物理中求极值的常用方法
高中物理中的极值问题

物理中的极值问题武穴育才高中 刘敬随着高考新课程改革的深入及素质教育的全面推广,物理极值问题成为中学物理教学的一个重要内容,作为对理解、推理及运算能力都有很高要求的物理学科,如何提高提高学生思维水平,运用数学知识解决物理问题的能力,加强各学科之间的联系,本文筛选出典型范例剖析,从中进行归纳总结。
极值问题常出现如至少、最大、最短、最长等关键词,通常涉及到数学知识有:二次函数配方法,判别式法,不等式法,三角函数法,求导法,几何作图法如点到直线的垂线距离最短,圆的知识等等。
1.配方法:a b ac a b x a c bx ax 44)2(222-++=++ 当a >0时,当2b x a =-时,y min =ab ac 442- 当a <0时当2b x a =-时,y max =ab ac 442- 2.判别式法:二次函数令0≥∆,方程有解求极值.3.利用均值不等式法:ab 2b a ≥+ a=b 时, y min =2ab4.三角函数法:θθcos sin b a y +==)sin(22θϕ++b a当090=+θϕ,22max b a y += 此时,ba arctan =θ 也可用求导法:ba b a y arctan 0sin cos ==-='θθθ,得令 5.求导法:对于数学中的连续函数,我们可以通过求导数的方式求函数的最大值或最小值.由二阶导数判断极值的方法.某点一阶导数为0,二阶导数大于0,说明一阶导数为增函数,判断为最小值;反之,某点一阶导数为0,二阶导数小于0,说明一阶导数为单调减函数,判断此点为最大值.6.用图象法求极值通过分析物理过程所遵循的物理规律,找到变量之间的函数关系,作出其图象,由图象求极值。
7.几何作图法研究复合场中的运动,可将重力和电场力合成后,建立直角坐标系,按等效重力场处理问题。
研究力和运动合成和分解中,可选择合适参考系,将速度及加速度合成,结合矢量三角形处理问题。
高考物理中数学方法

处理物理问题的数学方法一、极值法1、 利用二次函数求极值:y =ax 2+bx +c =a (x 2+b a x +b 24a 2)+c -b 24a =a (x +b 2a )2+4ac -b 24a(其中a 、b 、c 为实常数),当x =-b2a 时,有极值y m =4ac -b 24a (若二次项系数a >0,y 有极小值;若a <0,y 有极大值).2、 利用三角函数求极值:y =a cos θ+b sin θ=a 2+b 2(a a 2+b 2cos θ+ba 2+b 2sin θ) 令sin φ=a a 2+b 2,cos φ=ba 2+b 2则有:y =a 2+b 2(sin φcos θ+cos φsin θ)=a 2+b 2sin (φ+θ)3、 利用均值不等式求极值:对于两个大于零的变量a 、b ,若其和a +b 为一定值p ,则当a =b 时,其积ab 取得极大值 p 24例题:[2013山东理综 22(15分)]如图所示,一质量m =0.4kg 的小物块,以v 0=2m/s 的初速度,在与斜面成某的角度的拉力F 作用下,沿斜面向上做匀加速运动,经t =2s 的时间物块由A 点运动到B 点,AB 两点间的距离L =10m.已知斜面倾角30=θ,物块与斜面之间的动摩擦因数33=μ,重力加速度g 取10m/s 2. (1)求物块加速度的大小及到达B 点时速度的大小。
(2)拉力F 与斜面夹角多大时,拉力F 最小?拉力F 的最小值是多少? 答:(1)物块加速度的大小为3m/s 2,到达B 点的速度为8m/s ; (2)拉力F 与斜面的夹角30°时,拉力F 最小,最小值是N 53 13=F min解析:(1)物体做匀加速直线运动,根据运动学公式,有:221at L =①, v=at ②联立解得; a=3m/s 2,v=8m/s (2)对物体受力分析 根据牛顿第二定律,有:水平方向:Fcosα-mgsinα-F f =ma 竖直方向:Fsinα+F N -mgcosα=0 其中:F f =μF N 联立解得:α)+sin(60 3 32ma +μcosα)+mg(sin α= sin cos ma +μcosα)+mg(sin α=F ︒+αμα故当α=30°时,拉力F 有最小值,为N 53 13=F min ; 二、几何法利用几何方法求解物理问题时,常用到的有“对称点的性质”、“两点间直线距离最短”、“直角三角形中斜边大于直角边”以及“全等、相似三角形的特性”等相关知识,如:带电粒子在有界磁场中的运动类问题,物体的变力分析时经常要用到相似三角形法、作图法等.与圆有关的几何知识在力学部分和电学部分的解题中均有应用,尤其在带电粒子在匀强磁场中做圆周运动类问题中应用最多,此类问题的难点往往在圆心与半径的确定上常见的几何关系:1.依切线的性质确定.从已给的圆弧上找两条不平行的切线和对应的切点,过切点作切线的垂线,两条垂线的交点为圆心,圆心与切点的连线为半径.2.依垂径定理(垂直于弦的直径平分该弦,且平分弦所对的弧)和相交弦定理(如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项)确定.如图1所示.图1由勾股定理得:R 2=(R -CE )2+EB 2解得:R =EB 22CE +CE2.例题:[2014山东理综 24(20分)]如图-2甲所示,间距为、垂直于纸面的两平行板间存在匀强磁场。
物理解题方法 极值法0

三、 用不等式法求极值 如果所求物理量表达式可化为“Y=Kab”的形式,其中均为a、b变量,但a+b=恒量(a>0、b>0),则可根据不等式性质ab≤(a+b)2/2求极值。(“定和求积法”) [例4]一个下端封闭,上端开口的粗细均匀的玻璃管,竖直放置,管全长90厘米,管中有一段长20厘米的水银柱,在温度270C时,水银柱下面空气柱长为60厘米,若外界大气压P0=76cmHg,要使管中水银全部溢出,温度至少应升到多少?
