数学建模竞赛题目

合集下载

中学生数学建模竞赛题目

中学生数学建模竞赛题目

中学生数学建模竞赛题目
题目:中学生数学建模竞赛题目
背景:小明是一名中学生,对数学建模很感兴趣。

最近,他参加了一场中学生数学建模竞赛。

竞赛有三个题目,分别是:
题目一:平均数的计算
小明班级共有30名同学,升学率是80%。

假设这30名同学的期末考试总成绩平均分为85分,小明想知道升学同学的平均成绩是多少?
题目二:几何图形的面积计算
小明看到一个园林设计图,其中有一个不规则图形,小明想计算其面积。

可是,这个图形没有标明具体的尺寸。

请问小明该如何计算这个图形的面积?
题目三:概率的计算
小明是一名篮球爱好者,他参加了10次的投篮练习,每次投篮成功的概率为60%。

小明想知道他至少投中5次的概率是多少?
要求:
对于题目一,小明需要通过给出数据和计算方法,得出升学同学的平均成绩的具体数值。

对于题目二,小明需要通过解释几何图形的特点和常用的几何公式,得出计算该图形面积的方法。

对于题目三,小明需要用概率的计算公式和相关知识,得出至
少投中5次的概率的数值,并给出计算过程。

注意:
题目的目的是考察中学生的数学建模能力和解决实际问题的能力,因此要求考生能够认真分析题目,并运用合适的数学知识进行建模和计算。

2023研究生数学建模竞赛d题

2023研究生数学建模竞赛d题

2023研究生数学建模竞赛d题摘要:一、引言1.2023年研究生数学建模竞赛背景2.题目D的概述二、题目D详细解析1.题目要求2.题目特点3.解题思路三、解题步骤1.数据收集与处理1.1 数据来源1.2 数据清洗1.3 数据预处理2.建立数学模型2.1 确定模型类型2.2 参数估计2.3 模型检验3.模型求解与优化3.1 求解方法3.2 结果分析3.3 模型优化4.模型应用与验证4.1 应用场景选择4.2 结果对比与分析4.3 模型验证四、结果与分析1.模型预测结果2.模型性能评估3.结果可靠性分析五、总结与展望1.题目D解决的意义2.不足与改进3.未来研究方向正文:随着科技的发展和数学应用的广泛性,数学建模竞赛越来越受到研究生的关注。

