高中数学:高考数学试题分类汇编 应用题

合集下载

高考数学应用题复习题集及参考答案

高考数学应用题复习题集及参考答案

高考数学应用题复习题集及参考答案本文为高考数学应用题复习题集及参考答案,旨在帮助学生复习并加深对应用题的理解。

以下是一系列经典的数学应用题,每道题后附有详细的解答和解题思路。

希望能够对广大考生有所帮助。

一、函数与极限1. 设函数\[y = f(x) = \frac{{\sin x}}{{\sqrt{x}}}\],求\[\lim_{{x\rightarrow 0}} f(x)\]的值。

解答:由于\[\lim_{{x \rightarrow 0}} \sin x = 0\],且\[\lim_{{x \rightarrow 0}} \sqrt{x} = 0\],所以我们有:\[\lim_{{x \rightarrow 0}} f(x) = \lim_{{x \rightarrow 0}} \frac{{\sin x}}{{\sqrt{x}}}\]\[= \frac{{\lim_{{x \rightarrow 0}} \sin x}}{{\lim_{{x \rightarrow 0}} \sqrt{x}}}\]\[= \frac{0}{0}\](形式不定)利用洛必达法则,求导得:\[\lim_{{x \rightarrow 0}} f(x) = \lim_{{x \rightarrow 0}} \frac{{\cos x}}{{\frac{1}{{2\sqrt{x}}}}}\]\[= \lim_{{x \rightarrow 0}} 2\sqrt{x} \cdot \cos x\]\[= 2 \cdot 0 \cdot 1 = 0\]因此,\[\lim_{{x \rightarrow 0}} f(x) = 0\]。

二、微分与导数2. 已知函数\[y = f(x) = x^3 - 3x^2 - 4x + 12\],求导函数\[y' = f'(x)\]。

解答:使用导数的定义,对函数进行求导:\[y' = \lim_{{\Delta x \rightarrow 0}} \frac{{f(x+\Delta x) -f(x)}}{{\Delta x}}\]\[= \lim_{{\Delta x \rightarrow 0}} \frac{{(x+\Delta x)^3 - 3(x+\Delta x)^2 - 4(x+\Delta x) + 12 - (x^3 - 3x^2 - 4x + 12)}}{{\Delta x}}\]\[= \lim_{{\Delta x \rightarrow 0}} \frac{{x^3 + 3x^2 \Delta x +3x(\Delta x)^2 + (\Delta x)^3 - 3x^2 - 6x \Delta x - 3(\Delta x)^2 - 4x -4\Delta x + 12 - x^3 + 3x^2 + 4x - 12}}{{\Delta x}}\]\[= \lim_{{\Delta x \rightarrow 0}} \frac{{3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 - 6x \Delta x - 3(\Delta x)^2 - 4\Delta x}}{{\Delta x}}\]\[= \lim_{{\Delta x \rightarrow 0}} (3x^2 + 3x \Delta x + (\Delta x)^2 - 6x - 3\Delta x - 4)\]\[= 3x^2 - 6x - 4\]因此,导函数\[y' = f'(x) = 3x^2 - 6x - 4\]。

历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编解不等式1.(2024∙全国新Ⅰ卷∙高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3} C .{3,1,0}-- D .{1,0,2}-2.(2024∙上海∙高考真题)已知,x ∈R 则不等式2230x x --<的解集为 .3.(2023∙全国新Ⅰ卷∙高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( )A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}24.(2020∙全国∙高考真题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ( ) A .{4,1}- B .{1,5} C .{3,5}D .{1,3}基本不等式1.(2024∙北京∙高考真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( ) A .12122log 22y y x x ++< B .12122log 22y y x x ++> C .12212log 2y y x x +<+ D .12212log 2y y x x +>+ 2.(2021∙全国乙卷∙高考真题)下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .2y 22x x -=+D .4ln ln y x x=+3.(2021∙全国新Ⅰ卷∙高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13B .12C .9D .64.(2020∙全国∙高考真题)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b ab-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4B .8C .16D .32参考答案解不等式1.(2024∙全国新Ⅰ卷∙高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3}C .{3,1,0}--D .{1,0,2}-【答案】A【详细分析】化简集合A ,由交集的概念即可得解.【答案详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-. 故选:A.2.(2024∙上海∙高考真题)已知,x ∈R 则不等式2230x x --<的解集为 . 【答案】{}|13x x -<<【详细分析】求出方程2230x x --=的解后可求不等式的解集. 【答案详解】方程2230x x --=的解为=1x -或3x =, 故不等式2230x x --<的解集为{}|13x x -<<, 故答案为:{}|13x x -<<.3.(2023∙全国新Ⅰ卷∙高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( )A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}2【答案】C【详细分析】方法一:由一元二次不等式的解法求出集合N ,即可根据交集的运算解出. 方法二:将集合M 中的元素逐个代入不等式验证,即可解出.【答案详解】方法一:因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--,所以M N ⋂={}2-. 故选:C .方法二:因为{}2,1,0,1,2M =--,将2,1,0,1,2--代入不等式260x x --≥,只有2-使不等式成立,所以M N ⋂={}2-.故选:C .4.(2020∙全国∙高考真题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ( ) A .{4,1}- B .{1,5} C .{3,5} D .{1,3}【答案】D【详细分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ⋂,得到结果. 【答案详解】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B = , 故选:D.【名师点评】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.基本不等式1.(2024∙北京∙高考真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( ) A .12122log 22y y x x ++< B .12122log 22y y x x ++> C .12212log 2y y x x +<+ D .12212log 2y y x x +>+ 【答案】B【详细分析】根据指数函数和对数函数的单调性结合基本不等式详细分析判断AB ;举例判断CD 即可. 【答案详解】由题意不妨设12x x <,因为函数2x y =是增函数,所以12022x x <<,即120y y <<,对于选项AB :可得121222222x xx x ++>=,即12122202x x y y ++>>, 根据函数2log y x =是增函数,所以121212222log log 222x x y y x x+++>=,故B 正确,A 错误;对于选项D :例如120,1x x ==,则121,2y y ==, 可得()12223log log 0,122y y +=∈,即12212log 12y y x x +<=+,故D 错误; 对于选项C :例如121,2x x =-=-,则1211,24y y ==, 可得()122223log log log 332,128y y +==-∈--,即12212log 32y y x x +>-=+,故C 错误, 故选:B.2.(2021∙全国乙卷∙高考真题)下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .2y 22x x -=+ D .4ln ln y x x=+【答案】C【详细分析】根据二次函数的性质可判断A 选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出,B D 不符合题意,C 符合题意.【答案详解】对于A ,()2224133y x x x =++=++≥,当且仅当=1x -时取等号,所以其最小值为3,A 不符合题意;对于B ,因为0sin 1x <≤,4sin 4sin y x x=+≥=,当且仅当sin 2x =时取等号,等号取不到,所以其最小值不为4,B 不符合题意;对于C ,因为函数定义域为R ,而20x >,2422242x x xx y -=+=+≥=,当且仅当22x =,即1x =时取等号,所以其最小值为4,C 符合题意; 对于D ,4ln ln y x x=+,函数定义域为()()0,11,+∞ ,而ln x R ∈且ln 0x ≠,如当ln 1x =-,5y =-,D 不符合题意. 故选:C .【名师点评】本题解题关键是理解基本不等式的使用条件,明确“一正二定三相等”的意义,再结合有关函数的性质即可解出.3.(2021∙全国新Ⅰ卷∙高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C【详细分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【答案详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C . 【名师点评】4.(2020∙全国∙高考真题)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b ab-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4 B .8 C .16 D .32【答案】B【详细分析】因为2222:1(0,0)x y C a b a b -=>>,可得双曲线的渐近线方程是b y x a=±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab值,根据2c =等式,即可求得答案. 【答案详解】 2222:1(0,0)x y C a b a b -=>> ∴双曲线的渐近线方程是b y x a=±直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于D ,E 两点 不妨设D 为在第一象限,E 在第四象限 联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故(,)E a b -∴||2ED b =∴ODE 面积为:1282ODE S a b ab =⨯==△双曲线2222:1(0,0)x y C a b a b-=>>∴其焦距为28c =≥==当且仅当a b ==∴C 的焦距的最小值:8故选:B.【名师点评】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了详细分析能力和计算能力,属于中档题.。