MOMODA POWERPOINT
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Fusce id urna blandit, eleifend nulla ac, fringilla purus. Nulla iaculis tempor felis ut cursus.
二、利用三角函数法求极值 如果所求物理量表达式中含有三角函数, 可利用三角函数求极值。 1.若所求物理量表达式可化为“y=A sinθ cosθ”形式(即y= sin2θ),则在θ=45o时,y有极 值A/2。
[例2]如图,n个倾角不同的光滑斜面具有共同的底边AB,当物体沿不同的倾角无初速从顶端滑到底端,下列哪种说法正确( ) (A)倾角为30o时,所需时间最短。 (B)倾角为45o时,所需时间最短。 (C)倾角为75o时,所需时间最短。 (D)所需时间均相等。
六、用假设推理法求极值 通过假设法使研究对象处于临界状态,然后再利用物理规律求得极值。(“临界”法)
[例7]如图,能承受最大拉力为10N的细OA与竖直方向成450,能承受最大拉力为5N的细线OB水平,细线OC能承受足够大的拉力,为使OA和OB均不被拉断,OC下端所悬y=asinθ +bcosθ ”,则将该式化为“y=a2+b2 sin(θ +Φ )”从而得出y的极值a2+b2 。(即“和差化积”法) [例3]质量为10千克的木箱置于水平地面上,它与地面间滑动摩擦因数µ= ,受到一个与水平方向成角θ斜 向上的拉力F,为使木箱作匀速直线运动,拉力F最小值为多大?
2020年高考备考复习攻略之物理方法汇总 专题03 极值法 含解析

专题03 极值问题目录1.二次函数极值法 (1)2.和积不等式极值法 (6)3. 三角函数极值法 (11)4. 几何极值法 (12)极值法是中学物理教学中重要的解题方法,在问题中主要表现在求物理量极大值、极小值、临界值、物理量的取值范围等方面。
在应用极值法解题时,首先要选用合适的物理模型,应用物理规律构建待求物理量与其他物理量的函数关系,再利用数学方法求其极值。
极值法可分为二次函数极值法、和积不等式极值法、几何极值法等。
1.二次函数极值法函数,依的正负,可有极大值、极小值。
①若求极植可用配方法,当,。
(综合图像解)②亦可用判别式法:整理为关于的一元二次方程:,若有实解,则,。
典例 1. (19年海南卷)三个小物块分别从3条不同光滑轨道的上端由静止开始滑下。
已知轨道1、轨道2、轨道3的上端距水平地面的高度均为;它们的下端水平,距地面的高度分别为、、,如图所示。
若沿轨道1、2、3下滑的小物块的落地点到轨道下端的水平距离分别记为、、,则()A. B. C. D.【答案】BC【解析】小物块在轨道上下滑的高度为h ,到轨道末端速度为v 020mv 21mgh =gh 2v 0=①在轨道末端开始做平抛运动20gt 21h -h 4=② t v s 0=③①②③得()202002h 4h 2-h -2h h 4h -2s +=+= 当0h 2h =时 水平位移s 最大当0h 3h =, 0h h =时,水平位移相等。
故选择BC【总结与点评】对于极值问题,要善于找到未知物理量与某一物理量的关联性,利用物理规律建立函数关系,然后利用函数极值法求解。
针对训练1a.. 在一次国际城市运动会中,要求运动员从高为H 的平台上A 点由静止出发,沿着动摩擦因数为的滑道向下运动到B 点后水平滑出,最后落在水池中。
设滑道的水平距离为L ,B 点的高度h 可由运动员自由调节(取;g=10m/s 2)。
求: (1)运动员到达B 点的速度与高度h 的关系;(2)运动员要达到最大水平运动距离,B 点的高度h 应调为多大?对应的最大水平距离S M 为多少? (3)若图中H =4m ,L =5m ,动摩擦因数=0.2,则水平运动距离要达到7m ,h 值应为多少?【解析】(1)运动员由到,斜面长,由动能定理得:①(2)运动员在点做平抛运动②③①②③解得④令由二次函数配方法得:当运动员最大的水平位移为:(3)把数据代入④整理得:解得:【总结与点评】本题第(2)小题求运动员的水平位移,要能自觉地利用动能定理、平抛运动规律构建平抛水平位移与竖直位移函数关系,并注意其在滑道上的水平位移保持不变,这样,构建的函数关系只有两个变量,顺理成章的应用二次函数配方极值法求出极值,也可以应用判别式法求其极值。
例析高中物理极值问题的求解方法

■ 周 宏 建
求极 值 问题 不止 在数 学 中出现 , 在 物 + q的 小 球 , 用 长
理 解 题 中 也 经 常 出 现 。 物 理 极 值 问 题 是 指
某 一 物 理 过 程 中 物 理 量 出 现 的 最 大 值 或 最 小值 。
一 .
