11第十一章 动态时间序列分析

合集下载

时间序列分析方法第11章向量自回归共8页

时间序列分析方法第11章向量自回归共8页

第十一章 向量自回归前一章我们讨论了向量随机过程的基本性质。

本章我们将深入分析向量自回归模型,这种模型更适合于估计和预测。

由于Sims(1980)年在经济中的出色运用,向量自回归模型在分析经济系统的动态性上得到了广泛的应用。

§11.1 无限制向量自回归模型的极大似然估计和假设检验按照时间序列模型极大似然估计方法,我们首先分析向量自回归模型的条件似然估计。

11.1.1 向量自回归模型的条件似然函数假设t y 表示一个包含时间t 时n 个变量的1⨯n 的向量。

假设t y 的动态过程可以由下面的p 阶高斯向量自回归过程:假设我们已经在)(p T +个时间间隔中观测到这些n 个变量的观测值。

如同标量过程时的情形,最简单的方法是将前p 个样本(表示为021,,,y y y +-+-p p )做为条件,然后利用后面的T 个样本(表示为T y y y ,,,21 )形成参数估计。

我们的目的是构造下面的条件似然函数:这里参数向量为)(Ω,Φ,,Φ,Φc,θp 21 =,我们在上述函数中相对于参数θ进行极大化。

一般情形下,向量自回归模型是在条件似然函数基础上,而不是在无条件似然函数基础上进行估计的。

为了简单起见,我们将上述“条件似然函数”称为“似然函数”,相应的“条件极大似然估计”称为“极大似然估计”。

向量自回归与标量自回归过程的似然函数的计算方法是类似的。

基于时刻1-t 以前观测值,时刻t 的t y 值等于常数向量:p t p t t ---++++y Φy Φy Φc 2211,加上一个多元正态分布的随机向量)(~Ω0,εt N ,因此条件分布为:我们可以将上述条件分布表示成为更为紧凑的形式。

假设向量t x 是常数向量和t y 滞后值向量构成的综合向量:这是一个维数为]1)1[(⨯+np 的列向量。

假设Π'表示下述)]1([+⨯np n 维矩阵: 这时条件均值可以表示为t x Π',Π'的第j 行包含V AR 模型第j 个方程中的参数。

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第11章 OLS用于时间序列数据的其他问题【

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第11章 OLS用于时间序列数据的其他问题【

第11章OLS 用于时间序列数据的其他问题11.1复习笔记一、平稳和弱相关时间序列1.平稳和非平稳时间序列平稳时间序列过程,就是概率分布在如下意义上跨时期稳定的时间序列过程:如果从这个序列中任取一个随机变量集,并把这个序列向前移动h 个时期,那么其联合概率分布仍然保持不变。

(1)平稳随机过程对于随机过程{ 1 2 }t x t =:,,…,如果对于每一个时间指标集121m t t t ≤<<⋅⋅⋅<和任意整数h≥1,()12m t t t x x x ⋅⋅⋅,,,的联合分布都与()12 m t h t h t h x x x ++⋅⋅⋅+,,,的联合分布相同,那么这个随机过程就是平稳的。

这种平稳经常称为严平稳,它是从概率分布的角度去定义的。

其含义之一是(取m=1和t 1=1):对所有t=2,3,…,x 1与x t 都有相同的分布。

序列{ 1 2 }t x t =:,,…是同分布的。

不平稳的随机过程称为非平稳过程。

因为平稳性是潜在随机过程而非其某单个实现的性质,所以很难判断所搜集到的数据是否由一个平稳过程生成。

但是,要指出某些序列不是平稳的却很容易。

(2)协方差平稳过程(宽平稳,弱平稳)对于一个具有有限二阶矩()2t E x ⎡⎤∞⎣⎦<的随机过程{ 1 2 }t x t =:,,…,若:(i)E(x t )为常数;(ii)Var(x t )为常数;(iii)对任何t,h≥1,Cov(x t ,x t+h )仅取决于h,而不取决于t,那它就是协方差平稳的。

协方差平稳只考虑随机过程的前两阶矩:这个过程的均值和方差不随着时间而变化,而且,x t 和x t+h 的协方差只取决于这两项之间的距离h,与起始时期t 的位置无关。