2024全国高考真题数学汇编:平面向量及其应用章节综合

2024全国高考真题数学汇编:平面向量及其应用章节综合

2024全国高考真题数学汇编平面向量及其应用章节综合一、单选题1.(2024全国高考真题)已知向量,a b满足1,22a a b ,且2b a b ,则b ()A .12B C .2D .12.(2024全国高考真题)已知向量(0,1),(2,)a b x ,若(4)b b a,则x ()A .2B .1C .1D .23.(2024全国高考真题)设向量 1,,,2a x x b x,则()A .“3x ”是“a b”的必要条件B .“3x ”是“//a b”的必要条件C .“0x ”是“a b”的充分条件D .“1x ”是“//a b”的充分条件4.(2024全国高考真题)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,若π3B ,294b ac ,则sin sin A C ()A .13B .13C .2D .135.(2024北京高考真题)设a ,b 是向量,则“·0a b a b”是“a b 或a b ”的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题6.(2024上海高考真题)已知 ,2,5,6,k a b k R ,且//a b ,则k 的值为.7.(2024天津高考真题)在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC u u r u u r u u u r ,则;F 为线段BE 上的动点,G 为AF 中点,则AF DG的最小值为.三、解答题8.(2024天津高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ,.(1)求a ;(2)求sin A ;(3)求 cos 2B A 的值.9.(2024全国高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A .(1)求A .(2)若2asin sin 2C c B ,求ABC 的周长.10.(2024北京高考真题)在ABC 中,内角,,A B C 的对边分别为,,a b c ,A 为钝角,7a ,sin 2cos B B .(1)求A ;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b ;条件②:13cos 14B;条件③:sin c A 注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.11.(2024全国高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B ,222a b c (1)求B ;(2)若ABC 的面积为3c .参考答案1.B【分析】由2b a b 得22b a b,结合1,22a a b ,得22144164a b b b ,由此即可得解.【详解】因为 2b a b ,所以20b a b ,即22b a b,又因为1,22a a b ,所以22144164a b b b ,从而2b .故选:B.2.D【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为 4b b a ,所以40b b a,所以240b a b即2440x x ,故2x ,故选:D.3.C【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【详解】对A ,当a b 时,则0a b,所以(1)20x x x ,解得0x 或3,即必要性不成立,故A 错误;对C ,当0x 时, 1,0,0,2a b ,故0a b,所以a b,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x ,解得1x ,即必要性不成立,故B 错误;对D ,当1x 时,不满足22(1)x x ,所以//a b不成立,即充分性不立,故D 错误.故选:C.4.C【分析】利用正弦定理得1sin sin 3A C ,再利用余弦定理有22134a c ac ,由正弦定理得到22sin sin A C 的值,最后代入计算即可.【详解】因为29,34B b ac,则由正弦定理得241sin sin sin 93A C B .由余弦定理可得:22294b ac ac ac ,即:22134a c ac,根据正弦定理得221313sin sin sin sin 412A C A C ,所以2227(sin sin )sin sin 2sin sin 4A C A C A C,因为,A C 为三角形内角,则sin sin 0A C ,则sin sin A C .故选:C.5.B【分析】根据向量数量积分析可知0a b a b 等价于a b,结合充分、必要条件分析判断.【详解】因为220a b a b a b ,可得22a b ,即a b ,可知0a b a b 等价于a b ,若a b 或a b ,可得a b ,即0a b a b,可知必要性成立;若0a b a b ,即a b,无法得出a b 或a b ,例如 1,0,0,1a b,满足a b ,但a b 且a b ,可知充分性不成立;综上所述,“0a b a b”是“a b 且a b ”的必要不充分条件.故选:B.6.15【分析】根据向量平行的坐标表示得到方程,解出即可.【详解】//a b ,256k ,解得15k .故答案为:15.7.43518【分析】解法一:以,BA BC 为基底向量,根据向量的线性运算求BE,即可得 ,设BF BE k u u u r u u r ,求,AF DG u u u r u u u r ,结合数量积的运算律求AF DG 的最小值;解法二:建系标点,根据向量的坐标运算求BE,即可得 ,设 1,3,,03F a a a,求,AF DG u u u r u u u r ,结合数量积的坐标运算求AF DG 的最小值.【详解】解法一:因为12CE DE ,即13CE BA ,则13BE BC CE BA BC u u u r u u r u u u u r r u u u r ,可得1,13,所以43;由题意可知:1,0BC BA BA BC,因为F 为线段BE 上的动点,设 1,0,13BF k BE k BA k BC k,则113AF AB BF AB k BE k BA k BC,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC,可得11111113232AF DG k BA k BC k BA k BC22111563112329510k k k k,又因为 0,1k ,可知:当1k 时,AF DG 取到最小值518;解法二:以B为坐标原点建立平面直角坐标系,如图所示,则 11,0,0,0,0,1,1,1,,13A B C D E,可得 11,0,0,1,,13BA BC BE,因为 ,BE BA BC 131,所以43 ;因为点F 在线段1:3,,03BE y x x 上,设 1,3,,03F a a a,且G 为AF 中点,则13,22a G a ,可得 131,3,,122a AF a a DG a,则 22132331522510a AF DG a a a,且1,03a,所以当13a 时,AF DG 取到最小值为518 ;故答案为:43;518 .8.(1)4(3)5764【分析】(1)2,3a t c t ,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【详解】(1)设2,3a t c t ,0t ,则根据余弦定理得2222cos b a c ac B ,即229254922316t t t t ,解得2t (负舍);则4,6a c .(2)法一:因为B 为三角形内角,所以sin 16B ,再根据正弦定理得sin sin a b A B ,即4sin A sin 4A ,法二:由余弦定理得2222225643cos 22564b c a A bc ,因为 0,πA ,则sin 4A(3)法一:因为9cos 016B ,且 0,πB ,所以π0,2B,由(2)法一知sin 16B,因为a b ,则A B ,所以3cos 4A ,则3sin 22sin cos 24A A A2231cos 22cos 12148A A9157cos 2cos cos 2sin sin 216816864B A B A B A.法二:3sin 22sin cos 24A A A,则2231cos 22cos 12148A A,因为B 为三角形内角,所以sin 16B,所以 9157cos 2cos cos 2sin sin 216864B A B A B A9.(1)π6A(2)2【分析】(1)根据辅助角公式对条件sin 2A A 进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【详解】(1)方法一:常规方法(辅助角公式)由sin 2A A 可得1sin 122A A ,即sin()1π3A ,由于ππ4π(0,π)(,)333A A ,故ππ32A ,解得π6A方法二:常规方法(同角三角函数的基本关系)由sin 2A A ,又22sin cos 1A A ,消去sin A 得到:224cos 30(2cos 0A A A ,解得cos 2A,又(0,π)A ,故π6A方法三:利用极值点求解设()sin (0π)f x x x x ,则π()2sin (0π)3f x x x,显然π6x时,max ()2f x ,注意到π()sin 22sin(3f A A A A ,max ()()f x f A ,在开区间(0,π)上取到最大值,于是x A 必定是极值点,即()0cos sin f A A A ,即tan 3A ,又(0,π)A ,故π6A方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ,由题意,sin 2a b A A,根据向量的数量积公式,cos ,2cos ,a b a b a b a b,则2cos ,2cos ,1a b a b ,此时,0a b,即,a b 同向共线,根据向量共线条件,1cos sin tan A A A 又(0,π)A ,故π6A方法五:利用万能公式求解设tan 2A t,根据万能公式,22sin 21t A A t整理可得,2222(2(20((2t t t ,解得tan22A t 223tan 13t A t ,又(0,π)A ,故π6A(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B ,又,(0,π)B C ,则sin sin 0B C,进而cos 2B ,得到π4B ,于是7ππ12C A B,26sin sin(π)sin()sin cos sin cos 4C A B A B A B B A,由正弦定理可得,sin sin sin a b cA B C ,即2ππ7πsin sin sin6412bc,解得b c 故ABC的周长为2 10.(1)2π3A;(2)选择①无解;选择②和③△ABC【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得3B,结合(1)问答案即可排除;选择②,首先求出sin B 式子得3b ,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c,再利用正弦定理得到sin Csin B ,最后利用三角形面积公式即可;【详解】(1)由题意得2sin cos cos B B B,因为A 为钝角,则cos 0B,则2sin B,则7sin sin sin b a BA A,解得sin A ,因为A 为钝角,则2π3A.(2)选择①7b ,则333sin 714142B,因为2π3A ,则B 为锐角,则3B ,此时πA B ,不合题意,舍弃;选择②13cos 14B ,因为B 为三角形内角,则sin B ,则代入2sin 7B得2147,解得3b , 2π2π2πsin sin sin sin cos cos sin 333C A B B B B3131335321421414,则1153153sin 7322144ABC S ab C.选择③sin c Ac 5c ,则由正弦定理得sin sin a c A C 5sin C ,解得sin C ,因为C 为三角形内角,则11cos 14C ,则 2π2π2πsin sin sin sin cos cos sin 333B A C C C C3111533321421414,则11sin 7522144ABC S ac B △11.(1)π3B (2)【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B 得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【详解】(1)由余弦定理有2222cos a b c ab C ,对比已知222a b c ,可得222cos 222a b c C ab ab,因为 0,πC ,所以sin 0C ,从而sin2C ,又因为sin C B,即1cos2B ,注意到0,πB ,所以π3B .(2)由(1)可得π3B,cos2C ,0,πC ,从而π4C ,ππ5ππ3412A ,而5πππ1sin sin sin12462A,由正弦定理有5πππsin sin sin1234a b c,从而,a b,由三角形面积公式可知,ABC的面积可表示为21113sin222228ABCS ab C c c,由已知ABC的面积为323338c所以c。

历年(2020-2023)全国高考数学真题分类(导数及其应用)汇编(附答案)