为 L 的 细 线 悬 挂
\
球 使 细 线 水 平 并
矢 - 豳 法 伸 盲 。然 后 自 由 释 ,
高 中物理 中 , 许 多物理 量 是矢 量 , 求 矢 量
的最值 时 , 矢 量 图 法 是 经 常 使 用 的 方 法 。 根 据平 行 四边 形 法 则 、 三 角 形 法 则 作 出 合 成 矢 量图, 结 合 题 目条 件 加 以 分 析 , 解 决 极 值 问 题 就会 极为 简 洁方便 。 例 1 一条 大河 宽 L一3 0 0 m, 水 流 速 度 一3 m/ s , 计 算 下
熟 练 掌 握 各 种 求 极 值 的 方 法 是 解 好 极 值
问题 的基 础 , 选择合 适 的求 极值 方 法 , 可 以 化 难 为易 , 达 到 事 半 功 倍 的 效 果 。 并 且 将 数 学 思 想运 用 到物 理 中求 极 值 , 不 但 有 助 于 学 生 提 高解 题能 力 , 更 是扩 展 了学 生 的解 题 思维 , 让 学 生能够 活学 活用 , 融会 贯通 。 作者 单位 : 江 苏 省 江 安 高 级 中 学
= = = 1 m/ s , 小 船 的速度
列情况 的渡河 时 间: ( 1 )以 最 短 时 间 渡 河 ;
( 2 ) 以最 小 位 移 渡 河 ; ( 3 )到 达 正 对 岸 上 游
高考复习专题四—求极值的六种方法(解析版)

微讲座(四)——求极值的六种方法从近几年高考物理试题来看,考查极值问题的频率越来越高,由于这类试题既能考查考生对知识的理解能力、推理能力,又能考查应用数学知识解决问题的能力,因此必将受到高考命题者的青睐.下面介绍极值问题的六种求解方法.一、临界条件法对物理情景和物理过程进行分析,利用临界条件和关系建立方程组求解,这是高中物理中最常用的方法.某高速公路同一直线车道上有同向匀速行驶的轿车和货车,其速度大小分别为v 1=30 m/s ,v 2=10 m/s ,轿车在与货车距离x 0=25 m 时才发现前方有货车,此时轿车只是立即刹车,两车可视为质点.试通过计算分析回答下列问题:(1)若轿车刹车时货车以v 2匀速行驶,要使两车不相撞,轿车刹车的加速度大小至少为多少?(2)若该轿车刹车的最大加速度为a 1=6 m/s 2,轿车在刹车的同时给货车发信号,货车司机经t 0=2 s 收到信号并立即以加速度大小a 2=2 m/s 2加速前进,两车会不会相撞?[解析] (1)两车恰好不相撞的条件是轿车追上货车时两车速度相等,即 v 1-at 1=v 2①v 1t 1-12at 21=v 2t 1+x 0②联立①②代入数据解得:a =8 m/s 2. (2)假设经过时间t 后,两车的速度相等 即v 1-a 1t =v 2+a 2(t -t 0)此时轿车前进的距离x 1=v 1t -12a 1t 2货车前进的距离x 2=v 2t 0+v 2(t -t 0)+12a 2(t -t 0)2代入数据解得:x 1=63 m ,x 2=31 m 因为:x 1-x 2=32 m>x 0,两车会相撞. [答案] (1)8 m/s 2 (2)会相撞 二、二次函数极值法 对于二次函数y =ax 2+bx +c ,当a >0时,y 有最小值y min =4ac -b 24a,当a <0时,y 有最大值y max =4ac -b 24a.也可以采取配方法求解.一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以a =3 m/s 2的加速度开始行驶,恰在这一时刻一辆自行车以v 自=6 m/s 的速度匀速驶来,从旁边超过汽车.试求:汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?[解析] 设汽车在追上自行车之前经过时间t 两车相距最远,则 自行车的位移:x 自=v 自t汽车的位移:x 汽=12at 2则t 时刻两车的距离Δx =v 自t -12at 2代入数据得:Δx =-32t 2+6t当t =-62×⎝⎛⎭⎫-32 s =2 s 时,Δx 有最大值Δx max =0-624×⎝⎛⎭⎫-32 m =6 m对Δx =-32t 2+6t 也可以用配方法求解:Δx =6-32(t -2)2显然,当t =2 s 时,Δx 最大为6 m. (说明:此题也可用临界法求解) [答案] 见解析 三、三角函数法某些物理量之间存在着三角函数关系,可根据三角函数知识求解极值.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2.(1)求物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面的夹角多大时,拉力F 最小?拉力F 的最小值是多少?[解析] (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得:L =v 0t +12at 2①v =v 0+at ②联立①②式,代入数据解得:a =3 m/s 2,v =8 m/s.