第一章 计数原理导学案

第一章 计数原理导学案
第一章 计数原理导学案

第一章 计数原理导学案

第一课时 分类加法计数原理与分步乘法计数原理(1)

问题1 用前6个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能编出多少 种不同的号码?

问题2 用前6个大写的英文字母和一个阿拉伯数字给教室里的座位编号,总共能编出多少 种不同的号码?

问题3 上述两类计数问题中的“一件事情”分别是什么?根据你的思考,完成分类加法计数原理与分步乘法计数原理.

归纳

1.分类加法计数原理

做一件事,完成它有n 类办法,在第一类办法中有m 1种不同的方法,在第二类办法中有

m 2种不同的方法……在第n 类办法中有m n 种不同的方法,那么完成这件事共有N = 种不同的方法. 2.分步乘法计数原理

做一件事,完成它需要分成n 个步骤,做第一个步骤有m 1种不同的方法,做第二个步骤有m 2种不同的方法……做第n 个步骤有m n 种不同的方法,那么完成这件事共有N = 种不同的方法.

解题步骤

1、明确“完成一件事”;

2、确定如何完成这件事(分类、分步);

3、应用计数原理(分类加法、分步乘法);

4、求解。

学以致用

1、在填报高考志愿时,一名高中毕业生了解到,A ,B 两所大学各有一些自己感兴趣的强项专业,具体情况

如下:

如果这名同学只能选一个专业,那么他共有多少种选择呢?

变式:在上题中,如果数学也是A 大学的强项专业,则A 大学共有6个专业可以选择,B 大学共有4个专业可以选择,那么用分类加法原理,得到这名同学可能的专业选择共有1046=+种.这种算法对吗?

【小结:分类要做到“不重不漏”】

2、书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书,

(1)从书架上任取1本书,有多少种不同的取法?

(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?

变式:要从甲,乙,丙3副不同的画中选出2副,分别挂在左,右两边墙上的指定位置,问共有多少种不同的选法?

练1. 一个商店销售某种型号的电视机,其中本地产品有4种,外地产品有7种,要买1台这种型号的电视机,有 种不同的选法.

练2. 某班有男生30人,女生20人,现要从中选出男,女各1人代表班级参加比赛,共有 种不同选法.

练3.乘积()()n n b b b a a a +???+++???++2121展开后,共有 项.

练4. 要从甲、乙、丙3名工人中选出2名分别上日班和晚班,有 种不同的选法.

练5. 一种号码拨号锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成 个四位数号码.

练6. 现有高一年级的学生3名,高二年级的学生5名,高三年级的学生4名. ⑴ 从中任选1人参加接待外宾的活动,有多少种不同的选法?

⑵ 从3个年级的学生中各选1人参加接待外宾的活动,有多少种不同的选法?

练7. 如图,从甲地到乙地有2条路,从乙地到丁地

有3条路;从甲地到丙地有4条路,从丙地到丁地有2条路.从甲地到丁地共有多少条不同的路线?

练8. 如图,一条电路从A 处到B 处接通时,可有多少条不同的线路?

第二课时 分类加法计数原理与分步乘法计数原理(2)

复习1:什么是分类计数原理?什么是分步计数原理?它们在使用时的主要区别是什么?

复习2:现有高二年级某班三个组学生24人,其中第一、二、三组各7人、8人、9人,他们自愿组成数学兴趣小组.

⑴ 选其中1人为负责人,有多少种不同的选法?⑵ 每组选1名组长,有多少种不同的选法?

探究任务一:两个原理的应用

问题:给程序模块命名,需要用3个字符,其中首字符要求用字母A ~G 或U ~Z , 后两个要求用数字1~9.问最多可以给多少个程序命名?

变式:积()()()4321321321c c c c b b b a a a +++++++展开后共有多少项?

【小结:在实际问题中,一个问题可能同时使用两个原理,有时还可能多次使用同一原理.】

例1 核糖核酸(RNA )分子是生物细胞中发现的化学成分.一个RNA 分子是一个有着数百个甚至数千个位置的长链,长链中每一个位置上都由一种称为碱基的化学成分所占据.总共有4中不同的碱基,分别是A ,C ,G ,U 表示.在一个RNA 分子中,各种碱基能够以任意次序出现,所以在任意位置上的碱基与其他位置的碱基无关.假设有一类RNA 分子有100个碱基组成,那么能有多少种不同的RNA 分子?

变式:电子元件很容易实现电路的通与断,电位的高与低等两种状态,而这也是最容易控制的两种状态.因此计算机内部就采用了每一位只有0或1两种数字的计数法,即二进制.为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一个或两个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由8个二进制位构成.问:

要用多少个字节表示?

例2 计算机编程人员在编好程序以后需要对程序进行测试.程序员需要知道到底有多少条执行路径,以便知道需要提供多少个测试数据.一般地,一个程序模块由许多子模块组成.如图,它是一个具有许多执行路径的程序模块.问:这个程序模块有多少条执行路径?

变式:随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需要扩容.交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有3个不重复的英文字母和3个不重复的阿拉伯数字,并且3个字母必须合成一组出现,3个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?

练1. 某商场有6个门,如果某人从其中的任意一个门进入商场,并且要求从其他的门出去,共有多少种不同的进出商场的方式?

练2. 由数字0,1,2,3,4可以组成多少个三位数?(各位上的数允许重复)

练3. 从5名同学中选出正,副组长各一名,共有 种不同的选法.

练4. 某电话局管辖范围内的电话号码由8位数字组成,其中前4位的数字是不变的,后4位数字都是0到9之间的一个数字,那么这个电话局最多有 个.

练5. 用1,5,9,13中的任意一个数作分子,4,8,12,16中任意一个数作分母,可以构成 个不同的分数,可以构成 个不同的真分数.

练6. 在平面直角坐标系内,横坐标与纵坐标均在集合 {0,1,2,3,4,5}内取值的不同点共有 个.

练7. 有4名同学分别报名参加学校的足球队,篮球队,乒乓球队,每人限报其中的一个运动队,不同的报名种数是 .

练8. 设x,y *

∈N ,4x y +≤,则在直角坐标系中满足条件的点()M x,y 共有 个;

练9.在在平面直角坐标系内,斜率在集合B={1,3,5,7}, y 轴上的截距在集合C={2,4,6,8}内取值的不同直线共有 条.

练10. 有3个班的同学分别从5个风景点中选择一处游览,不同选法种数是 .

练11.在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有 种.

练12. 用1,2,3三个数字,可组成 个无重复数字的自然数.

练13. 一个班级有8名教师,30位男同学,20名女同学,从中任选教师代表和学生代表各一名,共有不同的选择种数为 .

第三课时 排列(1)

复习1:交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有2个不重复的英文字母和4个不重复的阿拉伯数字,并且2个字母必须合成一组出现,4个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?

复习2:从甲,乙,丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另一名参加下午的活动,有多少种不同的选法?

问题1:上面复习1,复习2中的问题,用分步计数原理解决显得繁琐,能否对这一类计数问题给出一种简捷的方法呢?

新知1:排列的定义

一般地,从n 个 元素中取出m ( )个元素,按照一定的 排成一排,叫做从 个不同元素中取出 个元素的一个排列.

试试: 写出从4个不同元素中任取2个元素的所有排列.

新知2 排列数的定义

从 个 元素中取出 (n m ≤)个元素的 的个数,叫做从n 个不同元素取出m 元素的排列数,用符合 表示.

试试: 从4个不同元素a ,b, c ,d 中任取2个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?

问题:

⑴ 从n 个不同元素中取出2个元素的排列数是多少?

⑵ 从n 个不同元素中取出3个元素的排列数是少?

⑶ 从n 个不同元素中取出m (n m ≤)个元素的排列数是多少?

新知3 排列数公式

从n 个不同元素中取出m (n m ≤)个元素的排列数=m

n A

新知4 全排列

从n 个不同元素中 取出的一个排列,叫做n 个元素的一个全排列,用公式表示为=n n A

※ 典型例题

例1计算:⑴410A ; ⑵ 218A ; ⑶ 4

41010A A ÷.

变式:计算下列各式:

⑴215A ; ⑵ 6

6A

⑶ 2

83

8

2A

A -; ⑷

66

8

8A A .

例2若17161554m

n A =???

??,则n = ,m = .

变式:乘积(55)(56)(68)(69)n n n n ----用排列数符号表示 .(,n N ∈)

例3 求证: 1

1--=m n m n nA A

变式 求证: 7

766778878A A A A =+-

小结:排列数m n A 可以用阶乘表示为m

n A =

练2. 从2,3,5,7,11这五个数字中,任取2个数字组成分数,不同值的分数共有多少个?

练3. 计算:=+2

43545A A ; .

