算方法来确定满足水库既定任务的蓄泄过程,制定调度图或调度规则,以指导水库运行。它以实测资料为依据,方法比较简单直观,可以汇入调度和决策人员的经验和判断能力等,所以是目前水库电站规划设计阶段以及中小水库运行调度中通常采用的方法。但常规方法只能从事先拟定的极其有限的方案中选择较好的方案,调度结果一般只是可行解,而不是最优解,且该方法难以处理多目标、多约束和复杂水利系统的调度问题。 优化调度 为了充分利用有限的水资源,国内外从上世纪50年代起兴起了水库优化调度研究。其核心有两点:一是根据某种准则建立优化调度模型,二是寻找求解模型的优化方法。 1946年美国学者Masse最早引入优化概念解决水库调度问题。1955年美国人Little[4]采

数学建模报告 飞行问题

《数学建模》课程设计 报告 课题名称:___飞行管理问题 系(院):理学院 专业:数学与应用数学 班级:10122111 学生姓名:邵仁和 学号:1012211122 指导教师:陈宏宇 开课时间:2011-2012 学年二学期

飞行管理问题的优化模型 摘要 为了避免较多飞机在区域内会发生碰撞,让飞机在某正方形区域内安全飞行,便于进行飞行管理,所以在飞机飞行过程中,要适当调整各架飞机的方向角(调整幅度尽量小),所以这是个优化问题。 本文我们根据题目所给的数据,利用matlab软件绘制出飞机的位置图标及飞行路径,并利用lingo软件找出了碰撞发生的飞机、碰撞发生的点和时间。同时再寻找判断两架飞机是否会相撞的方法,我们发现可以在飞机飞出区域之前每隔一段较短的时间对飞机进行监控,看是否与别的飞机相撞。 然后,我们根据问题讨论了飞行方向角的调整时间和次数对最优解的影响,发现调整时间越早,调整角度就越小,所以我们决定在第六架飞机刚飞到区域边缘的时候就进 行飞行角度的调整,并且达到了优化目标:∑ =? = 6 1 |) ( | min i i a。 由题意,我们找到约束条件,然后把这些约束条件在lingo中用语言描述出来,再针对运算方面进行改进,得到我们的lingo程序,运行后我们得到了飞机调整的飞行方向角和方案。 关键词:简化,最小调整幅度,最优

一、问题重述 6. 飞行管理问题(优化模型) 在约10000米高空的某边长160km的正方形区域内,经常有若干架飞机作水平飞行.区域内飞行的每架飞机的位置和速度向量均由计算机记录其数据,以便进行飞行管理.当一架欲进入该区域的飞机到达区域的边界时,记录其数据后,须立即判断是否将与区域内的飞机相碰撞.若可能发生碰撞,则应计算如何调整各架飞机的飞行的方向角,以避免碰撞。 作如下假设: (1)任意两架飞机的安全飞行距离为8公里; (2)所有飞机的飞行速度为800公里/小时; (3)进入该区域的飞机在到达区域边界时,与区域内的飞机的距离应在60公里以上; (4)最多考虑6架飞机; (5)不必考虑飞机离开此区域后的情况. 请你对这个避免碰撞的飞行管理问题建立数学模型,列出计算步骤,对以下数据进行计算(方向角误差不超过0.01),要求飞机飞行方向角调整的幅度尽量小。 设该区域四个顶点的坐标为:(0,0),(160,0),(160,160),(0,160) 记录数据为:

公交车调度的优化模型

公交车调度的优化模型 摘要 公共交通是城市交通的重要组成部分,做好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。本文就是通过对我国一座特大城市某条公交线路的一个工作日两个运行方向各站上下车的乘客数量统计进行分析,建立公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益前提下,给出了理想公交车调度方案。 对于问题一,模型I 中建立了最大客容量,发车车次数的数学模型,运用决策方法给出了各时间段最大客容量数,在满足客车载满率及载完各时段所有乘客情形下,得出每天最少车次数为460次,最少车辆数为54辆,并给出了整分发车时刻表(见表6、表7)。 对于问题二,模型II 进行了满意度分析。满意度包含公交公司的满意度A i 和乘客的满意度i B ,通过分析得到公交公司的满意度公式(7)和乘客的满意度公式(12),然后求出当公交车最大载客量为120时,公交公司和乘客的满意度为:上行方向:11A =0.9686,B 0.7165=,下行方向:2A2=0.9563,B 0.7138=。再算出当公交车最大载客量分别为100、50时对应的公交公司和乘客的满意度,最后通过二次拟合得出乘客和公交公司满意度对应的关系式为: 上行方向:21111.8709 2.10170.4361B A A =-++ 10.41020.9686A ≤≤ 下行方向:22222.2995 2.63450.2974B A A =-++ 20.41060.9563A ≤≤ 使双方满意度之和达到最大,同时双方满意度之差最小,得到上下行的最优满意度分别为()110.8599,0.8599A B ==,()220.8610,0.8610A B ==,此时公交车调度