2023年研究生数学建模竞赛中,题目D引起了广大参赛者的兴趣。

本文将详细解析题目D,并给出解题思路和步骤,以期为大家提供实用的参考。

一、引言2023年研究生数学建模竞赛共有多个题目供参赛者选择,其中题目D以其实用性和挑战性吸引了众多选手。

题目D的概述如下:“某城市交通部门拟对市区范围内的交通流量进行监测与调控,以减轻拥堵现象。

现有历史数据表明,交通流量与时间、地点等因素有关。

请建立一个数学模型,预测未来某一时间段内的交通流量,并针对实际情况提出合理的调控策略。

”二、题目D详细解析1.题目要求题目D主要分为两部分:一是建立数学模型预测交通流量,二是提出合理的调控策略。

这就要求选手具备较强的数据分析能力和数学建模技能。

2.题目特点题目D的特点在于数据的真实性和复杂性。

选手需要处理大量的实时数据,考虑多种因素对交通流量的影響,如时间、地点、天气等。

此外,调控策略的提出需要结合实际交通状况,具有一定的挑战性。

3.解题思路针对题目D,我们可以采取以下步骤:(1)数据收集与处理:收集历史时间段内的交通数据,包括时间、地点、交通流量等信息。

对数据进行清洗、预处理,以便后续分析。

全国研究生数学建模竞赛题目

全国研究生数学建模竞赛题目

中国研究生数学建模竞赛试题汇总2021赛题汇总2021-A:相关矩阵组的低复杂度计算和存储建模2021-B:空气质量预报二次建模2021-C:帕金森病的脑深部电刺激治疗建模研究2021-D:抗乳腺癌候选药物的优化建模2021-E:信号干扰下的超宽带(UWB)精确定位问题2021-F:航空公司机组优化排班问题2020赛题汇总2020-A:芯片相噪算法2020-B:汽油辛烷值建模2020-C:面向康复工程的脑信号分析和判别建模2020-D:无人机集群协同对抗2020-E:能见度估计与预测2020-F:飞行器质心平衡供油策略优化2019赛题汇总2019-A: 无线智能传播模型2019-B:天文导航中的星图识别2019-C:视觉情报信息分析2019-D:汽车行驶工况构建2019-E:全球变暖?2019-F:多约束条件下智能飞行器航迹快速规划2018赛题汇总2018-A :关于跳台跳水体型系数设置的建模分析2018-B:光传送网建模与价值评估2018-C:对恐怖袭击事件记录数据的量化分析2018-D:基于卫星高度计海面高度异常资料获取潮汐调和常数方法及应用2018-E:多无人机对组网雷达的协同干扰2018-F:机场新增卫星厅对中转旅客影响的评估方法2017赛题汇总2017-A:无人机在抢险救灾中的优化运用2017-B:面向下一代光通信的VCSEL激光器仿真模型(华为命题)2017-C:航班恢复问题2017-D:基于监控视频的前景目标提取2017-E:多波次导弹发射中的规划问题2017-F:构建地下物流系统网络2016赛题汇总2016-A:多无人机协同任务规划2016-B:具有遗传性疾病和性状的遗传位点分析2016-C:基于无线通信基站的室内三维定位问题2016-D:军事行动避空侦察的时机和路线选择2016-E:粮食最低收购价政策问题研究2015赛题汇总2015-A:水面舰艇编队防空和信息化战争评估模型2015-B:数据的多流形结构分析2015-C:移动通信中的无线信道“指纹”特征建模2015-D:面向节能的单/多列车优化决策问题2015-E:数控加工刀具运动的优化控制2015-F:旅游路线规划问题2014赛题汇总2014-A:小鼠视觉感受区电位信号(LFP)与视觉刺激之间的关系研究2014-B:机动目标的跟踪与反跟踪2014-C:无线通信中的快时变信道建模2014-D:人体营养健康角度的中国果蔬发展战略研究2014-E:乘用车物流运输计划问题2013赛题汇总2013-A:变循环发动机部件法建模及优化2013-B:功率放大器非线性特性及预失真建模2013-C:微蜂窝环境中无线接收信号的特性分析2013-D:空气中PM2.5问题的研究2013-E:中等收入定位与人口度量模型研究2013-F:可持续的中国城乡居民养老保险体系的数学模型研究2012赛题汇总2012-A:基因识别问题及其算法实现2012-B:基于卫星无源探测的空间飞行器主动段轨道估计与误差分析2012-C:有杆抽油系统的数学建模及诊断2012-D:基于卫星云图的风矢场(云导风)度量模型与算法探讨2011赛题汇总2011-A:基于光的波粒二象性一种猜想的数学仿真2011-B:吸波材料与微波暗室问题的数学建模2011-C:小麦发育后期茎秆抗倒性的数学模型2011-D:房地产行业的数学建模2010赛题汇总2010-A:确定肿瘤的重要基因信息2010-B:与封堵溃口有关的重物落水后运动过程的数学建模2010-C:神经元的形态分类和识别2010-D:特殊工件磨削加工的数学建模2009赛题汇总2009-A:我国就业人数或城镇登记失业率的数学建模2009-B:枪弹头痕迹自动比对方法的研究2009-C:多传感器数据融合与航迹预测2009-D:110警车配置及巡逻方案2008赛题汇总2008-A:汶川地震中唐家山堰塞湖泄洪问题2008-B:城市道路交通信号实时控制问题2008-C:货运列车的编组调度问题2008-D:中央空调系统节能设计问题2007赛题汇总2007-A:建立食品卫生安全保障体系数学模型及改进模型的若干理论问题2007-B:机械臂运动路径设计问题2007-C:探讨提高高速公路路面质量的改进方案2007-D:邮政运输网络中的邮路规划和邮车调度2006赛题汇总2006-A:Ad Hoc网络中的区域划分和资源分配问题2006-B:确定高精度参数问题2006-C:维修线性流量阀时的内筒设计问题2006-D:学生面试问题2005赛题汇总2005-A:Highway Traveling time Estimate and Optimal Routing 2005-B:空中加油2005-C:城市交通管理中的出租车规划2005-D:仓库容量有限条件下的随机存贮管理2004赛题汇总2004A:发现黄球并定位2004B:实用下料问题2004C:售后服务数据的运用2004D:研究生录取问题。