(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面之间的夹角为α,受力分析如图所示,由牛顿第二定律得:F cos α-mg sin θ-F f =ma ③F sin α+F N -mg cos θ=0④ 又F f =μF N ⑤联立③④⑤解得:F =mg (sin θ+μcos θ)+macos α+μsin α⑥由数学知识得:cos α+33sin α=233sin(60°+α)⑦ 由⑥⑦式可知对应的F 最小值与斜面的夹角α=30°⑧ 联立⑥⑧式,代入数据得F 的最小值为:F min =1335N. [答案] (1)3 m/s 2 8 m/s(2)夹角为30°时,拉力最小,为1335N四、图解法此种方法一般适用于求矢量极值问题,如动态平衡问题,运动的合成问题,都是应用点到直线的距离最短求最小值.质量为m 的物体与水平地面间的动摩擦因数为μ,用图解法求维持物体做匀速运动的最小拉力.[解析] 由F fF N =μ知,不论F f 、F N 为何值,其比值恒定由图知F fF N=μ=tan α,即F ′的方向是确定的.由平衡条件推论可知:mg 、F ′、F 构成闭合三角形.显然,当F ⊥F ′时,F 最小.F min =mg sin α=mg tan α1+tan 2 α=μmg1+μ2.(说明:此题也可用三角函数法求解.) 物体受力分析如图. 由平衡条件得:F ·cos θ=F f ①F ·sin θ+F N =mg ② 又F f =μF N ③联立①②③得:F =μmgcos θ+μsin θ令sin α=11+μ2,cos α=μ1+μ2 则F =μmg1+μ2 sin (α+θ)当sin(α+θ)=1时,F min =μmg1+μ2.[答案] μmg1+μ2五、均值不等式法任意两个正整数a 、b ,若a +b =恒量,当a =b 时,其乘积a ·b 最大;若a ·b =恒量,当a =b 时,其和a +b 最小.在一次国际城市运动会中,要求运动员从高为H 的平台上A 点由静止出发,沿着动摩擦因数为μ的滑道向下运动到B 点后水平滑出,最后落在水池中.设滑道的水平距离为L ,B 点的高度h 可由运动员自由调节(取g =10 m/s 2).(1)求运动员到达B 点的速度与高度h 的关系.(2)运动员要达到最大水平运动距离,B 点的高度h 应调为多大?对应的最大水平距离x max 为多少?(3)若图中H =4 m ,L =5 m ,动摩擦因数μ=0.2,则水平运动距离要达到7 m ,h 值应为多少?[解析] (1)设斜面长度为L 1,斜面倾角为α,根据动能定理得mg (H -h )-μmgL 1cos α=12m v 20①即mg (H -h )=μmgL +12m v 20②v 0=2g (H -h -μL ).③ (2)根据平抛运动公式 x =v 0t ④ h =12gt 2⑤ 由③④⑤式得x =2(H -μL -h )h ⑥由⑥式可得,当h =12(H -μL )时水平距离最大x max =L +H -μL .(3)在⑥式中令x =2 m ,H =4 m ,L =5 m ,μ=0.2 则可得到-h 2+3 h -1=0 求得h 1=3+52m =2.62 m ;h 2=3-52m =0.38 m.[答案] 见解析 六、判别式法一元二次方程的判别式Δ=b 2-4ac ≥0时有实数根,取等号时为极值,在列出的方程数少于未知量个数时,求解极值问题常用这种方法.(原创题)如图所示,顶角为2θ的光滑绝缘圆锥,置于竖直向上的匀强磁场中,磁感应强度为B ,现有质量为m ,带电量为-q 的小球,沿圆锥面在水平面内做圆周运动,求小球做圆周运动的最小半径.[解析] 小球受力如图,设小球做圆周运动的速率为v ,轨道半径为R . 由牛顿第二定律得:水平方向:q v B -F N cos θ=m v 2R竖直方向:F N sin θ-mg =0 两式联立得:m v 2R-q v B +mg cot θ=0 因为速率v 为实数,故Δ≥0 即(qB )2-4⎝⎛⎭⎫m R mg cot θ≥0 解得:R ≥4m 2g cot θq 2B 2故最小半径为:R min =4m 2g cot θq 2B 2.[答案] 4m 2g cot θq 2B 21.(单选)(2016·广州模拟)如图所示,船在A 处开出后沿直线AB 到达对岸,若AB 与河岸成37°角,水流速度为4 m/s ,则船从A 点开出的最小速度为( )A .2 m/sB .2.4 m/sC .3 m/sD .3.5 m/s 解析:选B.AB 方向为合速度方向,由图可知,当v 船⊥AB 时最小,即v 船=v 水·sin 37°=2.4 m/s ,B 正确.2.(单选)如图所示,在倾角为θ的斜面上方的A 点处放置一光滑的木板AB ,B 端刚好在斜面上.木板与竖直方向AC 所成角度为α,一小物块自A 端沿木板由静止滑下,要使物块滑到斜面的时间最短,则α与θ角的大小关系应为( )A .α=θB .α=θ2C .α=θ3D .α=2θ解析:选B.如图所示,在竖直线AC 上选取一点O ,以适当的长度为半径画圆,使该圆过A 点,且与斜面相切于D 点.由等时圆知识可知,由A 沿木板滑到D 所用时间比由A 到达斜面上其他各点所用时间都短.将木板下端与D 点重合即可,而∠COD =θ,则α=θ2.3.(2016·宝鸡检测)如图所示,质量为m 的物体,放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F 的水平向右的恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F 多大,都不能使物体沿斜面向上滑行,试求:(1)物体与斜面间的动摩擦因数; (2)这一临界角θ0的大小.