7.3平行线的判定
北师大版八年级数学(上)第七章 平行线的证明 第4节 平行线的判定

B.∠2=∠4
C.∠A=∠5
D.∠ABC+∠C=180°
解:A、∠1=∠3 可知 AB∥CD,不能判断 AD∥BC,故 A 错误;
B、∠4=∠2 能判断 AD∥BC,故 B 正确;
C、∠A=∠5 可知 AB∥CD,不能判断 AD∥BC,故 C 错误;
平行线的判定定理1:两条直线被第三条直线所截,如果内错角相等,那么 这两条直线平行.
简已述知为:知:如内图识错,∠点角1和相∠等2,是两直直线线a,平b行被.直线c截出的内错角,且∠1=∠2.
求证:a// b. 证明:∵∠1=∠2(已知),
∠1=∠3(对顶角相等), ∴∠3=∠2(等量代换). ∴a//b(同位角相等,两直线平行).
解:A、∵∠A=∠BDF,∴DF∥AC,错误;
B、∵∠1=∠3,∴DF∥AC,错误;
C、∵∠2=∠4,∴DE∥BC,正确;
D、∵∠A+∠ADF=180°,∴DF∥AC,错误;故选:C.
例 2:已知:如图,在△ABC 中,BD⊥AC,EF⊥AC,垂足分别为 D,F,∠1=∠2.
求证:DE∥BC.
证明:∵BD⊥AC,EF⊥AC,∴∠AFE=∠ADB=90°,∴EF∥BD,∴∠1=∠EDB,
当∠3=∠4 时,可知是 DE 和 AC 被 AB 所截得到的内错角,可得 DE∥AC,故 C 可以;
当∠2+∠A=180°时,是一对同旁内角,可得 DE∥AC;故 D 可以;故选:B.
练习:如图,下列四个条件中,能判断 DE∥BC 的是( )
A.∠A=∠BDF
B.∠l=∠3
C.∠2=∠4
D.∠A+∠ADF=180°
练习:四边形 ABCD 中,∠A=∠C=90°,BE、DF 分别是∠ABC、∠ADC 的平分线.求证:
平行线的判定++平行线的性质++知识考点梳理(课件)2024-2025学年北师大版数学八年级上册

∴EF∥BC(同旁内角互补,两直线平行).
又 ∵AD∥BC,
∴EF∥AD(平行于同一条直线的两条直线平行);
7.4 平行线的性质
重
难
题
型
突
破
返回目录
(2)由(1)知∠FCB=38°,又 CE 平分∠FCB,
∴∠BCE=
∠FCB=19°(角平分线的定义).
在同一平面内,垂直于
同一条直线的两条直线
如图,∵b⊥a,c⊥a,
∴b∥c
平行
其他
方法
如 图 ,∵a ∥b,a ∥c,
平行于同一条直线的
两条直线平行
∴b∥c
7.3 平行线的判定
返回目录
归纳总结
考
点
要判断两条直线是否平行,首先要观察图形中与要判断
清
单 的两条直线有关的同位角、内错角、同旁内角的关系,这是
7.3 平行线的判定
返回目录
[解析]汽车行驶的方向不变,则汽车拐弯前与拐弯后
重
难
题 的行驶路线互相平行,如图所示.先右转后左转的两个角是
型 同位角,根据同位角相等,两直线平行,可知选项 D 正确
突
破 .
[答案] D
7.3 平行线的判定
返回目录
变式衍生 如图,已知∠1=90°,为保证两条铁轨平
重
难
∵∠1=60°(已知),∠ABC=∠1(对顶角相等),
∴∠ABC=60°(等量代换).
∵∠2=120°(已知),
∴∠ABC+∠2=180°,
∴AB∥CD(同旁内角互补,两直线平行).