专科数学建模竞赛试题及答案

专科数学建模竞赛试题及答案

专科数学建模竞赛试题及答案试题:某工厂生产一种产品,该产品由三个不同的生产阶段组成,每个阶段的生产效率和成本不同。

第一阶段的生产效率为每小时生产10个单位,成本为每个单位5元;第二阶段的生产效率为每小时生产8个单位,成本为每个单位6元;第三阶段的生产效率为每小时生产6个单位,成本为每个单位7元。

假设工厂每天工作8小时,并且每个阶段的生产能力是独立的。

问题一:如果工厂希望每天生产至少100个单位的产品,那么每个阶段每天至少需要生产多少单位?问题二:在满足问题一的条件下,工厂每天的生产成本是多少?问题三:如果工厂希望降低生产成本,但每天至少需要生产100个单位的产品,那么每个阶段的生产效率需要提高多少?答案:问题一解答:为了满足每天至少生产100个单位的产品,我们可以设第一阶段每天生产x个单位,第二阶段生产y个单位,第三阶段生产z个单位。

根据题目条件,我们有以下方程组:\[ x + y + z \geq 100 \]\[ \frac{x}{10} + \frac{y}{8} + \frac{z}{6} \leq 8 \]解这个方程组,我们可以得到第一阶段至少需要生产40个单位(因为40是10的倍数且满足总生产量至少100的条件),第二阶段至少需要生产24个单位(因为24是8的倍数且满足总生产量至少100的条件),第三阶段至少需要生产33个单位(因为33是6的倍数且满足总生产量至少100的条件)。

问题二解答:在问题一的基础上,我们可以计算每天的生产成本。

第一阶段的成本为40单位 * 5元/单位 = 200元,第二阶段的成本为24单位 * 6元/单位 = 144元,第三阶段的成本为33单位 * 7元/单位 = 231元。