练4. 计算:=+++4

4342414A A A A ;

练5. 某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行 场比赛;

练6.5人站成一排照相,共有 种不同的站法;

练7.从1,2,3,4这4个数字中,每次取出3个排成一个3位数,共可得到 个不同的三位数.

练8.. 求证:1

1211--++=-n n n n n n A n A A

练9.一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假设每股道只能停放1列火车)?

练10.一部记录片在4个单位轮映,每一单位放映1场,有多少种轮映次序?一部记录片在4个单位轮映,每一单位放映1场,有多少种轮映次序?

第四课时 排列(2)

复习1:.什么叫排列?排列的定义包括两个方面分别是 和 ;两个排列相同

复习2:排列数公式:

m

n

A = (,,m n N m n *∈≤) 全排列数:n n A = = .

复习3 从5个不同元素中任取2个元素的排列数是 ,全部取出的排列数是

探究任务一:排列数公式应用的条件 问题1:

⑴ 从5本不同的书中选3本送给3名同学,每人各1本,共有多少种不同的送法? ⑵ 从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法?

问题2:用0到9这10个数字,可以组成多少个没有重复数字的三位数?

新知1:排列数公式只能用在从n 个不同元素中取出m 个元素的的排列数,对元素可能相同的情况不能使用.

新知2:解排列问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法.当问题的反面简单明了时,可通过求差采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等.

例1 (1)6男2女排成一排,2女相邻,有多少种不同的站法? (2)6男2女排成一排,2女不能相邻,有多少种不同的站法? (3)4男4女排成一排,同性者相邻,有多少种不同的站法? (4)4男4女排成一排,同性者不能相邻,有多少种不同的站法?

变式::某小组6个人排队照相留念.

(1) 若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法? (2) 若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?

(3) 若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法? (4) 若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法? (5) 若分成两排照相,前排2人,后排4人,有多少种不同的排法?

例2 用0,1,2,3,4,5六个数字,能排成多少个满足条件的四位数. (1)没有重复数字的四位偶数?

(2)比1325大的没有重复数字四位数?

变式:用0,1,2,3,4,5,6七个数字, ⑴ 能组成多少个没有重复数字的四位奇数?

⑵ 能被5整除的没有重复数字四位数共有多少个?

练1.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地上进行实验,有多少种不同的种植方法?

练2. 在3000至8000之间有多少个无重复数字的奇数?

练3有4位男学生3位女学生排队拍照,根据下列要求,各有多少种不同的排列结果? (1)7个人排成一排,4个男学生必须连在一起;

练4 某农场为了考察3个水稻品种和5个小麦品种的质量,要在土质相同的土地上进行试验,应该安排的试验区共有 块.

. 某人要将4封不同的信投入3个信箱中,不同的投寄方法有 种.

练5. 用1,2,3,4,5,6可组成比500000大、且没有重复数字的自然数的个数是 .

练6. 现有4个男生和2个女生排成一排,两端不能排女生,共有 种不同的方法.

练7. 在5天内安排3次不同的考试,若每天至多安排一次考试,则不同的排法有 种.

练8.一个学生有20本不同的书.所有这些书能够以多少种不同的方式排在一个单层的书架上?

练9.学校要安排一场文艺晚会的11个节目的演出顺序.除第一个节目和最后一个节目已确定外,4个音乐节目要求排在第2,5,7,10的位置,3个舞蹈节目要求排在第3,6,9的位置,2个曲艺节目要求排在第4,8的位置,求共有多少种不同的排法?

第五课时 组合(1)

复习1:什么叫排列?排列的定义包括两个方面,分别是 和 .

复习2:排列数的定义:

从 个不同元素中,任取 个元素的 排列的个数叫做从n 个元素中取出m 元素的排列数,用符号 表示

复习3:排列数公式:m

n A = (,,m n N m n *∈≤)

探究任务一:组合的概念

问题:从甲,乙,丙3名同学中选出2名去参加一项活动,有多少种不同的选法?

新知:一般地,从 个 元素中取出 ()m n ≤个元素 一组,叫做从n 个不同元素中取出m 个元素的一个组合.

试试:试写出集合{}a,b,c,d,e 的所有含有2个元素的子集.

小结:组合与元素的顺序 关,两个相同的组合需要 个条件,是 ;排列与组合有何关系?

探究任务二.组合数的概念:

从n 个 元素中取出m ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中取出m 个元素的组合..数.

.用符号 表示. 探究任务三 组合数公式

m

n

C = =

我们规定:=0

n C

(1)从中选3个人组成一组,有多少种不同的方法?列出所有可能情况; (2)从中选3个人排成一排,有多少种不同的方法?

变式: 甲、乙、丙、丁4个足球队举行单循环赛: (1)列出所有各场比赛的双方; (2)列出所有冠亚军的可能情况.

例2 计算:(1)4

7C ; (2)710C

变式:求证:1

1+?-+=m n m

n C m

n m C

练1.计算:

⑴ 26C ; ⑵ 3

8C ; ⑶ 26

37C C -; ⑷ 253823C C -.

练2. 已知平面内A ,B ,C ,D 这4个点中任何3个点都不在一条直线上,写出由其中每3点为顶点的所有三角形.

练3. 学校开设了6门任意选修课,要求每个学生从中选学3门,共有多少种选法?

练4.. 若8名学生每2人互通一次电话,共通 次电话.

练5.. 设集合{}A a,b,c,d,e ,B A =?,已知a B ∈,且B 中含有3个元素,则集合B 有 个.

练6.. 计算:3

10C = .

练7.. 从2,3,5,7四个数字中任取两个不同的数相乘,有m 个不同的积;任取两个不同的数相除,有n 个不同的商,则m :n = .

练8.. 写出从a,b,c,d ,e 中每次取3个元素且包含字母a ,不包含字母b 的所有组合

练9..计算:

⑴ 215C ; ⑵ 283

6C C ÷

练10.. 圆上有10个点:

⑴ 过每2个点画一条弦,一共可以画多少条弦?

⑵ 过每3点画一个圆内接三角形,一共有多少个圆内接三角形?

第六课时 组合(2)

复习1:从 个 元素中取出 ()m n ≤个元素 一组,叫做从n 个不同元素中取出m 个元素的一个组合;从 个 元素中取出 ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号 表示.

复习2: 组合数公式:

m

n

C = =

探究任务一:组合数的性质

问题1:高二(6)班有42个同学

⑴ 从中选出1名同学参加学校篮球队有多少种选法? ⑵ 从中选出41名同学不参加学校篮球队有多少种选法? ⑶ 上面两个问题有何关系?

新知1:组合数的性质1:m

n n

m n C C -=. 一般地,从n 个不同元素中取出m 个元素后,剩下n m -个元素.因为从n 个不同元素中取出m 个元素的每一个组合,与剩下的n - m 个元素的每一个组合一一对应....

,所以从n 个不同元素中取出m 个元素的组合数,等于从这n 个元素中取出n - m 个元素的组合数,即:m n n m n C C -= 试试:计算:1820C

问题2 从121,,,+n a a a 这n +1个不同元素中取出m 个元素的组合数是 ,这些组合可以分为两类:一类含有元素1a ,一类是不含有1a .含有1a 的组合是从132,,,+n a a a 这 个元素中取出 个元素与1a 组成的,共有 个;不含有1a 的组合是从132,,,+n a a a 这 个元素中取出 个元素组成的,共有 个.从中你能得到什么结论?

新知2 组合数性质2 m n C 1+=m n C +1

-m n

C

※ 典型例题

例1(1)计算:6

9

584737C C C C +++;

变式1:计算2

100252423...C C C C ++++

例2 求证:n m C 2+=n m C +12-n m C +2

-n m C

变式2:证明:11

1m m m n n n C C C ++++=

小结:组合数的两个性质对化简和计算组合数中用用处广泛,但在使用时要看清公式的形式. 例3解不等式()3

2

1010n n-C n -<∈+C N .

练3 :解不等式:46n n

C C <

练1.若54221

6444

x x C -C C C -=+,求x 的值

练2. 解方程:

(1)3

213

113-+=x x C C (2)3

33

22

210

1+-+-+=+x x x x x A C C 练3. 9089

10099C -C =

练4 若23

1212n n-C C =,则n =

练5.有3张参观券,要在5人中确定3人去参观,不同方法的种数是 ;

练6. 若778

1n n n C C C +=+,则n = ;

练7. 化简:998

1m m m C -C C ++= .

练8 计算:

⑴ 197

200C ; ⑵ 21-+?n n n n C C

练9. 壹圆,贰圆,伍圆,拾圆的人民币各1张,一共可以组成多少种币值?

