电子回旋共振等离子体刻蚀技术
电子回旋共振微波等离子体刻蚀α:CH薄膜的工艺

底 上L 。a C 薄膜 在 ME 2 ] :H MS领域 有广 阔的应 用前 景 , 引起 了科 技 工作 者 的广泛 兴趣 。 电子 回旋 共 振 ( C 微 波 等 离 子 体 具有 工 作气 压 低 ( ×1 ~5P ) 密度 高 ( 0 1 ”c ) 离 化率 E R) 1 0 a、 1 ~ 0 m 、 高( 0 6 0 ) 大面积 均 匀 、 向异 度性 高 、 1 ~3 、 / 0 各 可稳 定运 行 和参 数易 于控制 等 优点[6, 以实 现 低温 高效 、 伤  ̄3 可 - 损
摘
要 : 为 了刻 蚀 出 图 形 完 整 、 壁 陡直 、 真 度 小 的 a C 薄 膜 微 器 件 , 究 了有 铝 和 无 铝 掩 膜 、 体 侧 失 ;H 研 气
流 量 比、 作 气 压 对 刻 蚀 速 率 的 影 响 , 对 纯 氧 等 离 子 体 刻 蚀 稳 定 性 进 行 了 研 究 。研 究 结 果 表 明 ; 相 同 条 件 工 并 在 下 , 蚀 速 率 随 刻 蚀 时 间 变 化 不 大 ; : 薄 膜 上 有 铝 和 无 铝 掩 膜 时 , 蚀 速 率 相 同 ; 量 一 定 时 , 蚀 速 率 随 刻 a CH 刻 流 刻 氩 气 和 氧 气 体积 比 的 增 大 而 降 低 , 当用 纯 氩 气 时 , 乎 没 刻 蚀 作 用 ; 蚀 速 率 随 工 作 气 压 的 增 大 而 降低 。 实 验 几 刻
Si O wi d n ows
薄 膜不 被刻蚀 , 被保 护 的非 晶碳 薄膜 和 氧气 反应 , 成所 需 的 未 形 非 晶碳 薄膜微 结 构 ; 7步 , 强碱 去 除非 晶碳 薄 膜上 残 留 的铝 第 用 层 ; 8步 , HF酸腐 蚀 硅 片 , 到 “ 立 ” 第 用 得 独 的微 结 构 ; 9步 , 第
电子回旋共振等离子体沉积

ECR-CVD machine
优点
• 降低CVD成膜温度 • 获得高质量的导电薄膜 • 获得各种其他薄膜,如绝缘介质薄膜,合 金薄膜等
电子回旋共振等离子体沉积
(ECR-CVD) 09微电2
什么是电子回旋共振(ECR)?
• 在875GS(高斯)的磁场中,电子受洛伦 兹力发生回旋运动,同时,在此区域内存 在2.45GHZ的微波,电子的回旋运动和微 波就会发生共振现象。
什么是等离子体?
• 等离子体又叫做电浆,是由部分电子被剥 夺后的原子及原子被电离后产生的正负电 子组成的离子化气体状物质,它广泛存在 于宇宙中,常被视为是除去固、液、气外, 物质存在的第四态。等离子体是一种很好 的导电体,利用经过巧妙设计的磁场可以 捕捉、移动onal!
沉积过程
• 电子在微波电场中将被不断同步、无碰撞 加速而获得的能量大于离子获得的能量, 如果在两次碰撞之间电子共振吸收微波的 能量大于气体粒子的电离能、 分子离解能 或某一状态的 • 激发能,那么将产生碰撞电离、分子离解 和粒子激活,从而实现等离子体放电和获 得活性反 • 应粒子,形成高密度的 ECR 低温等离子体。
第五章+真空等离子体与刻蚀技术