历年(2020-2023)全国高考数学真题分类(导数及其应用)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(导数及其应用)汇编【2023年真题】1. (2023·新高考II 卷 第6题) 已知函数()ln x f x ae x =-在区间(1,2)单调递增,则a 的最小值为( ) A. 2eB. eC. 1e -D. 2e -2.(2023·新课标I 卷 第11题)(多选) 已知函数()f x 的定义域为R ,22()()()f xy y f x x f y =+,则( ) A. (0)0f = B. (1)0f =C. ()f x 是偶函数D. 0x =为()f x 的极小值点3.(2023·新课标II 卷 第11题)(多选)若函数2()ln (0)b cf x a x a x x=++≠既有极大值也有极小值,则( ) A. 0bc >B. 0ab >C. 280b ac +>D. 0ac < 4. (2023·新课标I 卷 第19题) 已知函数(1)讨论()f x 的单调性;(2)证明:当0a >时,3()2ln a+.2f x >5.(2023·新高考II 卷 第22题)(1)证明:当01x <<时,2x x sinx x -<<;(2)已知函数2()(1)f x cosax ln x =--,若0x =是()f x 的极大值点,求a 的取值范围.【2022年真题】6.(2022·新高考I 卷 第7题)设0.10.1a e =,19b =,ln 0.9c =-,则( ) A. a b c <<B. c b a <<C. c a b <<D. a c b <<7.(2022·新高考I 卷 第10题)(多选)已知函数3()1f x x x =-+,则( )A. ()f x 有两个极值点B. ()f x 有三个零点C. 点(0,1)是曲线()y f x =的对称中心D. 直线2y x =是曲线()y f x =的切线8.(2022·新高考I 卷 第15题)若曲线()x y x a e =+有两条过坐标原点的切线,则a 的取值范围是__________. 9.(2022·新高考II 卷 第15题)曲线ln ||y x =经过坐标原点的两条切线方程分别为__________,__________.10.(2022·新高考I 卷 第22题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在y b =直线,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.11.(2022·新高考II 卷 第22题)已知函数().ax x f x xe e =-(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求实数a 的取值范围; (3)设*n N ∈ln(1).n ++>+【2021年真题】12.(2021·新高考I 卷 第7题)若过点(,)a b 可以作曲线e x y =的两条切线,则( ) A. e b a <B. e a b <C. 0e b a <<D. 0e a b <<13.(2021·新高考I 卷 第15题)函数()|21|2ln f x x x =--的最小值为__________. 14.(2021·新高考II 卷 第16题)已知函数,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是__________.15.(2021·新高考I 卷 第22题)已知函数()(1ln ).f x x x =-(1)讨论()f x 的单调性.(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112.e a b<+< 16.(2021·新高考II 卷 第22题)已知函数2()(1).x f x x e ax b =--+(1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 有一个零点.①21,222e a b a <>…; ②10,2.2a b a <<…【2020年真题】17.(2020·新高考I 卷 第21题、II 卷 第22题)已知函数1()ln ln .x f x ae x a -=-+(1)当a e =时,求曲线()y f x =在点(1,(1))f 处的切线与两坐标轴围成的三角形的面积; (2)若()1f x …,求a 的取值范围.参考答案1. (2023·新高考II 卷 第6题) 解:由题意,1()0xf x ae x'=-…对(1,2)x ∀∈恒成立, 1x a xe ∴…,由于1()xg x xe =在(1,2)单调递减,1()(1)g x g e∴<=,1.a e ∴…故答案选:.C2.(2023·新课标I 卷 第11题)(多选)解:选项A ,令0x y ==,则(0)0(0)0(0)f f f =⨯+⨯,则(0)0f =,故A 正确; 选项B ,令1x y ==,则(1)1(1)1(1)f f f =⨯+⨯,则(1)0f =,故B 正确; 选项C ,令1x y ==-,则22(1)(1)(1)(1)(1)f f f =-⨯-+-⨯-,则(1)0f -=, 再令1y =-,则22()(1)()(1)f x f x x f -=-+-,即()()f x f x -=,故C 正确; 选项D ,不妨设()0f x =为常函数,且满足原题22()()()f xy y f x x f y =+, 而常函数没有极值点,故D 错误. 故选:.ABC3.(2023·新课标II 卷 第11题)(多选) 解:因为2()ln (0)b cf x a x a x x=++≠,所以定义域为(0,)+∞, 得232()ax bx c f x x'--=,由题意知220ax bx c --=有两个不相等的正解12,.x x 则,易得0.bc <故选.BCD4. (2023·新课标I 卷 第19题) 解:(1)()1x f x ae '=-,当0a =时()10f x '=-<,()f x 在(,)-∞+∞单调递减, 当0a <时0x ae <,()0f x '<,()f x 在(,)-∞+∞单调递减,当0a >时,令()0f x '=,=-ln x a ,(,ln )x a ∈-∞-时,()0f x '<,()f x 单调递减. (ln ,)x a ∈-+∞时()0f x '>,()f x 单调递增, 故当0a …时()f x 在(,)-∞+∞单调递减,当0a >时, () f x 在区间(,ln )a -∞-单调递减,在区间(ln ,)a -+∞单调递增.(2)由(1)知当0a >时, () f x 在区间(,ln )a -∞-单调递减,在区间(ln ,)a -+∞单调递增.故,令,221()a g a a -'=,令()0g a '=,因为0a >,故2a =,() g a 在区间(0,2单调递减,在区间(,)2+∞单调递增,,即 >?0,()?>?0a g a 时恒成立, 即min 3()2ln 2f x a >+,即当0a >时,3()2ln a+.2f x > 5.(2023·新高考II 卷 第22题)(1)证明:构造函数2()g x sinx x x =-+,则()12g x cosx x '=-+, 令()()h x g x =', 则()20h x sinx '=-+>,所以()h x 在(0,1)上单调递增,则()(0)0g x g '>'=,所以()g x 在(0,1)上单调递增,所以()(0)0g x g >=,即2x x sinx -<;构造函数()G x x sinx =-,则()10G x cosx '=->,所以()G x 在(0,1)上单调递增,则()(0)0G x G >=,即sinx x <, 综上,当01x <<时,2x x sinx x -<<;(2)解:由210x ->,得函数()f x 的定义域为(1,1).