因此,每天的总生产成本为200元 + 144元 + 231元 = 575元。

问题三解答:为了降低生产成本,我们需要提高每个阶段的生产效率。

假设第一阶段的生产效率提高到每小时生产a个单位,第二阶段提高到每小时生产b个单位,第三阶段提高到每小时生产c个单位。

2023数学建模赛题

2023数学建模赛题

有关“数学建模”的赛题
数学建模赛题通常涉及到各种实际问题,需要通过建立数学模型进行解决。

有关“数学建模”的赛题如下:
1.人口预测问题:给定历史人口数据,要求预测未来人口数量和年龄结构。

2.传染病传播问题:给定传染病传播的参数和初始感染人数,要求预测疾病传播的趋势
和影响。

3.物流优化问题:给定运输网络和货物需求,要求设计最优的运输方案,降低运输成
本。

4.金融风险管理问题:给定投资组合和风险因子,要求评估投资组合的风险和回报,制
定最优投资策略。

5.生产计划问题:给定市场需求和生产成本,要求制定最优的生产计划,满足市场需求
并实现利润最大化。

6.资源分配问题:给定有限资源的数量和各种需求,要求分配资源以满足需求,并实现
资源利用的最大化。

7.交通运输问题:给定运输网络和货物需求,要求设计最优的运输方案,提高运输效率
并降低成本。

8.环境保护问题:给定环境污染数据和环境质量标准,要求制定最优的环境治理方案,
改善环境质量。

全国数学建模大赛题目

全国数学建模大赛题目

全国数学建模大赛题目摘要:一、全国数学建模大赛简介1.比赛背景与目的2.比赛分类与级别3.参赛对象与要求二、比赛题目类型及解题技巧1.题目类型概述a.数据题b.机理题c.分析题d.综合题2.解题技巧a.分析题目b.制定策略c.查找资料d.分工合作三、全国数学建模大赛题目举例1.数据题举例2.机理题举例3.分析题举例4.综合题举例四、比赛对参赛者的帮助与启示1.提升数学应用能力2.增强团队协作能力3.拓宽学术视野4.对未来发展的启示正文:全国数学建模大赛是我国面向全国大学生的一项重要数学竞赛活动,旨在选拔优秀的数学建模人才,推动数学建模教育事业的发展。

该比赛按照难度和层次分为多个级别,涵盖了不同专业和年级的学生。

比赛要求参赛者具备扎实的数学基础和良好的逻辑思维能力,能够独立或团队协作解决复杂数学问题。

比赛题目类型多样,涵盖了数据题、机理题、分析题和综合题等。

对于参赛者来说,掌握各类题型的解题技巧至关重要。

首先,要深入分析题目,理解题目背景、要求和条件。

其次,要制定合适的策略,根据题目类型和自身优势进行分工合作。

然后,查找相关资料,为解题提供有力支持。

最后,注意时间分配,确保按时完成答卷。

以下是全国数学建模大赛中的一些题目举例:1.数据题:某企业生产某种产品,需要确定最佳生产策略以实现利润最大化。

参赛者需要根据提供的数据,建立数学模型,为企业提供决策建议。

2.机理题:考虑一种生物生长过程中的数学模型,参赛者需要分析生长过程中的关键因素,并预测未来的生长趋势。

3.分析题:分析某种经济现象背后的数学原理,参赛者需要运用经济学理论和数学方法,揭示现象背后的规律。

4.综合题:设计一种新型交通管理系统,参赛者需要综合运用多种数学知识,解决实际问题。

参加全国数学建模大赛对于参赛者来说具有多方面的帮助和启示。

首先,通过解决实际问题,参赛者可以提升自己的数学应用能力,将所学知识运用到实际中。

其次,比赛过程中的团队协作可以增强参赛者的团队协作能力,提高沟通与协作效果。

中国研究生数学建模竞赛题目

中国研究生数学建模竞赛题目

中国研究生数学建模竞赛题目
以下是中国研究生数学建模竞赛的一些题目示例:
1. 非线性规划问题:给定某工厂的生产和成本数据,要求优化产量和成本之间的关系,使得产量最大化同时成本最小化。

2. 最优调度问题:某电力公司需要安排多个发电机组的启动和停止时间,以满足不同时间段的电力需求和节约燃料成本等条件。

3. 网络流问题:某物流中心需要将多个物品从供应商通过不同的物流通道送达多个目的地,要求建立一个最优的运输方案,使得总运输时间最短。

4. 高等数学问题:给定一个复杂函数模型,要求推导该函数的极值点、驻点和拐点,并分析函数在不同区间的增减性和凹凸性。

5. 随机过程问题:某金融交易市场的交易量数据呈现随机波动,要求建立一个合适的随机模型,进行交易风险评估和预测。

6. 图论问题:某城市的交通网络由多个节点和边组成,要求分析城市中的交通拥堵情况,找到最短路径和最少换乘的出行方案。

以上只是一些示例题目,实际的竞赛题目会根据具体的考查内
容和难度设置。

每年竞赛的题目都会有所变化,考察的内容也会涵盖数学的不同领域和应用实践。

2023研究生数学建模竞赛各题题目

2023研究生数学建模竞赛各题题目

主题:2023研究生数学建模竞赛各题题目一、序号:A001题目:城市人口增长预测与规划内容:选定某一特定城市,基于历史人口数据和相关影响因素,建立数学模型预测未来该城市的人口增长情况,并提出相应的城市规划建议。