练10. 若128

n n C C =,求21n C 的值

第七课时 组合(3)

复习1:⑴ 从 个 元素中取出 ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中取出m 个元素的组合数...,用符号 表示;从 个 元素中取出 (n m ≤)个元素的 的个数,叫做从n 个不同元素取出m 元素的排列数,用符合 表示. ⑵ m

n A = m

n C = = m n A 与m

n C 关系公式是

复习2:

组合数的性质2:.

探究任务一:排列组合的应用

问题:一位教练的足球队共有17名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问:

⑴这位教练从17位学员中可以形成多少种学员上场方案?

⑵如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事?

新知:排列组合在实际运用中,可以同时使用,但要分清他们的使用条件:排列与元素的顺序有关,而组合只要选出元素即可,不要考虑元素的顺序.

试试:⑴平面内有10个点,以其中每2个点为端点的线段共有多少条?

⑵平面内有10个点,以其中每2个点为端点的有向线段多少条?

例1 在100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3件.

⑴有多少种不同的抽法?

⑵抽出的3件中恰好有1件是次品的抽法有多少种?

⑶抽出的3件中至少有1件是次品的抽法有多少种?

变式:在200件产品中有2件次品,从中任取5件:

⑴其中恰有2件次品的抽法有多少种?

⑵其中恰有1件次品的抽法有多少种?

⑶其中没有次品的抽法有多少种?

⑷其中至少有1件次品的抽法有多少种?

例2 现有6本不同书,分别求下列分法种数:

⑴分成三堆,一堆3本,一堆2本,一堆1本;

⑵分给3个人,一人3本,一人2本,一人1本;

⑶平均分成三堆.

变式:6本不同的书全部送给5人,每人至少1本,有多少种不同的送书方法?

例3 现有五种不同颜色要对如图中的四个部分进行着色,要求有公共边的两块不能用一种

颜色,问共有几种不同的着色方法?

变式:某同学邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,

共有多少种邀请方法?

练1. 甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表?

练2. 高二(1)班共有35名同学,其中男生20名,女生15名,今从中取出3名同学参加活动,

(1)其中某一女生必须在内,不同的取法有多少种?

(2)其中某一女生不能在内, 不同的取法有多少种?

(3)恰有2名女生在内,不同的取法有多少种?

(4)至少有2名女生在内,不同的取法有多少种?

练3.. 凸五边形对角线有 条;

练4.. 以正方体的顶点为顶点作三棱锥,可得不同的三棱锥有 个;

练5..要从5件不同的礼物中选出3件送给3个同学,不同方法的种数是 ; 练6..有5名工人要在3天中各自选择1天休息,不同方法的种数是 ;

练7.. 从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,一共可以组成没有重复数字的五位数?

练8.. 在一次考试的选做题部分,要求在第1题的4个小题中选做3个小题,在第2题的3个小题中选做2个小题,在第3题的2个小题中选做1个小题.有多少种不同的选法?

练9.. 从5名男生和4名女生中选出4人去参加辩论比赛. ⑴ 如果4人中男生和女生各选2名,有多少种选法?

⑵ 如果男生中的甲和女生中的乙必须在内,有多少种选法?

⑶ 如果男生中的甲和女生中的乙至少有1人在内,有多少种选法? ⑷ 如果4人中必须既有男生又有女生,有多少种选法?

第八课时 二项式定理(1)

复习1: 积()()n n b b b a a a +???+++???++2121 展开后,共有 项.

复习2:在n=1,2,3时,写出 n

b a )(+的展开式.

1)(b a += ,

2)(b a += , 3)(b a += ,

①1

)(b a +展开式中项数为 ,每项的次数为 ;

②2

)(b a +展开式中项数为 ,每项的次数为 ,

a 的次数规律是 ,

b 的次数规律是 . ③3)(b a +展开式中项数为 ,每项的次数为 ,

a 的次数规律是 ,

b 的次数规律是 .

复习3:4个容器中有相同的红、黑玻璃球各一个从每个容器中取一个球,有 不同的结果,其中取到4个红球有 种不同取法,取到3个红球1个黑球有 种不同取法,取到2个红球2个黑球有 种不同取法,取到4个黑球有 种不同取法.

探究任务一: 二项式定理

问题1: 猜测 n

b a )(+展开式中共有多少项?分别有哪些项?各项系数分别是什么?

新知:

++???++=+--r r n r n n n n n n b a C b a C a C b a 110)( n

n n b C +???(*∈N n )

n b a )(+的展开式,其中r

n

C (r =0,1,2,…,n )叫做 , 叫做二项展开式的通项,用符号 表示,即通项为展开式的第 项.

试试:写出=+6)1(x ,

⑴ 展开式共有 项,

⑵ 展开式的通项公式是 ;

⑶ 展开式中第4项的二项式系数是 ,第四项系数是 . 例1 用二项式定理展开下列各式: ⑴ 4)1(x -; ⑵ 6)12(x

x -

变式:写出 4

)11(x

+

的展开式.

例2 ⑴ 求6)21(x +展开式的第4项,并求第4项系数和它的二项式系数;

⑵ 求9

)1(x

x -展开式中3x 的系数.

变式:求9)33(x

x + 展开式中的常数项和中间项.

练1. ⑴ 求()6

32b a +展开式中的第3项系数和二项式系数.

练2. ⑴ 求9

212x x ?

?- ??

?的展开式中的常数项;

⑵ 若()12n x +的展开式中第6项与第7项的系数相等,求n 及()12n x +展开式中含3

x 的项.

练3.. ()11

2a b +的展开式中第3项的二项式系数为 第3项系数为 ;

练4.. 10)1(-x 展开式的第6项系数是( )

(A) 6

10C (B) 610C - (C) 5

10C (D)5

10C -

练5.. 在()6

12x -的展开式中,含3

x 项的系数是 ;

练6.. 在5

的展开式中,其常数项是 ;

练7.. ()12

x a +的展开式中倒数第4项是 .

练8.. 求()

102

332b a -展开式中第8项;

练9.. 求6

??的展开式中的常数项.

练10..求15)21(x -展开式的前4项;

练11..(04年全国卷)8

1?

??? ?

?-x x 展开式中5x 的系数是 .

第九课时 杨辉三角与二项式系数的性质

复习1:写出二项式定理的公式:

⑴ 公式中r

n C 叫做 , 二项展开式的通项公式是 ,用符号 表示 ,通项为展开式的第 项.

⑵ 在n b a )(+展开式中,共有 项,各项次数都为 ,a 的次数规律是 ,

b 的次数规律是 ,各项系数分别是 .

复习2:求10

2???? ?

?-x x 展开式中的第4项二项式系数和第4项的系数.

探究任务一:杨辉三角

问题1:在n b a )(+展开式中,当n =1,2,3,…时,各项的二项式系数有何规律?

()1b a +

()2b a + ()3b a + ()4b a +

()5b a +

()6b a +

新知1:上述二项式系数表叫做“杨辉三角”,表中二项式系数关系是

探究任务二 二项式系数的性质

问题2:设函数()r

n C r f =,函数的定义域是 ,函数图象有何性

质?(以n =6为例)

新知2:二项式系数的性质

⑴ 对称性:与首末两端“等距离”的两个二项式系数相等,图象的对称轴是2

n r =.

试试:

① 在(a +b)6

展开式中,与倒数第三项二项式系数相等是( ) A 第2项 B 第3项 C 第4项 D 第5项

② 若()

n b a +的展开式中,第三项的二项式系数与 第五项的二项式系数相等,则n = .

反思:为什么二项式系数有对称性?

⑵ 增减性与最大值 :从图象得知,中间项的二项式系数最 ,左边二项式系数逐渐 ,右边二项式系数逐渐 .

当n 是偶数时,中间项共有 项,是第 项,它的二项式系数是 ,取得最大值;

当n 是奇数时,中间项共有 项,分别是第 项和第 项,它的二项式系数分别是 和 ,二项式系数都取得最大值.

试试:n b a )(+的各二项式系数的最大值是

⑶ 各二项式系数的和:

在n b a )(+展开式中,若1==b a ,则可得到 =+???++???++n

n r n n n C C C C 10 即 =+???++???++n n r n n n C C C C 21

※ 典型例题

例1求()10

12x +的展开式中系数最大的项.

变式:在二项式(x-1)11

的展开式中, ⑴ 求二项式系数最大的系数的项; ⑵ 求项系数最小的项和最大的项.

小结:在n

b a )(+展开式中, 要正确区分二项式系数和项系数的不同,可以利用通项公式,找到二项式系数和项系数的关系来达到目的.

例2 证明:在n b a )(+展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和.

变式:⑴ 化简:11

11

511311111C C C C +???+++ ; ⑵ 求和:n

n

n n n n C C C C 2222210+???+++.