∵∠2+∠BCD=180°(平角的定义),
七年级下数学平行线的判定知识点

七年级下数学平行线的判定知识点七年级下数学平行线的判定知识点行线的证明1、平行线的性质一般地,如果两条线互相平行的直线被第三条直线所截,那么同位角相等,内错角相等,同旁内角互补.也可以简单的说成:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
2、判定平行线两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.也可以简单说成:同位角相等两直线平行两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.其他两条可以简单说成:内错角相等两直线平行同旁内角相等两直线平行什么是切比雪夫距离在数学中,切比雪夫距离或是L∞度量是向量空间中的一种度量,二个点之间的距离定义是其各坐标数值差绝对值的最大值。
以数学的观点来看,切比雪夫距离是由一致范数(或称为上确界范数)所衍生的度量,也是超凸度量的一种。
学习方法1、建立数学纠错本。
做作业或复习时做错了题,一旦搞明白,决不放过,建立一本错误登记本,以降低重复性错误,不怕第一次不会,不怕第一次出错,就怕下一次还犯同样的错误把平时容易出现错误的知识或推理记载下来,以防再犯。
争取做到:找错、析错、改错、防错。
达到:平时作业、课外做题及考试中,对出错的数学题建立错题集很有必要。
2、记忆数学规律和数学小结论。
3、经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。
4、经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,本题的分析方法与解法,在解其它问题时,是否也用到过。
无论是作业还是测验,都应把准确性放在第一位,通法放在第一位。
5、理解和弄懂所学的数学知识,知其然并知其所以然。
学习不仅要理解和记住概念、定理、公式、法则等,而且还要想一想它们是如何得来的,与前面的知识是怎样联系着的,表达中省略了什么,关键在哪里,对知识是否有新的认识,有否想到其他的解法等等。
初中数学 平行线的判定定理有哪些

初中数学平行线的判定定理有哪些平行线的判定定理是初中数学中的一个重要概念,用于判断两条直线是否平行。
在本文中,我将详细介绍平行线的判定定理,包括定义、相关定理以及实际应用。
同时,我还会提供一些示例和习题,以帮助读者更好地理解和应用这一概念。
1. 同位角定理:如果两条直线被一条横截线所切,且同位角相等,则这两条直线是平行线。
即如果两条直线l和m被一条直线n所切,且∠A=∠B,则l||m。
2. 平行线的性质:如果两条直线l和m都与第三条直线n平行,那么l和m也是平行线。
即如果l||n且m||n,则l||m。
3. 垂直定理的逆定理:如果两条直线l和m在同一个平面内,且l和m的任意一条垂线相互垂直,则l||m。
即如果l∠n且m∠n,则l||m。
4. 对顶角定理:如果两条直线l和m被一条横截线所切,且对顶角相等,则这两条直线是平行线。
即如果两条直线l和m被一条直线n所切,且∠A=∠C,则l||m。
5. 平行线的传递性:如果直线l||m,且直线m||n,那么直线l||n。
即如果l||m且m||n,则l||n。
6. 锐角等于直角的定理:如果两条直线l和m在同一个平面内,且l和m的任意一条垂线与另一条直线的某一角度相等,则l||m。
即如果l∠n且∠A=90°,则l||m。
7. 平行线的平行线定理:如果两条直线l和m被同一条直线n所切,且其中一条直线与n 的某一角度为锐角,另一条直线与n的某一角度为钝角,则l||m。
8. 平行线的交角定理:如果两条直线l和m被同一条直线n所切,且其中一条直线与n的某一角度为锐角,另一条直线与n的某一角度为钝角,则l与m不平行。
9. 平行线的平行截线定理:如果两条直线l和m被同一条直线n所切,且直线l与n的交点A与直线m与n的交点B之间的线段AB与直线n的某一条垂线相交于点C,则直线l和直线m平行。
以上是一些常见的平行线的判定定理,可以根据不同的条件来判断两条直线是否平行。
7.3 平行线的判定课件(30张PPT)北师大版八年级数学上册

(4) 从∠5 =∠ ABC ,可以推出 AB∥CD, 理由是 同位角相等,两直线平行 .
A
D
3
1
4
2
5
B
C
5. 如图,已知∠1 =∠3,AC 平分∠DAB,你能判定
哪两条直线平行?请说明理由.
解:AB∥CD. 理由如下:
D
∵ AC 平分∠DAB (已知),
C 3
∴∠1 =∠2 (角平分线的定义).
A
2 54 DB
∴ __C_E__∥__A_B__ (同旁内角互补,两直线平行).
④ ∵∠4 +_∠__3__= 180°(已知),
∴ AB∥CE (同旁内角互补,两直线平行).
例2 如图,已知∠MCA =∠A,∠DEC =∠B,那么 M
DE∥MN 吗?为什么?
AD C
解:∵∠MCA =∠A(已知),
2. 如图所示,∠1 = 75°,要使 a∥b,则∠2 等于
( C) A. 75° B. 95°
1
a
C. 105° D. 115°
2
b
【解析】∠1 的同位角与∠2 互为补角,所以∠2 =
180° - 75° = 105°.
3. 如图,已知∠1 = 30°,若∠2 或∠3 满足条件 _∠__2_=__1_5_0_°_或__∠__3__=__3_0_°,则 a∥b.
想一想
我们可以用下图的方法作出平行线,你能说说其 中的道理吗?
典例精析 例1 根据条件完成填空.