-又()()f x f x -=,所以()f x 是偶函数,所以只需考虑区间(0,1).22()1xf x asinax x'=-+-, 令()()F x f x =',则222222()(1)x F x a cosax x +'=-+-, 其中,①若,记a <<时,易知存在0δ>,使得(0,)x δ∈时,,()f x ∴'在(0,)δ上递增,()(0)0f x f ∴'>'=,()f x ∴在(0,)δ上递增,这与0x =是()f x 的极大值点矛盾,舍去.②若,记a <或a >存在0δ'>,使得(,)x δδ∈-''时,,()f x ∴'在(,)δδ-''上递减,注意到(0)0f '=,∴当0x δ-'<<时,当0x δ<<'时,,满足0x =是()f x 的极大值点,符合题意.③若,即a =时,由()f x 为偶函数,只需考虑a =.此时22())1xf x x '=+-,(0,1)x ∈时, 2221()22(1)011x f x x x x x'>-+=->--,()f x ∴在(0,1)上递增, 这与0x =是()f x 的极大值点矛盾,舍去.综上:a 的取值范围为(,).-∞⋃+∞ 6.(2022·新高考I 卷 第7题)解:0.10.1a e =,0.110.1b =-,ln(10.1)c =--,①ln ln 0.1ln(10.1)a b -=+-, 令()ln(1),(0,0.1],f x x x x =+-∈ 则1()1011x f x x x-'=-=<--, 故()f x 在(0,0.1]上单调递减,可得(0.1)(0)0f f <=,即ln ln 0a b -<,所以a b <; ②0.10.1ln(10.1)a c e -=+-, 令()ln(1),(0,0.1],x g x xe x x =+-∈则1(1)(1)1()11x xxx x e g x xe e x x+--'=+-=--, 令()(1)(1)1x k x x x e =+--,所以2()(12)0x k x x x e '=-->, 所以()k x 在(0,0.1]上单调递增,可得()(0)0k x k >=,即()0g x '>,所以()g x 在(0,0.1]上单调递增,可得(0.1)(0)0g g >=,即0a c ->,所以.a c > 故.c a b <<7.(2022·新高考I 卷 第10题)(多选)解:32()1()31f x x x f x x =-+⇒'=-,令()0f x '=得:3x =±,()03f x x '>⇒<-或3x >;()033f x x '<⇒-<<,所以()f x 在(,3-∞-上单调递增,在(,)33-上单调递减,在(,)3+∞上单调递增,所以()f x 有两个极值点(3x =为极大值点,3x =为极小值点),故A 正确;又((1103939f -=---+=+>,(1103939f =-+=->, 所以()f x 仅有1个零点(如图所示),故B 错;又3()1()()2f x x x f x f x -=-++⇒-+=,所以()f x 关于(0,1)对称,故C 正确;对于D 选项,设切点00(,)P x y ,在P 处的切线为320000(1)(31)()y x x x x x --+=--, 即2300(31)21y x x x =--+,若2y x =是其切线,则2030312210x x ⎧-=⎪⎨-+=⎪⎩,方程组无解,所以D 错. 8.(2022·新高考I 卷 第15题)解:(1)x y x a e '=++,设切点为00(,)x y , 故0000(1)x y x a e x =++, 即0000()(1).x x x a e x a e x +=++ 由题意可得,方程(1)x a x x a +=++在(,0)(0,)-∞⋃+∞上有两个不相等的实数根.化简得,20x ax a +-=,240a a =+> ,解得4a <-或0a >,显然此时0不是根,故满足题意. 9.(2022·新高考II 卷 第15题)解:当0x >时,点111(,ln )(0)x x x >上的切线为1111ln ().y x x x x -=- 若该切线经过原点,则1ln 10x -=,解得x e =, 此的切线方程为.x y e=当0x <时,点222(,ln())(0)x x x -<上的切线为()()2221ln y x x x x --=-若该切线经过原点,则2ln()10x --=,解得x e =-, 此时切线方程为.x y e=-10.(2022·新高考I 卷 第22题) 解:(1)由题知()x f x e a '=-,1()g x a x'=-, ①当0a …时,()0f x '>,,()0g x '<,则两函数均无最小值,不符题意; ②当0a >时,()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增;()g x 在1(0,a单调递减,在1(,)a +∞单调递增;故min ()(ln )ln f x f a a a a ==-,min 11()()1ln g x g a a==-,所以1ln 1ln a a a a -=-,即1ln 01a a a --=+, 令1()ln 1a p a a a -=-+,则222121()0(1)(1)a p a a a a a +'=-=>++, 则()p a 在(0,)+∞单调递增,又(1)0p =,所以 1.a =(2)由(1)知,()x f x e x =-,()ln g x x x =-,且()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增;()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,且min min ()() 1.f x g x ==①1b <时,此时min min ()()1f x g x b ==>,显然y b =与两条曲线()y f x =和()y g x = 共有0个交点,不符合题意;②1b =时,此时min min ()()1f x g x b ===,故y b =与两条曲线()y f x =和()y g x =共有2个交点,交点的横坐标分别为0和1; ③1b >时,首先,证明y b =与曲线()y f x =有2个交点, 即证明()()F x f x b =-有2个零点,()()1x F x f x e '='=-, 所以()F x 在(,0)-∞上单调递减,在(0,)+∞上单调递增, 又因为()0b F b e --=>,(0)10F b =-<,()20b F b e b =->,(令()2b t b e b =-,则()20b t b e '=->,()(1)20)t b t e >=->所以()()F x f x b =-在(,0)-∞上存在且只存在1个零点,设为1x ,在(0,)+∞上存在且只存在1个零点,设为2.x其次,证明y b =与曲线和()y g x =有2个交点, 即证明()()G x g x b =-有2个零点,1()()1G x g x x'='=-, 所以()(0,1)G x 上单调递减,在(1,)+∞上单调递增,又因为()0b b G e e --=>,(0)10G b =-<,(2)ln 20G b b b =->,(令()ln 2b b b μ=-,则1()10b bμ'=->,()(1)1ln 20)b μμ>=-> 所以()()G x g x b =-在(0,1)上存在且只存在1个零点,设为3x ,在(1,)+∞上存在且只存在1个零点,设为4.x再次,证明存在b ,使得23:x x =因为23()()0F x G x ==,所以2233ln x b e x x x =-=-, 若23x x =,则2222ln x e x x x -=-,即2222ln 0x e x x -+=, 所以只需证明2ln 0x e x x -+=在(0,1)上有解即可, 即()2ln x x e x x ϕ=-+在(0,1)上有零点,因为313312()30e e e eϕ=--<,(1)20e ϕ=->,所以()2ln x x e x x ϕ=-+在(0,1)上存在零点,取一零点为0x ,令230x x x ==即可, 此时取00x b ex =-则此时存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点, 最后证明1402x x x +=,即从左到右的三个交点的横坐标成等差数列, 因为120304()()()0()()()F x F x F x G x G x G x ====== 所以100()()(ln )F x G x F x ==,又因为()F x 在(,0)-∞上单调递减,10x <,001x <<即0ln 0x <,所以10ln x x =, 同理,因为004()()()xF xG e G x ==,又因为()G x 在(1,)+∞上单调递增,00x >即01x e >,11x >,所以04xx e =,又因为0002ln 0xe x x -+=,所以01400ln 2x x x ex x +=+=,即直线y b =与两条曲线()y f x =和()y g x =从左到右的三个交点的横坐标成等差数列.11.