练1. ① 在(1+x)10

的展开式中,二项式系数最大的是第 项为 ;(用符号表示即可) ② 在(1-x)11

的展开式中,二项式系数最大的是第 项为 . (用符号表示即可)

练2. 若()7722107

21x a x a x a a x +???+++=-,则=+???++721a a a ,=+++7531a a a a

=+++6420a a a a .

练3.. 在12

x ?

+ 的展开式中,系数最大的项是第 项;

练4.. 在()99

1x -的展开式中,二项式系数最大的是第 项,项系数最小的项是第 项;

练5.. 计算109182

9

10101033331C C C -+--+=

练6.. 若()92

9012912x a a x a x a x -=+++

+,则129a a a ++

+= ;

练7.. 化简:=+???+++???++++++1

1

110110n n n n n n

n n C C C C C C

练8.. ⑴ 求

12

33???

? ??-x x 展开式的中间一项; ⑵ 求()

15

x

y y x -展开式的中间两项.

练2.. 已知()n

x +1的展开式中第4项与第8项的二项式系数相等,求这两项的二项式系数.

第十课时二项式定理(练习)

复习1:⑴ n

b a )(+=

展开式中r

n C 叫做第 项的 系数,通项公式是 ,展开式中共有 项.

⑵ 二项式系数的三个性质:

对称性是指 增减性:当r 满足 时,r

n C 是增函数;

最值:当n 是偶数时,展开式中间项是第 项,它的二项式系数有最 值为 ;当n 是奇数时,展开式中间项是第 项,它的二项式系数有最 值为 ;

复习2:求9

1()x x

-的展开式中3

x 的系数及它的二项式系数,并求展开式中二项式系数最大的项和系数最

大的项.

探究任务一:整除性问题,余数问题

问题:2008

101除以100的余数是多少?

新知:整除性问题,余数问题,主要根据二项式定理的特点,进行添项或减项,凑成能整除的结构,展开后观察前几项或后几项,再分析整除性或余数。这是解此类问题的最常用技巧,余数要为正整数.

试试: 2009

8除以7的余数是

反思:99

6除以7的余数是多少?

※ 典型例题

例1 用二项式定理证明:()11-+n

n 能被2

n 整除.

变式:证明100

99能被1000整除.

例2 求(

)

()5

6

121-+x x 展开式中6x 系数.

变式:求()()4

5

3121x x +-展开式中按x 的升幂排列的第3项.

小结:对于较为复杂的二项式与二项式乘积利用两个通项之积比较方便运算.

例3 (

)

100

32

3+x 展开式是关于x 的多项式,问展开式中共有多少个有理项?

变式:已知

n 的展开式中,前三项系数的绝对值依次成等差数列,(1)证明展开式中没有常数

项;(2)求展开式中所有的有理项

练1. ()()()()6

3

2

1111x x x x ++???++++++展开式中2

x 的系数(05湖南).

练2. 如果812221221=+???+++n n n n n C C C ,则n

n n n C C C +???++21= .

练3. ()n

x 21-展开式中各项系数的和是 ;

练4. 今天是星期三,再过2009

8是星期 .

练5. 10

211??

? ??-x 展开式的5

x 系数是 ;

练6. 已知()()2

6

11-+ax x 展开式中3

x 系数是56,则实数a 的值为 ;

练7. 求42)43(-+x x 的展开式中x 的系数. 练8. 求()

()10

211x x x -++展开式中的4

x 的系数.

练9. 用二项式定理证明95555

+能被8整除.

第十一课时《计数原理》复习

复习1:加法原理的使用条件是

和 ;乘法原理的使用条件是 和 .

复习2:排列中的元素满足的两个条件是

和 ;组合中元素只需要满足条件 ,与元素的顺序 关.

复习3:n

b a )(+=

展开式中第1+r 项的二项式系数是 ,通项公式是 ,二项式系数的性质有三个是 , 和 .

探究任务一:基础知识

1. 学生可从本年级开设的7门选修课中任意选择3门,从6种课外活动小组中选择2种,不同的选法种数是

2.安排6名歌手演出顺序,要求某歌手不是第一个出场,也不是最后一个出场,不同排法的种数是

3. 有5人分4张无座足球票,每人至多分1张,而且票必须分完,不同分法的种数是

4. 正十二边形的对角线的条数是

5.()n

x 21+(

)

*

∈N n 的展开式中,系数最大的项是第 项.

6. 有4名同学争夺跑步、跳高、跳远三项冠军,则可能的结果数是( )

A. 34A

B.3

4C C.43 D.34

7. 已知11-+n n C =21,那么n = ;

8.(07北京文科第5题)某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有( )

A.4

102126)(A A B.242610A A C.42126

10)(A D.242610A

A .0

B .1 C.2 D.3

10.(07重庆文科第15题)要排出某班一天中语文、数学、政治、英语、体育、艺术6门课各一节的课程表,要求数学课排在前3节,英语课不排在第6节,则不同的排法种数为 .(以数字作答)

例1 有10个不同的小球,其中4红球,6个白球. 若取到1个红球记2分,取到1个白球记1分,现从10个球中任取4个,使总分不低于5分的取法有多少种?

变式:三张卡片的正反面上分别写有数字0与2,3与4,5与6,把这三张卡片拼在一起表示一个三位数,则三位数的个数为多少?

例2 已知23)n x 的展开式中各项的系数和比各项的二项式系数和大992,求展开式中二项式系数最大的项

变式:⑴ 在(1-x )5

-(1-x )6

的展开式中,含x 3

的项的系数是 ( ) A 、-5 B 、 5 C 、10 D 、-10

⑵ 求(1-2x)8展开式中二项式系数最大的项;

练1. 有4名男生3名女生排成一排,若3名女生中有2名站在一起,但3名女生不能全排在一起,则不同的排法种数有 ( ) A .2880 B.3080 C.3200 D.3600

练2. 一种汽车牌照号码由2个英文字母后接4个数字组成,且2个英文字母不能相同,不同的牌照号码的个数是 .

练3. 310(1)(1)x x -+的展开式中,5

x 的系数是

练4.一个集合有8个元素,这个集合含有3个元素的子集有 个;

练5. 平面内有n 条直线,其中没有两条平行,也没有三条交于一点,共有 个交点;

练6. 书架上有4本不同的数学书,5本不同的物理书,3本不同的化学书,全部排在同一层,如果不使同类的书分开,一共有 种排法;

练7. 由0,1,2,3,4组成没有重复数字的五位数,这样的五位数共有 个;

练8. 已知集合A ={}4321,,,a a a a ,B ={}321,,b b b ,可以建立从集合A 到集合B 的不同映射的个数 是 ,可以建立从集合B 到集合A 的映射又 有 .

练9已知()

n

x +1的展开式中第9项,第10项,第11项的二项式系数成等差数列,求n 的值.

练10. 用数字0,1,2,3,4,5组成没有重复的数 ⑴ 能够组成多少个六位奇数?

⑵ 能够组成多少个大于201345的正整数?

人教版高中数学选修2-3第一章计数原理单元测试(一)及参考答案

2018-2019学年选修2-3第一章训练卷 计数原理(一) 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。 2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 4.考试结束后,请将本试题卷和答题卡一并上交。 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( ) A.8种 B.12种 C.16种 D.20种 2.已知() 7781C C C n n n n +-=∈* N ,则n 等于( ) A.14 B.12 C.13 D.15 3.某铁路所有车站共发行132种普通客票,则这段铁路共有车站数是( ) A.8 B.12 C.16 D.24 4.()7 1x +的展开式中x 2的系数是( ) A.42 B.35 C.28 D.21 5.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( ) A.3×3! B.3×(3!) 3 C.(3!)4 D.9! 6.某校园有一椭圆型花坛,分成如图四块种花,现有4种不同颜色的花可供选择,要求每块地只能种一种颜色,且有公共边界的两块不能种同一种颜色,则不同的种植方法共有( ) A.48种 B.36种 C.30种 D.24种 7.若多项式x 2+x 10=a 0+a 1(x +1)++a 9(x +1)9+a 10(x +1)10,则a 9=( ) A.9 B.10 C.-9 D.-10 8.从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有( ) A.48种 B.36种 C.18种 D.12种 9.已知()1n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ) A.212 B.211 C.210 D.29 10.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( ) A.12种 B.18种 C.36种 D.54种 11.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的 偶数共有( ) A.144个 B.120个 C.96个 D.72个 12.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有 ( ) A.24对 B.30对 C.48对 D.60对 二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选法有________种(用数值表示) 14.()()4 1a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =________. 15.有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复. 若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人,则不同的安排方式共有________种(用数字作答). 16.从0到9这10个数字中任取3个数字组成一个没有重复数字的三位数,能被3整除的数有________个. 三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 此 卷 只 装 订 不 密 封 班级 姓名 准考证号 考场号 座位号