解析:(1)斜面倾角为30°时,物体恰能匀速下滑,满足 mg sin 30°=μmg cos 30° 解得μ=33.(2)设斜面倾角为α,受力情况如图,由匀速直线运动的条件: F cos α=mg sin α+F f F N =mg cos α+F sin α F f =μF N解得:F =mg sin α+μmg cos αcos α-μsin α当cos α-μsin α=0,即cot α=μ时,F →∞ 即“不论水平恒力F 多大”,都不能使物体沿斜面向上滑行,此时,临界角θ0=α=60°. 答案:(1)33(2)60°4.如图所示,质量为m =0.1 kg 的小球C 和两根细绳相连,两绳分别固定在细杆的A 、B 两点,其中AC 绳长l A =2 m ,当两绳都拉直时,AC 、BC 两绳和细杆的夹角分别为θ1=30°、θ2=45°,g =10 m/s 2.问:细杆转动的角速度大小在什么范围内,AC 、BC 两绳始终张紧?解析:设两细绳都拉直时,AC 、BC 绳的拉力分别为F TA 、F TB ,由牛顿第二定律可知: 当BC 绳中恰无拉力时,F T A sin θ1=mω21l A sin θ1① F TA cos θ1=mg ②由①②解得ω1=1033rad/s. 当AC 绳中恰无拉力时,F TB sin θ2=mω22l A sin θ1③ F TB cos θ2=mg ④ 由③④解得ω2=10 rad/s.所以,两绳始终有张力时细杆转动的角速度的范围是 1033rad/s <ω<10 rad/s. 答案: 1033rad/s <ω<10 rad/s 5.(原创题)一人在距公路垂直距离为h 的B 点(垂足为A ),公路上有一辆以速度v 1匀速行驶的汽车向A 点行驶,当汽车距A 点距离为L 时,人立即匀速跑向公路拦截汽车,求人能拦截住汽车的最小速度.解析:法一:设人以速度v 2沿图示方向恰好在C 点拦住汽车,用时为t .则L +h tan α=v 1t ① hcos α=v 2t ② 联立①②两式得:v 2=h v 1L cos α+h sin α=h v 1L 2+h 2⎝ ⎛⎭⎪⎫L L 2+h 2cos α+h L 2+h 2sin α由数学知识知:v 2min =h v 1L 2+h 2 .法二:选取汽车为参照物.人正对汽车运动即可拦住汽车,即人的合速度方向指向汽车.其中一分速度大小为v 1,另一分速度为v 2,当v 2与合速度v 垂直时,v 2最小,由相似三角形知识可得:v 2v 1=h L 2+h2 v 2=h v 1L 2+h 2 .答案:h v 1L 2+h 26.小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d 后落地,如图所示.已知握绳的手离地面高度为d ,手与球之间的绳长为34d ,重力加速度为g .忽略手的运动半径和空气阻力.(1)求绳断时球的速度大小v 1和球落地时的速度大小v 2. (2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?解析:(1)设绳断后球飞行时间为t ,由平抛运动规律,有竖直方向14d =12gt 2,水平方向d =v 1t解得v 1=2gd .由机械能守恒定律有12m v 22=12m v 21+mg ⎝⎛⎭⎫d -34d 得v 2=52gd . (2)设绳能承受的最大拉力大小为F T ,这也是球受到绳的最大拉力大小,即球运动到最低点时球所受到的拉力.球做圆周运动的半径为R =34d由圆周运动向心力公式,有F T -mg =m v 21R得F T =113mg .(3)设绳长为l ,绳断时球的速度大小为v 3,绳承受的最大拉力不变,有F T -mg =m v 23l 得v 3=83gl 绳断后球做平抛运动,竖直位移为d -l ,水平位移为x ,时间为t 1,竖直方向有d -l =12gt 21,水平方向x =v 3t 1 得x =4l (d -l )3当l =d 2时,x 有最大值,x max =233d .答案:见解析 7.(原创题)如图所示,电动势为E 、内阻为r 的电源给一可变电阻供电,已知可变电阻变化范围为0~R m ,且R m >r .当R 为何值时功率最大,最大功率为多少?解析:设可变电阻为R ,则I =ER +rP =I 2R =E 2(R +r )2·R ①法一:(配方法)P =E 2(R -r )2R +4r显然,当R =r 时,功率最大,P max =E 24r.法二:(判别式法)将①式整理成关于R 的二次方程 PR 2+(2Pr -E 2)R +Pr 2=0 由于R 为实数,故Δ≥0 即(2Pr -E 2)2-4P 2r 2≥0 解得:P ≤E 24r最大值为P max =E 24r ,代入①式得R =r .答案:见解析 8.质量分别为M 、m 的斜面体A 、B 叠放在光滑水平面上,斜面体倾角为α,两者之间的动摩擦因数为μ(μ<tan α),今用水平外力F 推B ,使两者不发生滑动,假设最大静摩擦力等于滑动摩擦力,求F 的取值范围.(已知:m =3 kg ,M =8 kg ,μ=0.5,α=37°.)