(2022·新高考II 卷 第22题)解:(1)1()(1)()x x x x a f x xe e x e f x xe =⇒=-=-⇒'= 当(,0)x ∈-∞时,()0f x '<,()f x 单调递减; 当(0,)x ∈+∞时,()0f x '>,()f x 单调递增.(2)令()()11(0)()(0)0ax x g x f x xe e x g x g =+=-+⇒=厔对0x ∀…恒成立 又()(0)0ax ax x g x e axe e g ''=+-⇒=令()()()()(2)ax ax ax x ax ax x h x g x h x ae a e axe e a e axe e ='⇒'=++-=+-,则(0)21h a '=- ①若(0)210h a '=->,即12a >,00()(0)()(0)limlim 00x x g x g g x h x x ++'→→'-''==>- 所以00,x ∃>使得当时,有()0()0()g x g x g x x'>⇒'>⇒单调递增0()(0)0g x g ⇒>=,矛盾 ②若(0)210h a '=-…,即12a …时,1111ln(1)ln(1)2222()0()x x x x ax ax x ax ax xxx g x e axe e ee eeee g x +++'++=+-=---=⇒剟在[0,)+∞上单调递减,()(0)0g x g =…,符合题意.综上所述,实数a 的取值范围是1.2a …(3)求导易得12ln(1)t t tt->>令112ln ln(1tn =⇒->⇒>+111231ln(ln()ln(ln(1)12n nk kn k nnn k n==+++⇒>⇒>=⋅=+∑()ln1n++⋅⋅⋅>+,证毕.12.(2021·新高考I卷第7题)解:设切点为根据两点之间斜率和导数的几何意义,易知xxe bex a-=-,整理得:000x x xe b x e ae--+=有两解,令()x x xg x e b xe ae=--+,()()xg x a x e'=-,易知()g x最大值为().g a即,解得bae>,又因为当x趋近正无穷时()0g x<,当x趋近负无穷时,()g x趋近0b-<,则0.b>综上,a0b e<<故选.D13.(2021·新高考I卷第15题)解:已知函数,易知函数定义域为(0,)+∞,①:当1(0,]2x∈时,,所以2()2f xx'=--,在1(0,]2x∈单调递减,②当1(,)2x∈+∞时,,所以22(1)()2xf xx x-'=-=,所以()f x在1(,1]2x∈单调递减,在(1,)x∈+∞单调递增,又因为12ln 2<,所以最小值为1. 故答案为1.14.(2021·新高考II 卷 第16题) 解:由题意,,则,所以点和点,12,xxAM BN k e k e =-=,所以12121,0xx e e x x -⋅=-+=,所以,所以,同理,所以故答案为:15.(2021·新高考I 卷 第22题)(1)解:的定义域为,,由解得1x >, 由解得01x <<, 在上单调递增,在上单调递减;(2)证明:由ln ln b a a b a b -=-可得ln ln 11a b a b b a-=-, 整理得:11lnln 11a b a a b b -=-,即,不妨设1211,x x a b==,且120x x <<,即,即证明122x x e <+<, 由在上单调递增,在上单调递减,且,可得1201x x <<<,()f x ()f x先证明122x x +>, 令,02x <<,,在上单调递增,又1201x x <<< ,,,即,由(1)可知在上单调递减,212x x ∴>-,即122x x +>;下面再证明12x x e +<, 不妨设21,x tx = 则1t >,由可得,化简1ln ln 11t tx t =-- , 要证12x x e +<,即证,即证,即证,即证, 设,1t >,,令,1t >, ,, 在上单调递减, ,,在上单调递减,()fx,即,12x x e ∴+<,故112.e a b<+< 16.(2021·新高考II 卷 第22题) 解:(1)由函数的解析式可得:, 当0a …时,若,则单调递减,若,则单调递增; 当102a <<时,若,则单调递增,若,则单调递减, 若,则单调递增; 当12a =时,在R 上单调递增; 当12a >时,若,则单调递增,若,则单调递减, 若,则单调递增;(2)若选择条件①:由于2122e a <…,故212a e <…,则,又((1)0f e=<,由(1)可知函数在区间上单调递增,故函数在区间上有一个零点.,由于212a e <…,故,(0,)x ∈+∞(0,)x ∈+∞结合函数的单调性可知函数在区间上没有零点.综上可得,()f x 有一个零点. 若选择条件②: 由于102a <<,故021a <<,则,当0b …时,24,42e a ><,,而函数在区间上单调递增,故函数在区间上有一个零点. 当0b <时,构造函数,则,当时,单调递减, 当时,单调递增,注意到,故恒成立,从而有:1x e x +…,此时:,当x >,取01x =+,则,即:,而函数在区间上单调递增,故函数在区间上有一个零点.,由于102a <<,021a <<,故,结合函数的单调性可知函数在区间上没有零点.综上可得,()f x 有一个零点.17.(2020·新高考I 卷 第21题、II 卷 第22题)(0,)x ∈+∞解:(1)当a e =,()ln 1x f x e x =-+,1(),(1)1,(1)1x f x e k f e f e x'=-='=-=+,所以切线方程为:1(1)(1)y e e x --=--, 即(1)2y e x =-+,所以切线在y 轴上的截距为2,在x 轴上的截距为21-e, 所以三角形的面积1222.211S e e =⨯⨯=-- 1ln 1(2)()ln ln ln ln x a x f x ae x a e x a -+-=-+=-+,要使()1f x …,只需ln 1ln ln 1a x e x a +--+…,即ln 1ln -1ln a x e a x +-+…,即ln 1ln ln -1+ln ln a x x e a x x x e x +-++=+…, 令()x g x e x =+,,()g x 单调递增,故只需(ln 1)(ln )g a x g x +-…, 因为()g x 为增函数, 只需证ln 1ln a x x +-…,即ln ln 1a x x +-…, 设()ln 1h x x x =+-,11()1xh x x x-'=-=, 所以()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,max ()(1)0h x h ==,所以ln 0a …,1a …, 即a 的取值范围为[1,).+∞。