① ∵∠2 =∠6(已知),
E
∴ _A_B_∥_C_D_ (同位角相等,两直线平行).
21
② ∵∠3 =∠5(已知),
A 34 B
7.3平行线的判定(教案)

《7.3平行线的判定》教学旨在培养学生以下核心素养:
1.培养学生的空间观念和几何直观能力,使其能够从图形中抽象出几何关系,形成对平行线概念的理解;
2.培养学生的逻辑推理能力,通过观察、分析、归纳,掌握平行线的判定方法,并运用这些方法进行推理证明;
3.培养学生的数学建模能力,使学生能够将现实问题转化为数学问题,运用平行线的判定方法解决实际问题;
在小组讨论中,我发现有些同学在分享成果时表达不够清晰,这可能是由于他们对平行线判定方法的掌握不够熟练。为了提高学生的表达能力,我计划在接下来的课程中,多组织一些课堂讨论和分享活动,鼓励学生大胆地表达自己的观点,同时培养他们的逻辑思维和语言组织能力。
总之,在《7.3平行线的判定》这节课的教学中,我收获了许多宝贵的经验,也发现了需要改进的地方。在今后的教学中,我会针对学生的实际情况,调整教学策略,努力提高教学效果,让每位学生都能在轻松愉快的氛围中掌握几何知识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《7.3平行线的判定》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线始终不会相交的情况?”(如铁轨、操场跑道等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的判定方法。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
北师大版八年级数学上册7.3平行线的判定优秀教学案例
(四)反思与评价
1.引导学生对自己的学习过程进行反思,思考自己在探索平行线知识过程中的优点和不足;
2.鼓励学生总结自己的学习经验和方法,形成自己的知识体系;
3.教师对学生的学习成果进行评价,关注学生的知识掌握程度和思维能力的发展;
3.引导学生运用已学的知识,进行问题的分析和解答,帮助学生巩固和加深对平行线知识的理解。
(三)小组合作
1.将学生分成小组,鼓励他们进行合作交流,共同探索平行线的判定方法;
2.设计小组讨论的问题或任务,引导学生在合作中思考、交流和解决问题;
3.鼓励学生分享自己的思路和方法,培养他们的团队合作意识和沟通能力;
4.结合学生的反馈和评价,教师进行教学反思和调整,提高教学效果和学生的学习体验。
四、教学内容与过程
(一)导入新课
1.利用实际生活中的情景,如交通标志、建筑物的布局等,引发学生对平行线知识的兴趣和好奇心;
2.展示一些几何图形,引导学生观察和分析其中的平行线特征,激发学生对平行线知识的探究欲望;
3.设计有趣的数学问题或故事,让学生思考和探索平行线的判定方法,为新的学习内容做好铺垫。
2.鼓励学生分享自己的思路和方法,培养他们的团队合作意识和沟通能力;
3.教师对小组讨论的过程进行观察和指导,及时给予反馈和鼓励,促进学生的学习进步。
(四)总结归纳
1.引导学生总结平行线的判定方法和性质,帮助他们形成知识体系;
2.强调平行线在几何图形中的重要性和应用价值,让学生理解学习平行线知识的意义;
3.小组合作:本案例将学生分成小组,鼓励他们进行合作交流,共同探索平行线的判定方法。这种小组合作的方式不仅能够培养学生的团队合作意识和沟通能力,还能够促进学生之间的思维碰撞和相互学习,提高学生的学习效果。
北师大版八年级数学上册《平行线的判定》平行线的证明PPT课件
学习目标 • 单击此处编辑母版文本样式
三 级
级
此 处
四 级
编
五
辑
• 二级
级
母
击 此 处 编
1.了•解三•级并四级掌握平行线的判定公理和定版文 理.(重点辑)
2.了解证•明五级的一般步骤.(难点)本样
式
母 版
标
题
样
式
2200232/53//55/5
2
2
•
•
•
• •
观单•察单击与击请此思此找处考处编出辑图编母中版辑文的母本平导样版行式入标线新!题它课样五们四 级式三级为二级什单击此处编辑么平行?