解析:B 恰好不向下滑动时,所需F 最小,此时B 受到最大静摩擦力沿斜面向上.如图甲所示.设两者共同的加速度为a 1,对整体有: F min =(M +m )a 1 对B 有:F min +F f1cos α-F N1sin α=ma 1 F f1sin α+F N1cos α=mg F f1=μ·F N1联立以上各式解得:F min =m (M +m )(sin α-μcos α)M (cos α+μsin α)g =7.5 N甲乙B恰好不上滑时所需F最大,此时B受最大静摩擦力沿斜面向下.如图乙所示.设共同加速度为a2,对整体有:F max=(M+m)a2对B有:F max-F f2cos α-F N2sin α=ma2F N2cos α=mg+F f2sin αF f2=μF N2联立以上各式解得:F max=m(M+m)(sin α+μcos α)M(cos α-μsin α)g=82.5 N故取值范围为7.5 N≤F≤82.5 N.答案:7.5 N≤F≤82.5 N。
高中物理极值问题的常见解法例析

当加 速 度 aO , 度 达 到最 大. =时 速
 ̄ p( q m ) E . : I, v- g = q得 v= B
极值等. 例 1空 间 存 在 充 分 大 的 正 交 的 水 平 匀 强 电 场 ( 强 为E) . 场 和 匀 强 磁 场 ( 度 为B)足 够 长 的绝 缘 直 杆 水 平 放 置 , 电 场 强 , 与 平行 , 图 l 示 , 带 正 电 的 圆环 ( 量 为I, 如 所 一 质 n 电量 为 q 套 在 杆 )
一
mg 一 ̄( E q B) q +v
当v 0 , ★ — g — E= = 时 =m - q g  ̄
一
;
图1
图2
图3
分析 与 解 : 环 由 静 止运 动后 , 变加 速 运 动 . 力 如 图2 小 做 受 所示 , 理 关 系 可表 示 为 : 物
当a 0 , : 堕 :时 v —
场 , 感 应 强 度 为 B, 导 轨 的A 端 连 接 一 磁 在 c 个 阻值 为R的 电阻 , 根 质 量 为 m、 直 于 导 一 垂 轨 放 置 的金 属棒 a , 静 止 开始 沿导 轨 下 滑 , 此 过程 中a 棒 b从 求 b 的最大速度. 已知 a 与 导 轨 间 的 动 摩 擦 因 数 为 , 轨 和 金 属 b 导 棒 的 电阻 不 计 .
知识包括 : ①定积求和 、 定和求积 ; 一元 二次方程 ; ② ③三角 函
数, 等. 等 例 3如 图所 示 , 在 很 长 的 绝 缘 直 棒 上 的 小 球 , 质 量 . 套 其 为 I, 电 量 为 + 小 球 可 在 棒 上 滑 动 , 此 棒 竖 直 放 在 互 T带 I q, 将 相 垂 直 , 沿 水 平 方 向 的 匀 强 电 场 和 匀 强 磁 场 中 , 场 强 且 电 度 为 E, 感 应 强 度 为 B 小 球 与 棒 的 动 摩 擦 因 数 为 , 小 磁 , 求 球 由静 止 沿 棒 下 落 的 最 大 加 速 度 和 最 大 速 度 ? ( 小 球 电 设
高中物理重要方法典型模型突破5-数学方法(3)--极值问题

专题五数学方法(3)极值问题【方法点津】求解极值问题的方法从大的方面可分为物理方法和数学方法。
物理方法即用临界条件求极值。
数学方法主要有:三角函数极值法、二次函数极值法、不等式极值法、一元二次方程判别式法等.其它还有如导数法求解。
一般而言,用物理方法求极值简单、直观、形象,对构建物理模型及动态分析等方面的能力要求较高,而用数学方法求极值思路严谨,对数学建模能力要求较高,若能将二者予以融合,则将相得亦彰,对增强解题能力大有裨益。
1.利用三角函数求极值(1)二倍角公式法:如果所求物理量的表达式可以化成y=A sin θcos θ,则根据二倍角公式,有y=sin2θ,当θ=45°时,y有最大值,y max=.(2)和差角公式法:如果所求物理量的表达式为y=a sin θ+b cos θ,通过和差角公式转化为y=sin(θ+φ),当θ+φ=90°时,y有最大值,y max=.2.利用二次函数求极值二次函数y=ax2+bx+c(a、b、c为常数且a≠0),当x=-时,y有极值y m=(a>0时,y m 为极小值;a<0时,y m为极大值).3.利用均值不等式求极值对于两个大于零的变量a、b,若其和a+b为一定值,则当a=b时,其积ab有极大值;若其积ab为一定值,则当a=b时,其和a+b有极小值.【典例突破】利用数学方法求极值分析求解物理量在某物理过程中的极大值或极小值是很常见的物理问题,这类问题的数学解法Fθ有很多,【例1】重为G 的木块与水平面间动摩擦因数为μ,一人欲用最小的作用力F 使木块沿地面匀速运动,则此最小作用力的大小和方向如何?【练1】如图所示,质量为kg M 2=的木块与水平地面的动摩擦因数4.0=μ,木块用轻绳绕过光滑的定滑轮,轻绳另一端施一大小为20N 的恒力F ,使木块沿地面向右做直线运动,定滑轮离地面的高度cm h 10=,木块M 可视为质点,问木块从较远处向右运动到离定滑轮多远时加速度最大?最大加速度为多少?【例2】 在场强为E 的水平匀强电场中以初速度v 0竖直向上发射一个质量为m 、带电荷量为+q 的小球,求小球在运动过程中具有的最小速度.(重力加速度为g )【练2】一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s 2的加速度开始行驶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理解题中求极值的常用方法运用数学工具处理物理问题的能力是高考重点考查的五种能力之一,其中极值的计算在教学中频繁出现。