两个基本计数原理教学案

§1.1两个基本计数原理 教学目标:(1)理解分类计数原理与分步计数原理 (2)会利用两个原理分析和解决一些简单的应用问题 教学重点:分类计数原理与分步计数原理 教学过程 一.知识要点: 1、分类计数原理(加法原理):完成一件事有n 类方式,由第1种方法中有1m 种不同的方法可以完成,由第2种方法有2m 种不同的方法可以完成,……由第n k 种途径有n m 种方法可以完成。那么,完成这件事共有=N 种不同的方法。 2、分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,……做第 n 步有n m 种不同的方法,那么完成这件事共有=N 种不同的方法。 三、典例分析: 例1.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3 层放有2本不同的体育书, (1)从书架上任取1本书,有多少种不同的取法? (2)从书架的第1、2、3层各取1本书,有多少种不同的取法? 例2.为了确保电子信箱的安全,在注册时,通常要设置电子信箱密码。在某网站设置的信箱中,(1)密码为4位,每位均为0到9这10个数字中的一个数字,这样的密码共有多少个? (2)密码为4位,每位是0到9这10个数字中的一个,或是从A 到Z 这26个英文字母中的1个。这样的密码共有多少个?(3)密码为4到6位,每位均为0到9这10个数字中的一个。这样的密码共有多少个? 例3.要从甲、乙、丙3名工人中选出2名分别上日班和晚班,有多少种不同的选法?

例4.用4种不同颜色给如左图所示的地图上色,要求相邻两块涂不同的颜色,共有 多少种不同的涂法? 变式:1、如果按照①、②、④、③的次序填涂,怎样解决这个问题? 2、如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种,允许同 一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为( ) A. 180 B. 160 C. 96 D. 60 若变为图二,图三呢? 练习: 1、乘积))()((54321321321c c c c c b b b a a a ++++++++展开后共有多少项? 2、(2006,北京,5分)在1,2,3,4,5这五个数字组成的没有重复数字的三位数中, 各位数字之和为奇数的共有 ( ) A .36个 B.24个 C.18个 D.6个 4、(2005,北京春(文),5分)从0,1,2,3这四个数中选三个不同的数作为函数c bx ax x f ++=2)(的系数,可组成不同的一次函数共有 个,不同的二次函数共有 个。 3、在3000到8000之间有多少个无重复数字的奇数? 思考:集合A=}{ 4,3,2,1、B=}{d c b a ,,,,则从A 到B 可建立多少个不同的映射?其中一一映射有多少个? 图一 图二 图三

两个基本计数原理教案

第一章计数原理 第1节两个基本计数原理 教材分析 本节课《分类计数原理与分步计数原理》是苏教版普通高中课程标准试验教科书(选修2-3)第一章第一节的内容,是本章后续知识的基础,对后续内容的学习有着举足轻重的作用,另外本节课涉及的分步、分类的思想是解决实际问题的最有效武器,是人们思考问题的最根本方法. 学情分析 高二学生已具备一定的数学知识和方法,能很容易的接受两个原理的内容,并应用原理解决一些简单的实际问题,这些形成了学生思维的“最近发展区”.虽然学生已经具备了一定的归纳、类比能力,但在数学的应用意识与应用能力方面尚需进一步培养.另外,学生的求知欲强,参与意识,自主探索意识明显增强,对能够引起认知冲突,表现自身价值的学习素材特别感兴趣。但在合作交流意识欠缺,有待加强. 目标分析 ⑴知识与技能 ①掌握分类计数原理与分步计数原理的内容 ②能根据具体问题的特征选择分类计数原理与分步计数原理解决一些简单实际问题. ⑵过程与方法 ①通过具体问题情境总结出两个计数原理,并通过实际事例学生感悟两个原理的应用并最终学会应用 ②通过“学生自主探究、合作探究,师生共究”更深刻的理解分类计数与分步计数原理,并应用它们解决实际问题 ⑶情感、态度、价值观 树立学生积极合作的意识,增强数学应用意识,激发学生学习数学的热情和兴趣. 教学重难点分析 教学重点:分类计数原理与分步计数原理的掌握 教学难点:根据具体问题特征选择分类计数原理与分步计数原理解决实际问题. 教法、学法分析 教法分析: ①启发探究法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。 ②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。 学法分析:本节课要求学生自主探究,学会用类比的思想解决问题,树立学生的合作交流意识. 教学过程 一、创设情境:对于分类计数原理设计如下情境(看多媒体): 该情境是原教材上情境经过加工设计的,比原教材情境更加贴近学生生活,能够增强学生的有意注意,激发学生的兴趣,调动学生的主动性和积极性,从而进入思维情境接着是对情境的处理:在情境处理过程中要启发学生由特殊情形归纳出一般原理,遵循由简单到复杂的认知规律,我处理情境的办法是: 第一步在解决问题时首先让学生尝试分析,然后由学生代表分析解答,教师及时给出评价,并由老师给出解题过程,在这里由老师按分类计数原理给出解题过程,为学生顺利总结概括出原理做好铺垫. 第二步对原问题加以引申:若当天有4次航班,则有多少种不同方法? 设计的意图是让学生更清楚的认识到总方法数是各类方法数之和. 第三步提出问题:你能否尽可能简练的总结出问题1中的计数规律? 接着由学生分组讨论、总结问题1中计数规律,这样由学生总结归纳,并通过讨论准确叙述出分类计数原理,可以提高学生的数学表达意识,激发合作意识和竞争意识,体验获得成功的喜悦,也就完成了情感目标.

第一章 计数原理单元测试题

第一章 计数原理单元测试题 一、选择题(本大题共12小题,每小题5分,共60分) 1.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( ) A .10种 B .20种 C .25种 D .32种 2.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有 A .36种 B .48种 C .96种 D .192种 3. 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( ) A.1440种 B.960种 C.720种 D.480种 4. 某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有( ) A.() 2 1 4 2610C A 个 B.24 2610A A 个 C.()2 14 26 10 C 个 D.2 4 2610A 个 5. 从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有 (A)40种 (B) 60种(C) 100种 (D) 120种 6. 由数字0,1,2,3,4,5可以组成无重复数字且奇偶数字相间的六位数的个数有( ) B.60 7.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第( )个数. B.9 和CD 为平面内两条相交直线,AB 上有m 个点,CD 上有n 个点,且两直线上各有一个与交点重合,则以这m+n-1个点为顶点的三角形的个数是( ) A. 2121m n n m C C C C + B. 2 1121m n n m C C C C -+ C. 2 1211m n n m C C C C +- D. 2 1 11211---+m n n m C C C C 9.设 () 1010221010 2x a x a x a a x +???+++=-,则 ()()292121020a a a a a a +???++-+???++的值为( ) B.-1 D.

2019-2020学年高中数学 1.1 分类加法计数原理与分步乘法计数原理学案 新人教A版选修2-3.doc

2019-2020学年高中数学 1.1 分类加法计数原理与分步乘法计数 原理学案 新人教A 版选修2-3 学习内容 学习指导即时感悟 【学习目标】 1.理解分类加法计数原理与分步乘法计数原理;会利用两个原理分析和解决一些简单的应用问题; 2.培养学生的归纳概括能力。 3.引导学生形成 “自主学习”与“合作学习”等良好的学习方式。 【学习重点】会利用两个原理分析和解决一些简单的应用问题。 【学习难点】理解分类计数原理与分步计数原理。 学习方向 【预习引入】 1.分类计数原理:完成一件事, 有n 类方式, 在第一类方式,中有m 1种不同的方法,在第二类方式,中有m 2种不同的方法,……,在第n 类方式,中有m n 种不同的方法. 那么完成这件事共N= 种不同的方法. 2.分步计数原理:完成一件事,需要分成n 个 ,做第1步有m 1种不同的方法,做第2步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事共有 N= 种不同的方法。 创设情景: ①从我们班上推选出两名同学担任班长,有多少种不同的选法? ②把我们的同学排成一排,共有多少种不同的排法? 要解决这些问题,就要运用有关排列、组合知识. 排列组合是一种重要的数学计数方法. 总的来说,就是研究按某一规则做某事时,一共有多少种不同的做法. 在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,我们从具体例子出发来学习这两个原理. 【自主﹒合作﹒探究】 问题1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码? 问题2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 发现新知:分类加法计数原理:完成一件事有两类不同方案,在第1类方案中 有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共 有 种不同的方法. 探究1:如果完成一件事有三类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,在第3类方案中有3m 种不同的方法,那么完成这件事共有 种不同的方法。 引入新知 合作探究