• 二级
级
母
单 击 此 处 编
• 三级
• 四级 • 五级
版 文
辑
本
母
样 式
版
标
题
样
式
2200232/53//55/5
3
3
•
•
•
• •
讲授新课 单
单
知单识击点1此平处行编线辑的母判版定标题样式三 级
二 级
击 此 处
击 此
• 单公相•击二等理此级,处编那两辑么条母这直版文两线本条被样直第式线三平条行直五 级.线四 级 所截编辑母,如果同位处编角
练单一练击:此根处据编条辑件完母成版填标空题. 样式三C二级 级
击
此1
处
F 3
① ∵• 单∠击此1处=_编_辑∠_母_2_版(文已本样知式)
四 级
编
五
辑
∴•A二B•级∥三级CE(内错角相等,两直级线平行母版)
②
∵ ∴
∠CD1∥• +四_B•级∠_五F_级(3_同_=旁18内0o(角已互知补),两直A线文本样式平行
北师大八年级数学下册第七章7.3平行线的判定和性质综合应用
B
C
∴AB∥CD(同旁内角互 补,两直线平行) 你能说明AD∥BC吗?
如图甲所示
∵ ∠ADE= ∠DEF(已知)
∴ AD ∥ EF (内错角相等,两直线平行 ) 又∵ ∠EFC+ ∠C= 180 ° ∴ EF ∥ BC ( 同旁内角互补,两直线平行 ) ∴ AD ∥
BC
。
(平行于同一条直线的两条直线互相平行 )
练习
1、观察右图并填空: (1)∠1 与 ∠4 是同位角; (2) ∠5 与 ∠3 是同旁内角; (3) ∠1 与 ∠2 是内错角;
m
2
n
3 5
a b
1
4
2、当图中各角满足下列 条件时,你能指出哪两条直线 平行? n (1) ∠1 = ∠4; a∥b. (2) ∠2 = ∠4; l∥m. (3) ∠1 + ∠3 = 180; l∥n .
m
l
4
a
2
1 3
b
看图填空:
C D
1
A 2
(1)如右图,∵∠1=∠2
∴ AC∥ DE ,
3
E
( 内错角相等,两直线平行 )
∵∠2= ∠4 或 ∵∠3+∠4=180° ∴DE∥ FG ,( 同旁内角互补,两直线平行) ∴AC∥FG.
4 F
∴DE∥ FG(同位角相等,两直线平行)
B
G
看图填空:
(2)如右图,∵ ∠2=( ∠4 ) A
C
A
B
(变式训练二)如果 AB∥CD ,且 ∠ B=∠D , 你能推理得出AD∥BC吗?
题组训练(5) 1 B E G 3 4D C2 F H
A
如图,∠1= ∠2=45 °,∠3=70 °, 则∠4等于 ( B ) (A)70 ° (B)110 ° (C)45 ° (D)35°
北师大版初中数学八年级上册《第七章 平行线的证明 3 平行线的判定》 优课教学设计_0
7.3平行线的判定(教学设计)【教材分析】本课是义务教育北师大版数学8年级上册第7章《平行线的证明》第3节。
课程内容是7年级下册已学过的《平行线与相交线》的继续,也是后继学习、探究平移及几何推理等内容的基础,是空间与图形的重要组成部分。
教学中,要引导学生区分哪些结论可以作为证明的依据,哪些结论不可以作为证明的依据,要注重引导学生分析命题的条件和结论,并据此准确画出图形,并用符号语言来描述命题的条件和结论。
由于学生第一次学习命题的证明,教师要借助规范的板书进行示范,让学生初步掌握命题证明的一般步骤、格式。
【学情分析】学生在七年级下册已经认识了平行线,并初步探究了两直线平行的条件,并具备了初步的作图能力,对平行线的理解也比较充分,能较顺利的解决相关简单的实际问题,但对问题的分析还处于简单的说理层面。
同时,在本章的学习中,学生已认识并了解了命题的条件和结论,以及公理、定理等相关概念,已具备学习本节课的知识基础。
但对于命题的证明,不论是问题形式还是解决方法,学生都还非常陌生,更缺乏通过合情推理来判断结论正确与否的能力。
【教学目标】1.通过观摩和亲手操作,让学生学会用平行公理证明“内错角相等,两直线平行”、“同旁内角互补,两直线平行”,并能简单应用这些结论.2.使学生经历命题证明的一般步骤和书写格式的训练过程,感受推理的严谨性,发展初步的演绎推理能力.【教学重点、难点】1.重点:使经历命题证明的一般步骤,根据命题的条件和结论,将命题的文字语言转化成图形语言和符号语言.2.难点:根据命题的条件和结论,准确画出图形,写出已知和求证.【教学方法】示范讲解与讨论探究相结合.【教学过程】环节1:复习引入教师活动:同学们,在七年级的学习中,我们认识了平行线,并对平行线的条件和特征做了初步的探究。
请问,什么是平行线(定义)?学生活动:举手口答老师的提问。
教师活动:对学生的回答作适当的评价,并继续追问:那么,除了平行线的定义外,我们还有哪些方法判断两条直线平行呢?学生活动:举手发言(并互相补充)。