交巡警服务平台的设置与调度的优化模型

湖南工业大学 课程设计 资料袋 学院(系、部)2011~2012 学年第 2 学期 课程名称图论及其应用指导教师职称 学生姓名ake555 专业班级学号 题目交巡警服务平台的设置与调度的优化模型 成绩起止日期2013 年6月16 日~2013 年 6 月21 日 目录清单

课程设计任务书 2012—2013学年第2学期 学院专业班级 课程名称:图论及其应用 设计题目:交警服务平台和调度设计问题 完成期限:自2013 年 6 月16 日至2013 年 6 月21 日共 1 周

指导教师(签字):年月日系(教研室)主任(签字):年月日

图论及其应用课程设计说明书 2013年6 月21 日 目录

一、问题描述 (5) 二、模型假设 (6) 三、符号说明 (6) 四、模型建立与求解 (6) 五、模型评价 (15) 六、体会心得 (16) 七、参考文献 (16) 八、附件 (16) 交巡警服务平台的设置与调度的优化模型 一问题描述 随着人们社会经济的迅猛发展,人们生活的质量的提高,安全意识以深入人心,作为社会秩序的维护者警察对社会稳定起着巨大的作用

.警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。每个交巡警服务平台的职能和警力配备基本相同。由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。 试就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:问题一:附件1中的附图1给出了该市中心城区A的交通网络和现有的20个交巡警服务平台的设置情况示意图,相关的数据信息见附件2。要求为各交巡警服务平台分配管辖范围,使其在所管辖的范围内出现突发事件时,尽量能在3分钟内有交巡警(警车的时速为60km/h)到达事发地。 问题二:对于重大突发事件,需要调度全区20个交巡警服务平台的警力资源,对进出该区的13条交通要道实现快速全封锁。实际中一个平台的警力最多封锁一个路口,通过求解给出该区交巡警服务平台警力合理的调度方案。 问题三:根据现有交巡警服务平台的工作量不均衡和有些地方出警时间过长的实际情况,拟在该区内再增加2至5个平台,通过分析计算需要增加平台的具体个数和位置。 问题四:针对全市(主城六区A,B,C,D,E,F)的具体情况,按照设置交巡警服务平台的原则和任务,分析研究该市现有交巡警服务平台设置方案(参见附件)的合理性。如果有明显不合理的地方,给出解决方案。 问题五:如果该市地点P(第32个节点)处发生了重大刑事案件,在案发3分钟后接到报警,犯罪嫌疑人已驾车逃跑。为了快速搜捕嫌疑犯,请给出调度全市交巡警服务平台警力资源的最佳围堵方案。 二模型假设 1.出警时道路恒畅通(无交通事故、交通堵塞等发生),警车行驶正常;2.在整个路途中,转弯处不需要花费时间; 3.假设逃犯驾车逃跑的车速与警车车速相当 三符号说明