江苏省宿迁市高中数学 第1章 计数原理 第9课时 排列组合综合应用(1)导学案(无答案)苏教版选修2-3

第9课时计数应用题 【教学目标】 1.强化综合运用两个计数原理解决计数问题的能力。 2.能运用排列组合知识分析实际问题,提高分析问题和解决问题的能力。 【基础练习】 1.将3名同学安排到2个工厂去实习,共有______________种不同的分配方案. 2.用0到9这10个数字,可组成______________个没有重复数字的四位偶数. 3.一个小组共有组长2人,组员7人,现在要求选出5人参加一项活动,要求这5人中至少一名组长,共有_________________种不同的选法. 【合作探究】 例1.高二(1)班有30名男生,20名女生。从50名学生中选3名男生、2名女生分别担任班长、副班长、学习委员、文娱委员、体育委员,共有多少种不同的选法? 例2.2名女生、4名男生排成一排,问: (1)2名女生相邻的不同排法共有多少种? (2)2名女生不相邻的不同排法共有多少种? (3)女生甲必须排在女生乙的左边(不一定相邻)的不同排法共有多少种? 变式:七个家庭一起外出旅游,若其中四家分别是一个男孩,三家分别是一个女孩,现将这七个小孩站成一排照相留念。 (1)一共用多少种站法? (2)甲站在正中间的排法有几种? (3)甲不排头,也不排尾,共有几种排法? (4)甲只能排头或排尾,共有几种排法? (5)甲不站排头,乙不站排尾,共有多少种排法? (6) 若三个女孩要站在一起,有多少种不同的排法?

(7)若三个女孩要站在一起,四个男孩也要站在一起,有多少种不同的排法? (8) 若三个女孩互不相邻,有多少种不同的排法? (9)若三个女孩互不相邻,四个男孩也互不相邻,有多少种不同的排法? (10)若其中的A小孩必须站在B小孩的左边,有多少种不同的排法? 例3.从0,1,2,...,9这10个数字中选出5个不同的数字组成五位数,其中大于13000的共有多少个? 例4 六本不同的书,按下列条件,各有多少种不同的分法? (1)分给甲、乙、丙三人,每人2本; (2)分成三份,每份2本; (3)分成三份,一份1本,一份2本,一份3本; (4)分给甲、乙、丙三人,一人1本,一人2本,一人3本; (5)分给甲、乙、丙三人,每人至少1本. 【学以致用】 1.用数字0、1、2、3、4、5组成没有重复数字的数

基本计数原理教学设计

《基本计数原理》教学设计 北京市怀柔区第一中学李悦 一、指导思想与理论依据 1.指导思想 本节课是在新课程理念指导下的教学探究活动。探究活动坚持面向全体学生,有计划的逐步展示问题的解决过程,使学生的思维逐步深化。注意引导学生主动的探索,强调活动的内化,树立正确的数学观。 2.理论依据 (1)新课标理念下关于概念学习的教学理论。 (2)新课标理念下关于教师教育教学的理论。 (3)现代认知主义学习理论和建构主义学习理论等。 二、教学背景分析 1.教学内容分析 本节课的内容是人教社B版普通高中课程标准实验教科书《数学》(选修2-3)第一章《计数原理》的第一节《基本计数原理》。内容主要为两个计数原理。两个计数原理是处理计数问题的两种基本思想方法。在面对一个复杂的计数问题时,通过分类或分步将它分解为若干个简单计数问题,在解决这些简单问题的基础上,将它们整合起来而得到原问题的答案,可以达到以简驭繁、化难为易的效果。 教材开篇在列举一些贴近生活的典型实例的基础上,用明确的语言指出了两个计数原理与加法、乘法运算之间的关系,并提出“不通过一个一个地数而确定这个数”的问题,从而使学生体会学习计数原理的必要性。由于两个计数原理的这种基础地位,并且在应用它们解决问题时具有很大的灵活性,是训练学生推理技能的好素材。 2.学生情况分析 本节课的授课对象是我区普通高中的学生。在知识内容上,已在初中学习过列举法、树状图,并会用这些知识解决一些简单事件的概率问题。在能力层次上,也具有一定的自主探究、观察、归纳总结的能力,他们的思维活跃,富有挑战性。学生在学习本课内容时可能会遇到以下两个困难,一个是对两个计数原理的特征理解不能深刻,因而导致不知如何判断什么是一件事;另一个是分不清两个计数原理,在解决问题时不知怎么完成这件事。 3.教学方式与教学手段说明

1.1基本计数原理

《计数原理》预习学案 编制:王礼堂2013.1.28 一、课前新知初探 (1)学习目标 1.通过实例,总结出分类计数原理、分步计数原理; 2. 了解分类、分步的特征,合理分类、分步; 3. 体会计数的基本原则:不重复,不遗漏. (2)自主预习 (1)分类加法计数原理: 计算公式: (2)分步乘法计数原理: 计算公式:: (3)思考探究 分类加法计数原理与分步乘法计数原理的有哪些异同点? 共同点: 不同点: 二、课堂互动探究 (1)课堂提问 (1)从潍坊到北京,可以乘火车,也可以乘汽车,还可以乘飞机,假定火车每日3.班,汽车每日4班,飞机每日2班,那么一天中从潍坊到北京 可以有多少种走法? (2)加工一种零件有3道工序,第一道工序有3种方法,第二道工序有2种 方法,第三道工序有3种方法,那么加工这种零件共有多少种方法?(2)课内探究 探究任务一:分类计数原理 问题1:用一个大写的英文字母或一个阿拉伯数字给教室的座位编号,总共能编出多少种不同的号码? 分析:给座位编号的方法可分____类方法? 第一类方法用,有___ 种方法; 第二类方法用,有___ 种方法; ∴能编出不同的号码有__________ 种方法 试试:一件工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出1人来完成这项工作,不同选法的种数是 . 反思:使用分类计数原理的条件是什么?分类加法原理可以推广到两类以上的方法吗?

班级 姓名 学号 小组 探究任务二:分步计数原理 问题2:用前六个大写的英文字母和1~9九个阿拉伯数字,以,,,,,2121B B A A ???…的方式给教室的座位编号,总共能编出多少种不同的号码? 分析:每一个编号都是由 个部分组成,第一部分是 ,有____种编法, 第二部分是 ,有 种编法;要完成一个编号,必须完成上面两部分,每一部分就是一个步骤,所以,不同的号码一共有 个. 试试:从A 村去B 村的道路有3条,从B 村去C 村的道路有2条,从A 村经B 村去C 村,不同的路线有 条. 反思:使用乘法原理的条件是什么?分步乘法原理可以推广到两步以上的问题吗? (3)典例剖析 例1现有高一学生代表3名,高二学生代表5名,高三学生代表2名: (1) 从中任选1人担任校学生会主席,共有多少种不同的选法? (2) 从每个年级的代表中各选1人,由选出的三个人组成校学生会主席团, 共有多少种不同的选法? (3) 从高一年级和高二年级的学生代表中各选一人,与高三年级2名学生代 表,共4人组成校学生会主席团,共有多少种不同的选法? 小结: (1)要弄清两个原理的条件和结论。 (2)要弄清是“分类”还是“分步”还是既有“分类又有分步” 变式:有4名同学分别报名参加学校的足球队,篮球队,乒乓球队,每人限报其中的一个运动队,不同的报名种数是 . 例2由数字0,1,2,3,这四个数字,可组成多少个: (1) 无重复数字的三位数? (2) 可以有重复数字的三位数? (3) 无重复数字的3位偶数?