高考数学真题分类汇编:几何题目(含答案)

高考数学真题分类汇编:几何题目(含答案)

高考数学真题分类汇编:几何题目(含答
案)
几何是高中数学中的重要部分,在高考中占有较高的比重。

为了帮助同学们更好地备考高考数学,这里为大家准备了一份高考数学几何题目的分类汇编,包括题目和答案。

1. 直线与角
1.1 直线的性质
- 题目:如果一条直线与另一条直线平行,那么这两条直线之间的夹角是多少?
- 答案:这两条直线之间的夹角为零度。

1.2 角的性质
- 题目:已知一条直线上有两个角,其中一个角是直角,另一个角是锐角,那么这两个角的和是多少?
- 答案:这两个角的和是小于180度的。

2. 三角形
2.1 三角形的性质
- 题目:在任意三角形中,三个内角的和等于多少?
- 答案:三个内角的和等于180度。

2.2 直角三角形
- 题目:在一个直角三角形中,直角所对的边被称为什么?
- 答案:直角所对的边被称为斜边。

3. 圆
3.1 圆的性质
- 题目:在一个圆中,半径为2cm,求圆的周长和面积分别是多少?
- 答案:圆的周长为4πcm,面积为4π平方cm。

3.2 弧长与扇形面积
- 题目:已知一个圆的半径为3cm,弧长为4cm,求扇形的面积。

- 答案:扇形的面积为2π平方cm。

以上就是高考数学几何题目的分类汇编,希望对同学们的备考有所帮助。

大家可以根据这些题目加强几何知识的学习和理解,提高解题能力。

祝愿大家在高考中取得优异的成绩!。

高考数学应用题及答案

高考数学应用题及答案

高考数学应用题及答案1. 题目:某工厂生产一种产品,该产品的成本函数为 \( C(x) =3000 + 50x \),其中 \( x \) 表示生产的产品数量。

如果每件产品的销售价格为 \( 150 \) 元,求生产多少件产品时,工厂的利润最大。

答案:首先,我们需要找到利润函数 \( P(x) \)。

利润等于总收入减去总成本,即 \( P(x) = R(x) - C(x) \)。

总收入 \( R(x) \) 为 \( 150x \),因此利润函数为:\[ P(x) = 150x - (3000 + 50x) = 100x - 3000 \]为了找到利润最大的生产数量,我们需要求 \( P(x) \) 的最大值。