反常辉光放电
反常辉光放电— ef段,电流增大 时,两个极板之间电压升高,而且阴极 电压降的大小与电流密度和气体压强有 关。 e点时,辉光已布满整个阴极,再 增加电流时,离子层已无法向四周扩散, 正离子层向阴极靠拢,与阴极间距离缩 短。 此时要想提高电流密度,必须增大阴极压降使正离子有更大的能量去 轰击阴极,使阴极产生更多的二次电子才行。
低温吸附泵(Cryopump或者Sorption)
由闭合循环冷冻机组成,冷 冻机的冷头一般维持在 20K 左 右,封装在泵体里并连接到真 空系统,通过低温凝聚气体分 子。 或者活性Al2O3 需前级泵,具有最高极限真 空度,无回油污染问题,但工 作后需再生处理(与腔隔离后, 经过加热和被抽吸以释放出吸 附的气体)。
辉光放电
在汤生放电之后,气体突然发生放电击 穿现象,电流大幅度增加,同时放电电压显 著下降。 放电的着火点— c点,放电区只是阴极 边缘和不规则处 前期辉光放电— cd段,电流增加而电 压下降,产生负阻现象,这是因为气体被击 穿,气体内阻将随着电离度的增加而显著下 降。 正常辉光放电区— de段,电流的增加与电压无关,只与阴极上产生辉光的表面 积有关。在这个区域内,阴极的有效放电面积随电流增加而增大,而阴极有效放电 区内的电流密度保持恒定。 在这一阶段,电子和正离子数目大大增加,在碰撞过程中转移的能量也足够高, 因此会产生明显的辉光,维持辉光放电的电压较低,而且不变。气体击穿之后,电 子和正离子来源于正离子轰击阴极产生大量二次电子,然后电子的碰撞使气体电离, 即使不存在自然电离源,放电也将继续下去。这种放电方式又称为自持放电。
对右图的真空系统,假定气流 以均匀压力p1流过腔室,一根管 道连接腔室和泵,泵的入口压 力位p2,则真空部件(管道)的 气体传导率为
等离子体刻蚀工作原理

等离子体刻蚀工作原理等离子体刻蚀是一种常见的微纳加工技术,广泛应用于集成电路制造、纳米材料制备等领域。
本文将介绍等离子体刻蚀的工作原理,帮助读者更好地了解这一技术。
一、简介等离子体刻蚀是通过将气体激发成等离子体状态,利用高能离子或自由基的化学反应以及物理轰击来去除材料表面的一种技术。
它具有高精度、高速率和高选择性等特点,是制备微结构和纳米结构的重要手段。
二、等离子体刻蚀过程等离子体刻蚀过程主要分为物理刻蚀和化学刻蚀两个阶段。
1. 物理刻蚀:当气体被加热并加高电压或电磁场时,气体中的原子和分子受到激发,形成等离子体。
等离子体中的离子和自由基具有高能量,它们会以高速运动并撞击目标表面。
这种物理轰击会破坏表面原子的结构,使材料从表面脱落。
2. 化学刻蚀:等离子体中的气体离子和自由基还能与目标表面发生化学反应。
例如,在氟化氢等离子体刻蚀工艺中,氟离子会与目标材料表面的金属或氧化物发生反应,形成易溶于气体的化合物。
这种化学反应能够加速材料去除的速度。
三、刻蚀选择性控制在等离子体刻蚀中,选择性控制是非常重要的。
选择性控制指的是在多层结构中只刻蚀特定层或材料,而不会对其他层或材料产生明显影响。
以下几种机制可以实现选择性控制:1. 材料本身的选择性:不同材料在等离子体刻蚀过程中会有不同的反应速率,这是由材料的化学性质和结构特征决定的。
利用材料本身的选择性,我们可以控制特定材料的刻蚀速率,实现选择性刻蚀。
2. 掩膜层:在需要保护的区域上覆盖一层掩膜,掩膜层可以阻挡离子和自由基的轰击,从而实现对底层材料的保护。
掩膜层通常采用高耐腐蚀性和高厚度的材料。
3. 循环刻蚀:在刻蚀过程中,通过循环切换刻蚀和保护气体,可以控制刻蚀速率和选择性。
例如,在两个不同材料的刻蚀中交替使用两种不同刻蚀气体,可以实现对这两种材料的选择性刻蚀。
四、应用领域和发展趋势等离子体刻蚀技术在集成电路制造中起着至关重要的作用。
它被用于去除、修复、改变芯片表面的材料,以实现电子器件的制备和功能优化。
等离子体刻蚀技术的操作指南与优化要点