二、序号:A002题目:交通流量优化与调度内容:针对某一大型城市的交通拥堵情况,利用数学建模方法,优化道路交通流量分配和车辆调度,提高城市交通效率。

三、序号:A003题目:气候变化对农作物产量的影响内容:选取特定地区的气候数据和农作物产量数据,建立气候变化对农作物产量的数学模型,分析气候变化对农业生产的影响,提出相关的应对措施。

四、序号:A004题目:环境污染与健康风险评估内容:利用数学建模方法,分析某一地区的环境污染情况,评估环境污染对居民健康的影响,并提出相关的环境治理建议。

五、序号:A005题目:金融风险管理与预测内容:基于金融市场数据和相关经济指标,建立金融风险管理的数学模型,预测市场变化趋势并制定相应的风险管理策略。

六、序号:A006题目:大规模数据处理与挖掘内容:针对海量数据的处理和分析,利用数学建模技术,提出相应的数据挖掘方法,解决实际问题中的数据处理难题。

七、序号:A007题目:企业生产调度与优化内容:选取某一生产企业,基于生产流程和资源配置情况,建立企业生产调度与优化的数学模型,提高生产效率和资源利用率。

以上是2023研究生数学建模竞赛的各题题目,每道题目都涉及到实际的问题,需要参赛选手们充分发挥数学建模的能力,结合实际情况进行分析和解决,展现数学建模在解决现实问题中的重要作用。

希望各位选手能够认真对待比赛,不断提升自身的数学建模能力,为解决社会问题贡献自己的智慧和力量。

八、序号:A008题目:供应链优化与管理内容:选择某一行业的供应链环节,建立数学模型,优化供应链各个环节的管理与协调,提高供应链效率,降低成本,提升企业竞争力。

九、序号:A009题目:医疗资源分配与优化内容:针对某一地区医疗资源的配置情况,建立数学模型,优化医疗资源分配与利用,平衡医疗资源间的差异,提高医疗服务的公平性和效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模竞赛题目
A 题倾斜纸杯的盛水问题
一次性纸杯是生活中常见的容器之一,现有一个一次性纸杯如图,可量得纸杯的高度为95mm ,杯底面直径为50mm ,杯口直径为75mm ,现假定纸杯材料厚度忽略不计
1、若给纸杯注水,则纸杯内可盛水最大体积是多少升?
2、此时将纸杯倾斜如下图所示,设倾斜角度为4πθ=
,求此时杯中最多可盛水多少升?
水平线
3、若忽略水杯的杯口与杯底直径之差,即将水杯看成圆柱体,杯的高度为95mm ,杯底面直径为50mm ,忽略水杯材料厚度,将水杯倾斜,设倾斜角度4π
θ=,
试给出在水不溢出的情况下水面最高点与最低点的高度h 与杯中水的体积v 的函数关系式。

B 题雪堆融化问题
假定一个底面半径为r ,高度为h 的圆锥形雪堆,其融化时体积的变化率正比于雪堆的锥面面积,比例常数为k>0(k 与环境的相对湿度、阳光、空气温度等因素有关),且在融化时假定底面半径保持不变,已知一个小时内融化了其体积的四分之一。

1、给出高度和时间的函数关系式;
2、设圆锥雪堆的底面半径r 为0.5m,高度h 为1m 时,还需多长时间雪堆可全部融化。

C 题校园内垃圾箱的布局问题
观察现在校园内的垃圾箱的布局
1、详细绘制校园内路径图(简化,并测量或者估计距离),如果想使得任何人手提垃圾袋的距离不超过50米,应该在那些地方放置垃圾箱。

如何布局才能使得垃圾箱数目最少?
2、如果在每条主干道之间布置的垃圾箱不能超过两个(两头各安置一个),那么又应该如何布局垃圾箱,使得行人手提垃圾袋的距离最小?。

相关文档
最新文档