因为极值问题范围广、习题多,会考、高考又经常考查,应该得到足够重视。
另外很多学生数、理结合能力差,这里正是加强数理结合的“切人点”。
学生求极值,方法较少,教师应该在高考专题复习中提供多种求极值的方法。
求解物理极值问题可以从物理过程的分析着手,也可以从数学方法角度思考,下面重点对数学方法求解物理极值问题作些说明。
1、利用顶点坐标法求极值对于典型的一元二次函数y=ax 2+bx+c,若a>0,则当x=-a b 2时,y 有极小值,为y min =a b ac 442-;若a<0,则当x=-ab2时,y 有极大值,为y max =a b ac 442-;2、利用一元二次函数判别式求极值 对于二次函数y=ax 2+bx+c ,用判别式法·利用Δ=b 2-4ac ≥0。
(式中含y) 若y ≥A ,则y min =A 。
若y ≤A ,则y max =A 。
3、利用配方法求极值对于二次函数y=ax 2+bx+c ,函数解析式经配方可变为y=(x-A)2+常数:(1)当x =A 时,常数为极小值;或者函数解析式经配方可变为y = -( x -A )2+常数。
(2)当x =A 时,常数为极大值。
4、利用均值定理法求极值 均值定理可表述为≥+2ba ab ,式中a 、b 可以是单个变量,也可以是多项式。
当a =b 时, (a+b)min =2ab 。
—当a =b 时, (a+b) max =2)(2b a +。
5、利用三角函数求极值如果所求物理量表达式中含有三角函数,可利用三角函数的极值求解。
若所求物理量表达式可化为“y=Asin ααcos ”的形式,则y=21Asin2α,在α=45º时,y 有极值2A 。
对于复杂的三角函数,例如y=asin θ+bcos θ,要求极值时先需要把不同名的三角函数sin θ和cos θ,变成同名的三角函数,比如sin(θ+ф) 。
这个工作叫做“化一”。
首先应作辅助角如所示。
…考虑asin θ+bcos θ= (θθcos sin 2222ba b ba a +++)=22b a + (cos фsin θ+sin фcos θ)=22b a +sin(θ+ф) 其最大值为22b a +。
6、用图象法求极值通过分析物理过程遵循的物理规律,找到变量之间的函数关系,作出其图象,由图象可求得极值。
7、用分析法求极值分析物理过程,根据物理规律确定临界条件求解极值。
下面针对上述7种方法做举例说明。
…例1:如图2所示的电路中。
电源的电动势ε=12伏,内阻r =欧,外电阻R 1=2欧,R 2=3欧,滑动变阻器R 3=5欧。
求滑动变阻器的滑动头P 滑到什么位置,电路中的伏特计的示数有最大值最大值是多少R 1R 3ap b^R 2图2^ab 图1分析:设aP 间电阻为x ,外电路总电阻为R. 则:"10)8)(2(532)53)(2())((321321X X X X R R R X R R X R R -+=++-++=++-++=先求出外电阻的最大值R max 再求出伏特计示数的最大值U max 。
本题的关键是求R max ,下面用四种方法求解R max 。
[方法一] 用顶点坐标法求解抛物线方程可表示为y =ax 2+bx+c 。
考虑R =10)8)(2(x x -+=101662++-x x ,设y =-x 2+6x+16,当x =ab2-= —)1(26-=3时,R max (3)=101636)3(2+⨯+- =Ω。
…[方法二] 用配方法求解考虑R =10)8)(2(x x -+ =101662++-x x =1025)3(2+--x 。
即x =3Ω时,R max =5.21025=Ω。
[方法三] 用判别式法求解考虑R =101662++-x x ,则有-x 2+6x+16-10R =0,Δ=b 2-4ac =36-4(-1)(16-10R)>0,即:100-40R ≥0,,R ≤Ω,即R max =Ω。
[方法四] 用均值定理法求解 考虑R =10)8)(2(x x -+,设a =2+x ;b =8-x 。
当a =b 时,即2+x =8-x , 即x =3Ω时,R max (3)=10)38)(32(-+ =Ω。
也可以用上面公式(a+b)max =2)]8)(2[(2x x -+=25,R max =10)(max b a +=1025=Ω。
;以上用四种方法求出R max =Ω,下边求伏特计的最大读数。
I min =rR +m ax ε=5.05.212+=4(A)。
U max =ε- I min r =12-4⨯=10(V)。
即变阻器的滑动头P 滑到R 3的中点Ω处,伏特计有最大值,最大值为10伏。
例2:如图3所示。