计数原理基本知识点

计数原理基本知识点 1.分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++种不同的方法 2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =??? 种不同的方法 3.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....4.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫 做从n 个元素中取出m 元素的排列数,用符号m n A 表示 5.排列数公式:(1)(2)(1)m n A n n n n m =---+(,,m n N m n *∈≤) 6 阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=. 7.排列数的另一个计算公式:m n A =!()!n n m - 8 组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合 9.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从 n 个不同元素中取出m 个元素的组合数... .用符号m n C 表示. 10.组合数公式:(1)(2)(1)!m m n n m m A n n n n m C A m ---+== 或)! (!!m n m n C m n -=,,(n m N m n ≤∈*且 11 组合数的性质1:m n n m n C C -=.规定:10=n C ; 12.组合数的性质2:m n C 1+=m n C +1-m n C

《计数原理》一轮复习学案

《计数原理》一轮复习学案2017.12 一.知识梳理 1.分类计数原理(也称加法原理):做一件事情,完成它可以有n 类办法,在第一类办法中有m 1种不同的方法,在第二类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事共有N = 种不同的方法. 2.分步计数原理(也称乘法原理):做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做n 步有m n 种不同的方法,那么完成这件事共有N = 种不同的方法. 二.基础自测 1.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答). 2.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不 同的分配方案有 种(用数字作答). 3. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若 每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有 4. 甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有 5.甲、乙、丙人站到共有级的台阶上,若每级台阶最多站人,同一级台阶上的人不区分站的位置,则不同的站法种数是 (用数字作答). 三.典例剖析 例1. 已知集合M ={-3,-2,-1,0,1,2},P (a ,b )表示平面上的点(a ,b ∈M ),问: (1)P 可表示平面上多少个不同的点? (2)P 可表示平面上多少个第二象限的点? (3)P 可表示多少个不在直线y =x 上的点? 1.(2016·深圳调研考试)我们把各位数字之和为6的四位数称为“六合数” (如2 013是“六合数”),则首位为2的“六合数”共有( ) A .18个 B .15个 C .12个 D .9个 2. 用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( ) A .324 B .328 C .360 D .648 37 2

(完整版)分类计数原理和分步计数原理练习题

1、一个学生从3本不同的科技书、4本不同的文艺书、5本不同的外语书中任选一本阅读,不同的选法有_________________种。 2、一个乒乓球队里有男队员5人,女队员4人,从中选出男、女队员各一名组成混合双打,共有_________________种不同的选法。 3、一商场有3个大门,商场内有2个楼梯,顾客从商场外到二楼的走法有 __________种。 4、从分别写有1,2,3,…,9九张数字的卡片中,抽出两张数字和为奇数的卡片,共有_________________种不同的抽法。 5、某国际科研合作项目成员由11个美国人,4个法国人和5个中国人组成,(1)从中选出1人担任组长,有多少种不同选法? (2)从中选出两位不同国家的人作为成果发布人,有多少种不同选法? 6、(1)3名同学报名参加4个不同学科的比赛,每名学生只能参赛一项,问有多少种不同的报名方案? (2)若有4项冠军在3个人中产生,每项冠军只能有一人获得,问有多少种不同的夺冠方案? 7、用五种不同颜色给图中四个区域涂色,每个区域涂一种颜色, (1)共有多少种不同的涂色方法? (2)若要求相邻(有公共边)的区域不同色,那么共有多少种不同的涂色方法? 8、从甲地到乙地有两种走法,从乙地到丙地有4种走法,从甲地不经过乙地到丙地有3种走法,则从甲地到丙地共有_________________种不同的走法。 9、某电话局的电话号码为,若后面的五位数字是由6或8组成的,则这样的电话号码一共有_________________个。 10、从0,1,2,…,9这十个数字中,任取两个不同的数字相加,其和为偶数的不同取法有_________________种。

分类计数原理与分部计数原理(导学案)(最新整理)

? ? 12.1 分类计数原理和分步计数原理 一、提出问题: 从甲地到乙地,有三类不同的办法:乘火车、乘汽车、乘轮船。一天中,火车有 4 班,汽车有 2 班,轮船有 3 班。那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 二、分析问题: 各种不同的走法如下: ?第①班 ?第②班 (1) 乘火车? ?第③班 ??第④班 ?第①班 (2) 乘汽车? ?第②班 ?第①班 ? (3) 乘轮船?第②班 ?第③班 共有 种 共有 种 共有 种 显然,上述每一种方法都可以从甲地到乙地,一天中完成这件事共有三类办法,共有 4+2+3=9 种不同的走法。 想一想: 1. 某火车站,进站台需要上楼。该车站有楼梯 4 座,电梯 2 座,自动扶梯 1 座。一位旅客要进站台,共有几种不同走法? 共 4+2+1=7 种不同走法。 2. 从 A 城到某一旅游景区 B 地,每天有火车 5 次,公交大客车 15 次,租公交车小客车 25 次, 某人在一天中若乘坐上述交通工具,从 A 到 B 共有多少种不同的走法? 5+15+25=45 种不同走法 三、提升(提出概念) 一般地,有如下原理: 分类计数原理 如果做一件事,完成它可以有 n 类办法,在第一类办法中有 m 1 种不同的方法,在第二类办 法中有 m 2 种不同的方法,…,在第 n 类办法中有 m n 种不同的方法,无论通过哪一类的那一 种方法,都可以完成这件事,那么完成这件事共有 N = m 1 种不同走法. + m 2 + m 3 + + m n

四、提出问题 有A 村去B 村的道路有 4 条,有 B 村去C 村的道路有 2 条.从 A 村经B 村去C 村,共有多少 种不同的方法? 五、分析问题 ① ②① →→ A村??B村?C村 ③② →→ ④ 有 4 ? 2 = 8 种不同的走法 各种不同的走法如下: ① A村?→ ② A村?→ ③ A村?→ ① ?B村 ② ① ?B村 ② ① ?B村 ② ?C村 ?C村 ?C村

2021版高中数学第一章计数原理课时训练01分类加法计数原理与分步乘法计数原理新人教B版选修2

课时训练01 分类加法计数原理与分步乘 法计数原理 (限时:10分钟) 1.如果x,y∈N,且1≤x≤3,x+y<7,则满足条件的不同的有序自然数对的个数是( ) A.15 B.12 C.5 D.4 解析:利用分类加法计数原理. 当x=1时,y=0,1,2,3,4,5,有6种情况. 当x=2时,y=0,1,2,3,4,有5种情况. 当x=3时,y=0,1,2,3,有4种情况. 据分类加法计数原理可得,共有6+5+4=15种情况. 答案:A 2.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A.243 B.252 C.261 D.279 解析:0,1,2,…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),∴有重复数字的三位数有900-648=252(个). 答案:B 3.某体育馆有8个门供球迷出入,某球迷从其中一门进入,另一门走出,则不同的进出方法有( ) A.16种 B.56种 C.64种 D.72种 解析:分两步进行:第一步,选一门进入有8种方法;第二步,从剩下的门中选择一门走出有7种方法,共8×7=56种方法.答案:B 4.已知集合A={0,3,4},B={1,2,7,8},集合C={x|x∈A,或x∈B},则当集合C中有且只有一个元素时,C的情况有__________种. 解析:分两类进行,第一类,当元素属于集合A时,有3种.第二类,当元素属于集合B时,有4种. ∴共3+4=7种.

答案:7 5.甲、乙、丙3个班各有三好学生3,5,2名,现准备推选2名来自不同班的三好学生去参加校三好学生代表大会,共有多少种不同的推选方法. 解析:分为三类: 第一类,甲班选一名,乙班选一名,根据分步乘法计数原理有3×5=15种选法; 第二类,甲班选一名,丙班选一名,根据分步乘法计数原理有3×2=6种选法; 第三类,乙班选一名,丙班选一名,根据分步乘法计数原理有5×2=10种选法. 综合以上三类,根据分类加法计数原理,共有15+6+10=31种不同选法. (限时:30分钟) 一、选择题 1.某乒乓球队里有男队员6人,女队员5人,从中选取男、女队员各一人组成混合双打队,不同的组队总数有( ) A.11 B.30 C.56 D.65 解析:先选1男有6种方法,再选1女有5种方法,故共有6×5=30种不同的组队方法. 答案:B 2.某小组有8名男生,4名女生,要从中选出一名当组长,不同的选法有( ) A.32种 B.9种 C.12种 D.20种 解析:由分类加法计数原理知,不同的选法有N=8+4=12种.答案:C 3.由0,1,2三个数字组成的三位数的个数为( ) A.27 B.18 C.12 D.6 解析:分三步,分别取百位、十位、个位上的数字,分别有2种、3种、3种取法,故共可得2×3×3=18个不同的三位数.答案:B 4.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有

分类计数原理与分步计数原理教学设计

分类计数原理与分步计数原理

课题: 分类计数原理与分步计数原理 教材分析: 《分类计数原理与分步计数原理》,是高中数学第十章排列、组合的第一节课,是排列、组合的基础,学生对这两个原理的理解、掌握和运用,是学好本章的一个关键。 教学目标: 知识与技能目标: 准确理解两个原理,弄清它们的区别,培养学生分析问题、理解问题、归纳问题的能力 过程与方法目标: 通过例题让学生理解两个计数原理,并能够将两个技术原理应用到实际问题中去。 情感、态度与价值观目标: 培养学生勇于探索、勇于创新的精神,面对现实生活中复杂的事物和现象,能够作出正确的分析,准确的判断,进而拿出完善的处理方案,提高实际的应变能力。 教学重点: 分类计数原理和分步计数原理内容及两者的区别 教学难点: 对较为复杂事件的分类和分步 教学方法: 启发引导式教学 教具准备: 作图工具 课型: 新授课 教学过程: 问题引入一 问题1从芜湖到合肥,可以乘火车,也可以乘汽车,还可以乘轮船。假若一天中,火车有4班, 汽车有20班,轮船有3班。那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 分析:从甲地到乙地有3类方法,