31高速铁路运行控制与动态调度一体化基础理论与关键技术

31.“高速铁路运行控制与动态调度一体化基础理论与关键技术”重大项 目指南 作为我国综合交通运输体系的核心,高速铁路近年来发展迅速,其运营里程数、客运量等均居世界首位。然而,随着我国高速铁路里程数和客运量的快速增加,现有的控制手段和调度方法在快速、有效解决高速列车运行过程中出现的突发事件(比如电力故障、突发地震、山体滑坡、轨道突然出现障碍物等)方面尚有一定差距,使得高速列车晚点时间过长,旅客满意度下降、高铁运营效率不高。为此,本重大项目主要针对高速列车运行过程中可能出现的各类突发事件,开展高效运行控制和动态调度一体化基础理论与关键技术研究,提升高铁应急决策能力,最终实现提高旅客满意度和高铁运营效率。 一、科学目标 面向我国高速铁路未来发展的重大需求(列车运行安全、旅客满意度和运营效率),针对目前我国高速铁路应急处置突发事件(比如突发地震、山体滑坡、轨道突然出现障碍物等)能力不高的现状,本项目围绕高速铁路高效运行控制理论与动态调度方法展开研究,旨在实现以下三个方面的理论突破:高速移动环境下多层域实时智能感知理论与方法;多约束条件下组合动态优化控制方法;复杂高铁路网下列车群的协同动态调度理论。 主要理论成果在该领域国际著名刊物上发表并产生重要影响,技术成果申请系列发明专利。构建高速铁路运行控制与动态调度一体化仿真实验系统,完成室内仿真实验,部分相关理论、方法和技术成果在实际系统中进行验证。培养一批我国高速铁路运行控制与调度方面的理论和工程技术人才,为我国高速铁路事业做出贡献。 二、研究内容 (一)高速移动环境下多层域协同智能感知与数据融合。 研究满足高速铁路系统全局状态(包括山体滑坡、铁轨突然出现障碍物等高速铁路灾害状态)信息重构的传感器部署方法,揭示系统不同层级状态信息的关联规律及耦合机理,提出跨层域多传感器协同感知理论,研究轻量级高效的多源数据融合理论,建立兼顾大数据和样本数据的数据组织结构和分析方法,为建立高速铁路运行控制与调度一体化模型提供数据支撑。 (二)复杂环境下高速铁路运行控制与动态调度一体化建模。 研究突发事件条件下高速铁路调度系统状态演化机理,分析列车延误传播机理和影响;提取成网条件下高速铁路调度复杂巨系统特征参数,分析参数与系统状态的映射关系;研究状态交互影响的时空特性,耦合规律,构建其全局架构模型;针对复杂路网条件下不同的时空粒度需求,研究网络客流的实时分布及运力资源匹配模型,研究车、线、网构成的高速铁路运行控制与调度一体化模型。为研究高速铁路运行过程突发事件情况下的控制与动态调度奠定基础。 (三)复杂环境下高速列车运行优化控制方法。 基于运行数据和实时动态感知信息及一体化模型,分析复杂快速多变且信息交互的高速铁路运行环境,研究正常状态及突发事件情况下事件驱动的列车运行实时动态优化控制理论以及人机高效协同决策机制,提出列车运行调整动态优化的评价体系,建立有效的动态调整的满意决策控制模型。 (四)复杂高速铁路路网条件下的列车群动态调度方法。

公交车调度方案的优化模型

第三篇公交车调度方案的优化模型 2001年 B题公交车调度Array公共交通是城市交通的重要组成部分,作好公交车的调度对 于完善城市交通环境、改进市民出行状况、提高公交公司的经济 和社会效益,都具有重要意义。下面考虑一条公交线路上公交车 的调度问题,其数据来自我国一座特大城市某条公交线路的客流 调查和运营资料。 该条公交线路上行方向共14站,下行方向共13站,表3-1 给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时。运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。 试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。 如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题 的要求,如果要设计更好的调度方案,应如何采集运营数据。

公交车调度方案的优化模型* 摘要:本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。并提供了关于采集运营数据的较好建议。 在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客的最少车次数462次,从便于操作和发车密度考虑,给出了整分发车时刻表和需要的最少车辆数61辆。模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司和乘客双方日满意度为(0.941,0.811)根据双方满意度范围和程度,找出同时达到双方最优日满意度(0.8807,0.8807),且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。对问题2,建立了综合效益目标模型及线性规划法求解。对问题3,数据采集方法是遵照前门进中门出的规律,运用两个自动记录机对上下车乘客数记录和自动报站机(加报时间信息)作录音结合,给出准确的各项数据,返站后结合日期储存到公司总调度室。 关键词:公交调度;模糊优化法;层次分析;满意度 3.1 问题的重述 3.1.1 问题的基本背景 公交公司制定公交车调度方案,要考虑公交车、车站和乘客三方面因素。我国某特大城市某条公交线路情况,一个工作日两个运营方向各个站上下车的乘客数量统计见表3-1。 3.1.2 运营及调度要求 ⑴公交线路上行方向共14站,下行方向共13站; ⑵公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运营的平均速度为20公里/小时。车辆满载率不应超过120%,一般也不低于50%; ⑶乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟。 3.1.3 要求的具体问题 ⑴试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益,等等; ⑵如何将这个调度问题抽象成一个明确完整的数学模型,并指出求解方法; ⑶据实际问题的要求,如果要设计好更好的调度方案,应如何采集运营数据。 3.2 问题的分析 本问题的难点是同时考虑到完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益等诸多因素。如果仅考虑提高公交公司的经济效益,则只要提高公交车的满载率,运用数据分析法可方便地给出它的最佳调度方案;如果仅考虑方便乘客出行,只要增加车辆数的次数,运用统计方法同样可以方便地给出它的最佳调度方案,显然这两种方案是对立的。于是我们将此题分成两个方面,分别考虑到:⑴公交公司的经济效益,记为公司的满意度;⑵乘客的等待时间和乘车的舒适度,记为乘客的满意度。