由于 \( P(x) \) 是关于 \( x \) 的线性函数,其最大值出现在\( x \) 取最大值时。

然而,实际生产中 \( x \) 必须是非负整数。

因此,我们需要考虑实际的生产限制。

由于 \( P(x) \) 是一个递增的线性函数,所以当 \( x \) 越大,利润 \( P(x) \) 也越大。

但是,实际生产中可能存在生产能力的限制,例如机器的最大生产能力、原材料的限制等。

假设生产能力限制为\( x_{\text{max}} \),那么在 \( 0 \leq x \leq x_{\text{max}} \) 的范围内,利润函数 \( P(x) \) 是递增的。

因此,在没有额外限制的情况下,生产的产品数量越多,利润越大。

但是,实际中需要考虑生产能力的限制。

2. 题目:某商店销售两种商品,商品A的售价为 \( 20 \) 元,成本为 \( 15 \) 元;商品B的售价为 \( 30 \) 元,成本为 \( 25 \) 元。

如果商店计划销售这两种商品,使得总利润最大化,且商品A和商品B的销售数量比为 \( 3:2 \),求商店应该销售多少件商品A和商品B。

答案:设商品A的销售数量为 \( 3k \) 件,商品B的销售数量为\( 2k \) 件,其中 \( k \) 为正整数。

高考数学实际应用题集

高考数学实际应用题集

高考数学实际应用题集1. 假设一辆汽车以60公里/小时的速度行驶,行驶了1小时后,汽车所行驶的距离是多少?答案:60公里2. 一个长方体的长、宽、高分别是4厘米、3厘米和2厘米,求长方体的对角线长度。

答案:5厘米3. 小明买了一本书,书的定价是100元,书店给出了9折的优惠,小明实际需要支付多少钱?答案:90元4. 某公司有100名员工,其中30%的员工是女性,那么该公司有多少名女性员工?答案:30名5. 一个等差数列的前两项分别是1和3,求这个等差数列的第10项。

答案:176. 一个圆的半径增加了20%,原来的面积是200π平方厘米,增加后的面积是多少?答案:240π平方厘米7. 一个正方体的边长是6厘米,求它的表面积和体积。

答案:表面积112平方厘米,体积72立方厘米8. 一个水池的底面积是20平方米,如果每小时注水2立方米,那么填满水池需要多少时间?答案:10小时9. 一个长方体的长是4厘米,宽是3厘米,高是2厘米,求这个长方体的对角线长度。

答案:5厘米10. 一条直线上有三个点A、B、C,点A的坐标是(1,2),点B 的坐标是(3,4),点C的坐标是(5,6),求线段BC的长度。

答案:7厘米11. 一个圆锥的底面半径是3厘米,高是4厘米,求这个圆锥的体积。

答案:48π立方厘米12. 一个正三角形的边长是6厘米,求这个正三角形的面积。

答案:18平方厘米13. 一个等比数列的前两项分别是1和2,求这个等比数列的第10项。

答案:102414. 一个球的半径是5厘米,求这个球的表面积和体积。

答案:表面积125π平方厘米,体积413.12立方厘米15. 一个长方体的长是4厘米,宽是3厘米,高是2厘米,求这个长方体的对角线长度。

答案:5厘米16. 一条直线上有三个点A、B、C,点A的坐标是(1,2),点B 的坐标是(3,4),点C的坐标是(5,6),求线段AB的长度。

答案:3厘米17. 一个圆的半径是3厘米,求这个圆的面积。

文科数学高考真题分类汇编 数列的综合应用

文科数学高考真题分类汇编 数列的综合应用

(Ⅰ)若 a2 , a3 , a2 + a3 成等差数列,求数列{an}的通项公式;
(Ⅱ)设双曲线 x 2
+ y2
a
2 n
=1 的离心率为 en ,且 e2 = 2 ,求 e12 + e22 + + en2 .
13.(2016 年浙江)设数列{ an }的前 n项和为 Sn .已知 S2 =4, an+ 1=2 Sn +1, n N* .
(Ⅱ)当 d
1时,记 cn
=an bn
,求数列{cn} 的前 n 项和 Tn .
18.(2014 山东)已知等差数列{an} 的公差为 2,前 n 项和为 Sn ,且 S1 , S2 , S4 成等比数
列.
(Ⅰ)求数列{an} 的通项公式;
(Ⅱ)令 bn =
(−1)n−1
4n anan +1
,
求数列{bn}
A.p 是 q 的充分条件,但不是 q 的必要条件
B.p 是 q 的必要条件,但不是 q 的充分条件
C.p 是 q 的充分必要条件
D.p 既不是 q 的充分条件,也不是 q 的必要条件
3.(2014 新课标 2)等差数列 an 的公差为 2,若 a2 ,a4 , a8 成等比数列,则an 的前 n
项和 Sn =
(Ⅱ) 若bn 是等差数列,证明: c = 0.
27. (2012 山东)已知等差数列{an} 的前 5 项和为 105,且 a10 = 2a5 . (Ⅰ)求数列{an} 的通项公式; (Ⅱ)对任意 mN* ,将数列{an } 中不大于 72m 的项的个数记为 bm .求数列{bm} 的前 m 项和 Sm .
足 an = 4 log 2 bn +3, n N* .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用题1.(四川理9)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A 地至少72吨的货物,派用的每辆车虚满载且只运送一次.派用的每辆甲型卡车虚配2名工人,运送一次可得利润450元;派用的每辆乙型卡车虚配1名工人,运送一次可得利润350元.该公司合理计划当天派用两类卡车的车辆数,可得最大利润z= A .4650元 B .4700元 C .4900元 D .5000元 【★答案★】C【解析】由题意设派甲,乙,x y 辆,则利润450350z x y =+,得约束条件08071210672219x y x y x y x y ≤≤⎧⎪≤≤⎪⎪+≤⎨⎪+≥⎪+≤⎪⎩画出可行域在12219x y x y +≤⎧⎨+≤⎩的点75x y =⎧⎨=⎩代入目标函数4900z =2.(湖北理10)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变。

假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:300()2tM t M -=,其中M 0为t=0时铯137的含量。

已知t=30时,铯137含量的变化率是-10In2(太贝克/年),则M (60)= A .5太贝克 B .75In2太贝克 C .150In2太贝克 D .150太贝克 【★答案★】D 3.(北京理)。