第一类方法, 乘火车,有4种方法; 第二类方法, 乘汽车,有20种方法; 第三类方法, 乘轮船, 有3种方法; 所以从甲地到乙地共有4+20+3=27种方法。 问题 2 在全班同学中选出一名同学做班长,有多少种选择? 新知探究一 分类计数原理:如果计数的对象可以分成若干类,使得每两类没有公共元素,那么分别对每一类里的元素计数,然后把各类的元素数目相加,便得出所要计数的对象的总数。 说明: (1)各类办法之间相互独立,都能独立的完成这件事,要计算方法种数,只需将各类方法数相加,因此分类计数原理又称加法原理。 (2)首先要根据具体的问题确定一个分类标准,在分类标准下进行分类,然后对每类方法计数。 例1 在填写高考志愿表时,一名高中毕业生了解到A 大学有5个自己感兴趣的强项专业,B 大学有4个自己感兴趣的强项专业,如果这名同学只能选一个专业,那么他共有多少种选择呢? 解:根据分类计数原理:这名同学可能的专业选择共有5+4=9种。 问题引入二 问题3 如图,假设由芜湖去巢湖的道路有3条,由巢湖去合肥的道路有2条。从芜湖经巢湖去合肥,共有多少种不同的走法? 分析: 芜湖经巢湖去合肥有2步, 第一步, 由芜湖去巢湖有3种方法, 第二步, 由巢湖去合肥有2种方法, 所以芜湖经巢湖去合肥共有3×2=6种不同的方法。 问题 4 在全班每个组中都选出一名同学做组长,有多少种选择? 新知探究二 分步计数原理:如果计数的对象可以分成若干步骤来完成, 并且对于前面几芜湖北 南 北

苏教版高中数学选修2-3《两个基本计数原理》学案

1.1《两个计数原理》导学案 一、学习目标 1.理解分类加法计数原理与分步乘法计数原理; 2.会利用两个原理分析和解决一些简单的应用问题. 二、学习重难点 1、理解分类计数原理与分步计数原理 2、会利用两个原理分析和解决一些简单的应用问题 三、学习过程 一、问题情况 问题1:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4 班, 汽车有2班,轮船有3班.那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 问题2:如图,由A村去B村的道路有3条,由B村去C村的道路有2条.从A村经B村去C村,共有多少种不同的走法? 要解决这些问题,就要运用有关排列、组合知识.排列组合是一种重要的数学计数方法. 总的来说,就是研究按某一规则做某事时,一共有多少种不同的做法. 在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,我们从具体例子出发来学习这两个原理. 二、学生活动 探究:你能说说以上两个问题的特征吗? 问题一、看下面的问题: 问题1:.从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4 班, 汽车有2班,轮船有3班.那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 问题2:如图,由A村去B村的道路有3条,由B村去C村的道路有2条.从A村经B村去C村,共有多少种不同的走法? 要解决这些问题,就要运用有关排列、组合知识. 排列组合是一种重要的数学计数方法. 总的来说,就是研究按某一规则做某事时,一共有多少种不同的做法.

在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,我们从具体例子出发来学习这两个原理. 探究:你能说说以上两个问题的特征吗? 三、数学建构 一、分类加法计数原理 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法.那么完成这件事共有n m N +=种不同的方法. 分类记数原理的另一种表述: 做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有 12n N m m m =+++种不同的方法. 问题1解答: 分析: 问题2解答: 分析: 四、数学应用 例 1 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书, (1)从书架上任取1本书,有多少种取法? (2)从书架的第1,2,3层各取1本书,有多少不同的取法? 分析: A 村 B 村 C 村 北 南 中 北 南

基本计数原理

基本计数原理 一、主要内容 一般计数原理部分的考试,分为两种,一是排列组合二项式定理单独出题,二是在概率中需要用到排列组合二项式定理。 1、基本计数原理 2、排列和组合 3、常用方法 二、知识梳理 1、基本计数原理 (1)分类加法计数原理 从甲地到乙地,可乘坐三类交通工具:可以乘火车,可以坐汽车,还可以乘轮船,假定火车每日1班,汽车每日3班,轮船每日2班,那么一天中从甲地到乙地有多少种不同的走法?(1+3+2=6种) 做一件事,完成它有n 类办法,在第一类办法中,有1m 种不同的方法,在第二类办法中,有2m 种不同的方法,以此类推,在第n 类办法中,有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法。 (2)分步乘法计数原理。 某中学的阅览室有50本不同的科技书,80本不同的文艺书,现在张三同学想借1本科技书和1本文艺书,共有多少种借法?(50*80=4000) 做一件事,完成它需要分成n 个步骤,做第一个步骤有 1m 种不同的方法,做第二个步骤有2m 种不同的方法,以此类推,做第n 个步骤有n m 种不同的方法,那么完成这件事共有n m m m N ???=...21种不同的方法。 以上两个基本计数原理是解决计数问题最基本的理论依据。他们分别给出了两种不同方式完成一件事的方法总数的不同计算方法。 注意:分类要“不重不漏”,每类的每一种方法都能独立完成事件; 分步要“步骤完整”,每一步不能完成事件,只有各步依次都完成,才能完成事件。

2、排列与组合 (1)排列 有红球、白球、黄球各一个,现从这三个小球中任取两个,分别放入甲、乙盒子里,有多少种不同的方法?(3*2=6) 我们把被取的对象叫做元素。取出的元素按照已知的顺序排成一列,我们称它为该问题的一个排列。 一般地,从n 个不同元素中任取出)(n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。 两个排列相同,则组成排列的元素相同,并且元素的排列顺序也相同。 从n 个不同元素中取出)(n m m ≤个元素的所有排列的个数,叫做从n 个不同元素中取出 m 个元素的排列数,用符号m n A 表示。 根据分步乘法计数原理,得到公式)1()2)(1(+---=m n n n n A m n 这里+∈N m n ,,并且n m ≤,这个公式叫做排列数公式。 一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列,这时n m =,则有123)2()1(????-?-?= n n n A m n ,这个公式是由1到n 。我们把正整数1到n 的连 乘积,叫做n 的阶乘,用!n 表示。所以n 个不同元素的全排列数公式可以写成!n A n n = 排列数的公式还有下面的另一种形式:)! (!m n n A m n -=,我们规定1!0=。 (2)组合 有红球、黄球、白球各一个,从这三个小球中,任意取出两个小球,共有多少种不同的取法?(与顺序无关,共3种) 一般地,从n 个不同元素中,任意取出)(n m m ≤个元素并成一组,叫做从n 个不同元素中任取m 个元素的一个组合。 从n 个不同元素中,任意取出)(n m m ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号m n C 表示。 一般地,从n 个不同元素中,任取m 个元素的排列,可以分两步完成:

2019人教版 高中数学选修2-3 《1.1.1分类加法计数原理与分步乘法计数原理》导学案

2019人教版精品教学资料·高中选修数学 1.1. 两个原理 课前预习学案 一、预习目标 准确理解两个原理,弄清它们的区别;会用两个原理解决一些简单问题。 二、预习内容 分类计数原理:完成一件事, 有n类方式, 在第一类方式,中有m1种不同的方法,在第二类方式, 中有m2种不同的方法,……,在第n类方式,中有m n种不同的方法. 那么完成这件事共有 N= 种不同的方法. 分步计数原理:完成一件事,需要分成n个,做第1步有m1种不同的方法,做第2 步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事共有 N= 种不同的方法。 课内探究学案 一、学习目标 二、准确理解两个原理,弄清它们的区别;会用两个原理解决一些简单问题。 学习重难点: 教学重点:两个原理的理解与应用 教学难点:学生对事件的把握 二、学习过程 情境设计 1、从学校南大门到图艺中心有多少种不同的走法? 2、从学校南大门经图艺中心到食堂有多少种不同的走法?(请画分析图) 3、课件中提供的生活实例。 新知 分类计数原理:完成一件事, 有n类 , 在第一类方式,中有m1种不同的方法,在第二 类方式,中有m2种不同的方法,……,在第n类方式,中有m n种不同的方法. 那么完成这件事共有 N= 种不同的方法. 分步计数原理:完成一件事,需要分成n个,做第1步有m1种不同的方法,做第2步 有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事共有 N= n种不同的方法。 巩固原理 例1、某班共有男生28名,女生20名,从该班选出学生代表参加校学代会。 (1)若学校分配给该班1名代表,有多少不同的选法? (2)若学校分配给该班2名代表,且男、女代表各一名,有多少种不同的选法? 解: 练习1、乘积()() 1231234 a a a b b b b ++?+++?() 12345 c c c c c ++++ 展开后共有多少项?

相关文档
最新文档