一个飞行管理问题

一个飞行管理问题 摘要 本文研究的是对在一定区域范围内作水平飞行的飞机管理问题,通过对原飞行方向角进行调整,避免飞机相撞确保飞机安全,为此建立了一个非线性规划模型,其约束条件为任意两架飞机不相撞的安全距离大于8公里,飞行方向角调整的幅度不应超过30度,为达到飞机飞行方向角调整的幅度尽可能地小,确定目标函数为区域内所有飞机调整角度的平方和最小。 为了使模型的求解更方便,在约束条件中将任意时刻飞机之间的安全距离大于8公里转化为在区域内飞机之间的最小安全距离大于8公里。 用MATLAB编程软件对给定数据的模型进行求解,得到问题所给数据模型的结果:第一,第二,第五架飞机方向角可不偏转,第三架,第六架飞机的飞行方向角度顺时针偏转约0.50度。列表如下: 目标函数:9547 f .6 = 本文还对模型的稳定性进行分析,对最极端不利的几种可能出现的情况进行了分析和计算,从而得到了较满意的结果,说明所建立的模型的稳定性强。 关键词:非线性规划;最优解;最小调整幅度;滞后时间

二、问题重述 在约10,000米高空的某边长160公里的正方形区域内,经常有若干架飞机作水平飞行。区域内每架飞机的位置和速度向量均由计算机记录其数据,以便进行飞行管理。当一架欲进入该区域的飞机到达区域边缘时,记录其数据后,要立即计算并判断是否会与区域内的飞机发生碰撞,如果会碰撞,则应计算如何调整各架(包括新进入的)飞机飞行的方向角,以避免碰撞。现假定条件如下 (1) 不碰撞的标准为任意两架飞机的距离大于8公里; (2) 飞机飞行方向角调整的幅度不应超过30度; (3) 所有飞机飞行速度均为每小时800公里; (4) 进入该区域的飞机在区域边缘时,与区域内飞机的距离应在60公里以上; (5) 最多需考虑6架飞机; (6) 不必考虑飞机离开此区域后的状况。 请你对这个避免碰撞的飞行管理问题建立数学模型,列出计算步骤,对以下数据进行计算(方向角误差不超过0.01度),要求飞机飞行方向角调整的幅度尽量小。 设该区域4个顶点的座标为: (0,0),(160,0),(160,160),(0,160)。 记录数据为: 飞机编号横座标X 纵座标Y 方向角(度) 1 150 140 243 2 85 85 236 3 150 155 220.5 4 14 5 50 159 5 130 150 230 新进入 0 0 52 注:方向角指飞行方向与X轴正向的夹角。 试根据实际背景对你的模型进行评价与推广。 二、问题分析 该问题是一个在一定的约束条件下的最优化的问题,即在边长160公里的正方形区域内如何调整各架飞机的飞行方向角,使各飞机不发生碰撞的最优化方案,从题目中的约束条件分析,不碰撞的标准为任意两架飞机的距离大于8公里和飞机飞行方向角调整的幅度不应超过30度可以初步确定为模型的目标项和约束项;因此,初步定模型的目标项为飞机飞行飞行方向角调整的幅度尽量小,约束项为任意时刻飞机之

RGV的动态调度模型及其相关分析

龙源期刊网 https://www.360docs.net/doc/916909584.html, RGV的动态调度模型及其相关分析 作者:吴彦亭张子岩毛敏 来源:《信息技术时代·下旬刊》2018年第01期 摘要:多功能轨道式自动引导车极大地加速了產业自动化的历程,因而对于 RGV动态调度问题的研究和分析一直是业内的焦点话题。本文通过建立相关模型,对动态调度问题加以研究。 关键词:非线性目标规划;粒子群-禁忌搜索算法;鲁棒性分析 一、模型一的建立与求解:非线性目标规划模型 首先遵循顺序排队原则确立了调度方案的起始点,紧接着通过建立基于就近算法的流程模型明确其最优化调度流程步骤。继而建立了循环叠加模型,最后建立基于顺排原则和就近算法的非线性目标规划模型。关于n个物料,m台CNC()的作业车间调度问题时,具体步骤 为: (1)量化表示工作用时 (1) (2)假定统一工作流程之中,不同的需求发出点的开始加工的优先级用表示,定义其优先选择的原则为:若,则第k台CNC比第h台CNC优先实施物料加工;若,则第k台CNC 比第h台CNC实施物料加工的优先级相同;若,则则第h台CNC比第k台CNC优先实施物料加工。则通过设置优先级的约束条件,以期达到缩短重复运行距离,提高运行效率的目的。所设约束条件如下: (2) 其中,M为一个趋于无穷大的常系数。 (3)在求解优化调度模型中,通常构建目标函数[3]来确定工作情况和时间的关系。该模型中,在工作总用时既定的情况下求解最大有效工作量(由最长有效工作时间T来表示)来衡量工作效率。最终得到的目标函数为: 二、模型二的建立与求解:粒子群-禁忌搜索算法 首先,对上一种情况的非线性规划模型进行适用性的修改,建立了空间调度的规划模型。接下来,运用MATLAB软件,通过粒子群算法对数学模型进行初步的处理,发现其寻优不够

相关文档
最新文档