光滑轨道竖直放置,半圆部分的半径为R ,在水平轨道上停着一个质量为M =的木块,一颗质量为m =的子弹,以V 0=400m/s 的水平速度射入木块中,然后一起运动到轨道最高点水平抛出,试分析:当圆半径R 多大时,平抛的水平位移是最大且最大值为多少>[解析]子弹与木块发生碰撞的过程,动量守恒,设共同速度为V 1,则: mV 0=(m+M)V 1, 所以:V 1=0V M m m +=s m s m /4/40099.001.001.0=⨯+图3设在轨道最高点平抛时物块的速度为V 2,由于轨道光滑,故机械能守恒:2221)(21)(2)(21V M m gR M m V m M +++=+ 所以:V 2=)/(])(4)[(21M m gR m M V M m ++-+=R R Rg V 401610444221-=⨯-=-:则平抛后的位移可以表示为:s =V 2t =V 2104)4016(4RR g R ⨯-=⨯=4R R 4.02+-。
因为a=-1<0,所以水平位移S 应该存在最大值。
当R=)1(24.02-⨯-=-a b =时, S max =例3:在一平直较窄的公路上,一辆汽车正以22m/s 的速度匀速行驶,正前方有一辆自行车以4m/s 的速度同向匀速行驶,汽车刹车的最大加速度为6m /s 2,试分析两车不相撞的条件。
[解析]要使二者不相撞,则二者在任一时间内的位移关系应满足、V 0t-S Vt at +<221 (式中S 为汽车刹车时与自行车间距) 代入数据整理得:3t 2-18t+S>0, 显然,当满足∆=b 2-4ac ≥0,即∆=182-4⨯3S ≥0得:S ≤27m ,S min =27m 。
当汽车刹车时与自行车间距为27米时是汽车不与自行车相撞的条件。
例4:如图4所示。
一辆四分之一圆弧小车停在不光滑水平地面上,质量为m 的小球从静止开始由车顶无摩擦滑下,且小车始终保持静止状态,试分析:当小球运动到什么位置时,地面对小车的摩擦力最大最大值是多少图4@[解析]:设圆弧半径为R ,当小球运动到重力mg 与半径夹角为θ时,速度为V ,根据机械能守恒定律和牛顿第二定律有:RVmmg N mgR mV 22cos cos 21=-=θθ 解得小球对小车的压力为:N=3mgcos θ,其水平分量为:N x =3mgsin θcos θ=θ2sin 23mg 根据平衡条件,地面对小车的静摩擦力水平向右,大小为:f= N x =θ2sin 23mg 可以看出:当sin2θ=1,即θ=45º时,地面对小车的静摩擦力最大,其值为:f max =mg 23。
~例5:如图5所示。
质量为m 的物体由力F 牵引而在地面上匀速直线运动。
物体与地面间的滑动摩擦系数为μ,求力F 最小时的牵引角θ。
(F 的方向是随θ变化的。
)[解析]:因物体匀速直线运动,所以有::Fcos θ-f =0 ①f =μN =μ(mg-Fsin θ) ②②代人①得:Fcos θ-μmg+μFsin θ=0 即:F =θμθμsin cos +mg。
分母为两项不同名的三角函数,需要转化成同名的三角函数,也就是需要“化一”。
由前面的“化一”结论得:a sin θ+b cos θ=22b a +sin(θ+ф) 考虑本题分母:μsin θ+cos θ与a sin θ+b cos θ用比较法,得:a =μ;b =1。
于是tg ф=μ1=a b ,则ф=arc tg μ1。
所以,μsin θ+cos θ=12+μsin(θ+arc tg μ1)。
要使F 最小,则分母μsin θ+cos θ需最大,因此,θ+arc tgμ1=2π。
所以有:θ=2π-arc tg μ1=2π-arc ctg μ=arc tg μ。
,即:θ=arc tg μ时,F 最小。
作为教师,运用“求导数”对本题验算非常简便。
F =θμθμsin cos +mg 。
考虑0=θd dF,则有μcos θ-sinθ=0则θ=arc tg μ,即当F 最小时,牵引角θ=arc tg μ。
例6:甲、乙两物体同时、同地、同向由静止出发,甲做匀加速直线运动,加速度为4米/秒2,4秒后改为匀速直线运动;乙做匀加速直线运动,加速度为2米/秒2,10秒后改为匀速直线运动,求乙追上甲之前它们之间的最大距离。
分析:运用物理规律和图形相结合求极值.是常用的一种比较直观的方法。
由题意可知,4秒后甲做匀速直线运动的速度为:V 甲=a 甲t 甲=4⨯4=16(m /s)。
乙10秒后做匀速运动的速度为:V 乙=a 乙t 乙=2⨯10=20(m /s)。
、可画出v —t 如上图6所示。
图线在A(8,16)点相交,这表明在t =8秒时,两物体的速度相等,因此.在t =8秒时,两者间的距离最大。
此时两图线所围观积之差,就是两者间的最大距离。
即S max =21⨯4⨯16 + 4⨯16 —21⨯8⨯16=32(m)。
用分析法求极值在物理计算中较常见。
经过对物理状态或过程分析后求极值,不一定要用繁难的数学,关键是确定临界状态和过程的最值。
;例7:如图7所示。
AB 、CD 是两条足够长的固定平行金属导轨,两条导轨间的距离为L ,导轨平面与平面的夹角是θ,在整个导轨平面内部有垂直于导轨平面斜向上方的匀强磁场,磁感应强度为B 。
在导轨的AC 端连接一个阻值为R 的电阻,一根垂直于导轨放置的金属棒ab ,质量为m ,从静止开始沿导轨下滑。
已知ab 与导轨间的滑动摩擦系数为μ,导轨和金属棒的电阻不计。
求ab 棒的最大速度。
、[解析]:采用分析法要注意抓三个环节,即分析物理过程;确定极值状态;运用物理规律求解。
金属棒ab 横截面受力如上图7所示。