等离子体刻蚀技术的操作指南与优化要点介绍:等离子体刻蚀技术是一种常用于半导体制造过程中的重要技术,可以高精度地刻蚀材料表面,用于制作微观结构。
本文将为读者提供一份操作指南与优化要点,帮助他们掌握这一技术的使用方法和参数调节。
一、等离子体刻蚀技术的基本原理等离子体刻蚀技术是通过产生等离子体来刻蚀材料表面。
其中,等离子体由电离的气体分子或原子组成,通过加热或电离方式生成。
刻蚀过程中,高能的等离子体与材料表面的原子或分子发生碰撞,使其脱离表面并被抽走,从而实现刻蚀有序结构的目的。
二、操作指南1. 设定刻蚀参数:在进行等离子体刻蚀前,首先需要设定适当的刻蚀参数。
参数包括刻蚀气体的种类和流量、放电功率、刻蚀时间等。
不同材料和要刻蚀的结构形状需要不同的参数设置,因此需根据实际需要进行调整。
2. 样品处理:在刻蚀之前,样品表面需要进行预处理,例如清洗和除去氧化层等。
这样可以增加刻蚀的精度和均匀性。
3. 选择合适的刻蚀气体:刻蚀气体的选择对刻蚀效果有很大影响。
常用的刻蚀气体有氟化氢、氟气、氧气等。
不同气体对不同材料有不同的作用,应根据材料类型和所需刻蚀效果选择合适的刻蚀气体。
4. 控制刻蚀速率:刻蚀速率对于刻蚀的深度和均匀性有重要影响。
可以通过调整刻蚀时间和刻蚀功率来控制刻蚀速率。
需要注意的是,刻蚀速率过高可能导致刻蚀深度不均匀,而过低则可能无法满足刻蚀需求。
5. 监控刻蚀过程:在刻蚀过程中,应定期监控刻蚀深度和均匀性。
可以使用显微镜、扫描电镜等工具进行观察和测量,以调整刻蚀参数和纠正不均匀的情况。
6. 发现问题时的处理方法:在刻蚀过程中可能会出现一些问题,如表面残留物、刻蚀不均匀等。
处理方法可以是更换刻蚀气体、调整刻蚀参数或对样品进行再处理。
三、优化要点1. 材料选择:材料的选择直接影响刻蚀效果和刻蚀速率。
应根据具体需求选择合适的材料,例如对于硅基材料,可以选择氟化氢作为刻蚀气体。
2. 气体流量控制:气体流量对刻蚀效果和材料去除速率有直接影响。
等离子体蚀刻技术

等离子体蚀刻技术等离子体蚀刻技术是一种常用的微纳加工技术,广泛应用于半导体、光电子、微电子等领域。
本文将从等离子体蚀刻技术的基本原理、设备和工艺参数的选择以及应用领域等方面进行介绍。
一、等离子体蚀刻技术的基本原理等离子体蚀刻技术是利用高能粒子或分子束对材料表面进行刻蚀的一种方法。
其基本原理是通过在低压气体环境中产生等离子体,利用等离子体中的离子轰击材料表面,使其发生化学反应或物理过程,从而实现对材料表面的刻蚀。
等离子体蚀刻技术具有高精度、高选择性和高均匀性等优点,能够实现微纳米级的加工。
二、等离子体蚀刻设备等离子体蚀刻设备主要由气体供给系统、真空系统、射频功率源、电极系统以及控制系统等组成。
其中,气体供给系统用于提供刻蚀气体,真空系统用于提供蚀刻环境,射频功率源用于产生等离子体,电极系统用于加速和聚焦离子束,控制系统用于控制蚀刻过程的参数。
三、等离子体蚀刻工艺参数的选择等离子体蚀刻工艺参数的选择对于实现理想的加工效果至关重要。
其中,气体种类和流量、工作压力、射频功率和电极系统的设计等是需要考虑的关键因素。
不同材料的刻蚀速率和选择性不同,需要根据具体材料的特性和加工要求进行合理选择。
四、等离子体蚀刻的应用领域等离子体蚀刻技术在半导体、光电子、微电子等领域具有广泛的应用。
在半导体行业中,等离子体蚀刻技术常用于制备集成电路和光刻掩膜等工艺步骤。
在光电子领域,等离子体蚀刻技术可以用于制备光波导器件和微结构等。
在微电子领域,等离子体蚀刻技术可以用于制备微机械系统(MEMS)和纳米加工等。
等离子体蚀刻技术是一种重要的微纳加工技术,具有广泛的应用前景。
通过合理选择蚀刻工艺参数和设备设计,可以实现高精度、高选择性和高均匀性的加工效果。
随着科技的不断进步,相信等离子体蚀刻技术将在微纳加工领域发挥更加重要的作用。
等离子体刻蚀