根据统计,一名工作组装第x 件某产品所用的时间(单位:分钟)为⎪⎪⎩⎪⎪⎨⎧≥<=Ax Ac A x x c x f ,,,)((A ,C 为常数)。

已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么C 和A 的值分别是 A .75,25 B .75,16 C .60,25 D .60,16 【★答案★】D 4.(陕西理)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米。

开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为 (米)。

【★答案★】2000 5.(湖北理)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共为3升,下面3节的容积共4升,则第5节的容积为 升。

【★答案★】67666.(湖北理)提高过江大桥的车辆通行能力可改善整个城市的交通状况。

在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数。

当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当20200x ≤≤时,车流速度v 是车流密度x 的一次函数.(Ⅰ)当0200x ≤≤时,求函数()v x的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)()().f x x v x=可以达到最大,并求出最大值(精确到1辆/小时) 本小题主要考查函数、最值等基础知识,同时考查运用数学知识解决实际问题的能力。

(满分12分)解:(Ⅰ)由题意:当020,()60x v x ≤≤=时;当20200,()x v x ax b ≤≤=+时设再由已知得1,2000,32060,200.3a a b a b b ⎧=-⎪+=⎧⎪⎨⎨+=⎩⎪=⎪⎩解得故函数()v x 的表达式为60,020,()1(200),202003x v x x x ≤≤⎧⎪=⎨-≤≤⎪⎩(Ⅱ)依题意并由(Ⅰ)可得60,020,()1(200),202003x x f x x x x ≤<⎧⎪=⎨-≤≤⎪⎩当020,()x f x ≤≤时为增函数,故当20x =时,其最大值为60×20=1200;当20200x ≤≤时,211(200)10000()(200)[]3323x x f x x x +-=-≤=当且仅当200x x =-,即100x =时,等号成立。

所以,当100,()x f x =时在区间[20,200]上取得最大值10000.3综上,当100x =时,()f x 在区间[0,200]上取得最大值1000033333≈。

即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时。

7.(湖南理20)。

如图6,长方体物体E 在雨中沿面P (面积为S )的垂直方向作匀速移动,速度为v (v >0),雨速沿E 移动方向的分速度为()c c R ∈。

E 移动时单位时间内的淋雨量包括两部分:(1)P 或P 的平行面(只有一个面淋雨)的淋雨量,假设其值与v c -×S成正比,比例系数为110;(2)其它面的淋雨量之和,其值为12,记y 为E 移动过程中的总淋雨量,当移动距离d=100,面积S=32时。

(Ⅰ)写出y 的表达式(Ⅱ)设0<v ≤10,0<c ≤5,试根据c 的不同取值范围,确定移动速度v ,使总淋雨量y 最少。

解:(I )由题意知,E 移动时单位时间内的淋雨量为31||202v c -+,故100315(||)(3||10)202y v c v c v v =-+=-+,(II )由(I )知当0v c <≤时,55(310)(3310)15;c y c v v v +=-+=- 当55(103c)10,y (3v 3c 10)15.v v c v -<≤=-+=+时故(310)15,0,5(103)15,10.c v c vy c c v v 5+⎧-<≤⎪⎪=⎨-⎪+<≤⎪⎩(1)当1003c <≤时,y 是关于v 的减函数, 故当min 310,20.2cv y ==-时 (2)当1053c <≤时,在(]0,c 上,y 是关于v 的减函数, 在(],10c 上,y 是关于v 的增函数,故当min 50,.v c y c ==时8.(江苏17)请你设计一个包装盒,如图所示,ABCD 是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E 、F 在AB 上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x cm(1)某广告商要求包装盒侧面积S (cm 2)最大,试问x 应取何值?(2)某广告商要求包装盒容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值。

本小题主要考查函数的概念、导数等基础知识,考查数学建模能力、空间想象力、数学阅读能力及解决实际问题的能力。

满分14分. 解:设馐盒的高为h (cm ),底面边长为a (cm ),由已知得.300),30(22260,2<<-=-==x x xh x a(1),1800)15(8)30(842+--=-==x x x ah S 所以当15=x 时,S 取得最大值.(2)).20(26),30(22222x x V x x h a V -='+-== 由00=='x V 得(舍)或x=20.当)20,0(∈x 时,.0)30,20(;0<'∈>'V x V 时当 所以当x=20时,V 取得极大值,也是最小值.此时1122h a =即装盒的高与底面边长的比值为1.29.(福建理18)。

某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3ay x x =+--,其中3<x<6,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克。

(I )求a 的值(II )若该商品的成品为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大。

本小题主要考查函数、导数等基础知识,考查运算求解能力、应用意识,考查函数与方程思想、数形结合思想、化归与转化思想,满分13分。

解:(I )因为x=5时,y=11,所以1011, 2.2aa +==(II )由(I )可知,该商品每日的销售量2210(6),3y x x =+--所以商场每日销售该商品所获得的利润222()(3)[10(6)]210(3)(6),363f x x x x x x x =-+-=+--<<-从而,2'()10[(6)2(3)(6)]30(4)(6)f x x x x x x =-+--=-- '(),()f x f x由上表可得,x=4是函数在区间(3,6)内的极大值点,也是最大值点; 所以,当x=4时,函数()f x 取得最大值,且最大值等于42。

答:当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大。

10.(山东理21)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为803π立方米,且2l r ≥.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >千元,设该容器的建造费用为y 千元. (Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域; (Ⅱ)求该容器的建造费用最小时的r .解:(I )设容器的容积为V ,由题意知23480,,33V r l r V πππ=+=又故322248044203()333V r l r r r r r ππ-==-=-由于2l r ≥ 因此0 2.r <≤所以建造费用2224202342()34,3y rl r c r r r c r ππππ=⨯+=⨯-⨯+因此21604(2),0 2.y c r r r ππ=-+<≤(II )由(I )得3221608(2)20'8(2)(),0 2.2c y c r r r r r c πππ-=--=-<<-由于3,20,c c >->所以当3320200,.22r r c c -==--时令320,2m c =-则0m > 所以2228(2)'()().c y r m r rm m r π-=-++(1)当9022m c <<>即时, ∈∈当r=m 时,y'=0;当r (0,m)时,y'<0;当r (m,2)时,y'>0.所以r m =是函数y 的极小值点,也是最小值点。

(2)当2m ≥即932c <≤时, 当(0,2),'0,r y ∈<时函数单调递减,所以r=2是函数y 的最小值点, 综上所述,当932c <≤时,建造费用最小时2;r =当92c >时,建造费用最小时。

相关文档
最新文档