6 电极材料 电极包括阴极和阳极。要求阴极材料是化学惰性的,否则 被刻蚀,消耗反应物质,影响样品的刻蚀速率。 阳极与侧壁在离子的溅射下不会形成挥发性产物,而是将 溅射产物再沉积到其他表面, 包括样品材料表面, 影响 样品的进一步刻蚀。 即使材料本身是化学惰性的,样品材料在刻蚀过程中也会 因物理溅射,尤其是掩膜材料的溅射,将溅射物沉积到阳 极或反应室腔体内部。把这种环境带给下一次实验,“记 忆效应”。 为了尽量减少这种“交叉污染”,应尽量避免同一刻蚀系 统刻蚀多种不同材料,或者要求在每一次新的刻蚀前对反 应室腔体进行等离子体 “清洁”,即在未放样品前用氧 气或氩气对腔室体预刻蚀一段时间。
根据产生等离子体的方式又分为 ICP感性耦合等 离子体(inductively coupled plasma), CCP 容性耦合等离子体 (capacitively coupled plasma), ECR微波电子回旋共振等离子体 (microwave electron cyclotron resonance)。
物理加化学的过程 离子的溅射和解吸附的物理特性加上化学 反应特性,刻蚀速度大于单一的任何的单 一过程。
4)具体的仪器原理介绍(RIE、 ICP和ECR)
等离子放电刻蚀技术分类
根据使用离子的物理和化学的作用,可分为 反应离子刻蚀(reactive ion etch)(物理和化 学作用)、离子溅射刻蚀(物理作用)。
等离子体刻蚀
潘华勇 1)介绍等离子体刻蚀在刻蚀方法中的位置 2)刻蚀参数 3)刻蚀的微观机理 4)具体的仪器原理介绍(RIE、ICP和ECR) 5)具体实验参数对刻蚀的影响 6)本实验室刻蚀仪器的介绍(TRION TECHNOLOGY MINILOCK IIIICP) (1)外观,结构,实验参数,一些材料的刻蚀工艺参数, 厂家提供的一些刻蚀材料的情况;(2)实验步骤; 7)作业 8) 参考文献
等离子体刻蚀工艺的物理基础

等离子体刻蚀工艺的物理基础一、本文概述等离子体刻蚀工艺,作为一种先进的微纳加工技术,在半导体工业、纳米科学、生物医学以及众多其他高科技领域中发挥着日益重要的作用。
本文将深入探讨等离子体刻蚀工艺的物理基础,以期帮助读者更好地理解这一技术的核心原理和应用价值。
等离子体,作为物质的第四态,具有独特的物理和化学性质,如高活性、高电离度和良好的导电性等。
这些特性使得等离子体在刻蚀过程中具有优异的定向性和可控性,从而能够实现对材料表面的高精度、高效率的刻蚀加工。
本文将从等离子体的基本性质出发,介绍等离子体刻蚀的基本原理和过程,包括等离子体的产生、传输、与材料表面的相互作用等。
同时,我们还将讨论影响等离子体刻蚀效果的关键因素,如等离子体参数、气体种类、刻蚀环境等,并探讨如何优化这些参数以提高刻蚀质量。
本文还将对等离子体刻蚀在不同领域的应用进行概述,包括半导体集成电路制造、微纳器件加工、生物医学材料制备等。
通过对这些应用案例的分析,我们将进一步展示等离子体刻蚀工艺的重要性和潜力。
我们将对等离子体刻蚀工艺的未来发展趋势进行展望,探讨新技术、新材料和新工艺对这一领域的影响和推动,以期为读者提供一个全面、深入的等离子体刻蚀工艺物理基础的认识。
二、等离子体基础知识等离子体,通常被称为物质的第四态(除固态、液态和气态外),是一种高度电离的气体,其中包含大量的正离子和电子,且整体呈电中性。
等离子体的特性使其成为许多先进工艺,包括等离子体刻蚀工艺的重要工具。
等离子体的形成:等离子体可以通过多种方式形成,包括加热气体使其部分或完全电离,或通过施加电场或射频场来激发气体。
在刻蚀工艺中,通常使用射频放电或直流放电来产生等离子体。
电中性:尽管等离子体中包含大量的带电粒子,但由于正离子和电子的数量大致相等,所以整体呈电中性。
高导电性:由于含有大量的可动带电粒子,等离子体具有很高的导电性。
集体行为:等离子体中的粒子行为通常表现出集体性,即大量粒子的行为可以看作是一个整体。