由此立即可知x t 与x t+h 之间的相关性也只取决于h。

如果一个平稳过程具有有限二阶矩,那么它一定是协方差平稳的,但反过来未必正确。

由于严平稳的条件比较苛刻,在实际中从概率分布的角度去验证是无法实现的,所以在实际运用中所指的平稳都是指宽平稳,即协方差平稳。

《时间序列分析法》课件

《时间序列分析法》课件
《时间序列分析法》ppt课件
目录
• 时间序列分析法概述 • 时间序列数据的预处理 • 时间序列的模型选择 • 时间序列的预测与分析 • 时间序列分析法的实际应用案例 • 时间序列分析法的未来发展与挑战
01
时间序列分析法概述
时间序列分析法的定义
时间序列分析法是一种统计方法,通 过对某一指标在不同时间点的观测值 进行统计分析,以揭示其内在的规律 和趋势。
处理速度要求高
大数据时代要求快速处理和分析时间序列数据 ,以满足实时性和高效率的需求。
数据质量与噪声处理
大数据中存在大量噪声和异常值,需要有效的方法进行清洗和预处理。
时间序列分析法与其他方法的融合
统计学方法
时间序列分析法可以与统计学方 法相结合,利用统计原理对数据 进行建模和推断。
深度学习方法
深度学习在处理复杂模式和抽象 特征方面具有优势,可以与时间 序列分析法相互补充。
ARIMA模型
适用于平稳时间序列的预测, 通过差分和整合方式处理非平
稳数据。
指数平滑法
适用于具有趋势和季节性变化 的时间序列,通过不同权重调 整预测值。
神经网络
适用于复杂非线性时间序列, 通过训练数据建立预测模型。
支持向量机
适用于小样本数据和分类问题 ,通过核函数处理非线性问题

预测精度评估
均方误差(MSE)
它通常用于预测未来趋势、分析周期 波动、研究长期变化等方面。
时间序列分析法的应用领域
金融市场分析
用于股票、债券、商品等市场的价格预测和 风险评估。
气象预报
通过对历史气象数据的分析,预测未来的天 气变化。
经济周期研究
分析经济周期波动,预测经济走势。

第11章 时间序列预测法 《市场调查与预测》PPT课件

第11章 时间序列预测法  《市场调查与预测》PPT课件
返回目录
11.3 移动平均法
二次移动平均法的预测步骤:
返回目录
11.3 移动平均法
11.3.3加权移动平均法 加权移动平均法,是对市场现象观察值按距离预测期的远近,给予不同的权数,
并求其按加权计算的移动平均值,以移动平均值为基础进行预测的方法。
Ft1
ft yt ft1 yt1 ft ft1
f y tn1 tn1 ftn1
返回目录
11.4 指数平滑法
11.4.1指数平滑法的含义及特点 指数平滑法是由移动平均法改进而来的,是一种特殊的加权移动平均法,也称为
指数加权平均法。 这种方法既有移动平均法的长处,又可以减少历史数据的数量。
返回目录
11.4 指数平滑法
11.4.1指数平滑法的含义及特点 指数平滑法主要具有以下几方面的特点:
中,移动平均法主要用来有效的消除不规则变动和季节变动对原序列的影响。 (4)移动平均采用奇数项移动能一次对准被移动数据的中间位置,若采用偶数
项移动平均,一次移动平均后的数值将置于居中的两项数值之间。 (5)移动周期至少为一个周期,并且是对不同时间的观察值进行修匀。
返回目录
11.3 移动平均法
11.3.1一次移动平均法 一次移动平均法也称为简单移动平均法,它是利用过去若干期实际的平均值,来
11.4.2指数平滑法的应用 指数平滑法在市场预测中的应用主要有一次指数平滑法和二次指数平滑法[271页字号]。 1.一次指数平滑法 一次指数平滑法,也称为单重指数平滑法,它是指对市场现象观察值计算一次平滑值,并
以一次指数平滑值为基础,估计市场现象的预测值的方法。
返回目录
11.4 指数平滑法
【例11-6】
返回目录
11.5 趋势延伸法

《动态时间序列分析》课件

《动态时间序列分析》课件

基于状态空间模型的动态时间 序列分析方法
状态空间模型是一种常用的动态时间序列分析方法。本节将介绍Kalman滤波 算法、平滑滤波算法和预测方法。
模型评价与选择
在动态时间序列分析中,模型评价与选择是非常关键的。本节将介绍残差分 析、信息准则和模型选择的原则。
ቤተ መጻሕፍቲ ባይዱ
实际案例分析
本节将通过实际案例来展示动态时间序列分析的应用。我们将以股票价格预 测、GDP预测和气温预测为例进行分析。
动态时间序列分析
欢迎来到《动态时间序列分析》PPT课件。在本课程中,我们将深入探讨动态 时间序列分析的概念、应用与方法,以及实际案例分析和未来发展前景。
简介
动态时间序列分析是一种用来研究时间序列数据的方法。本节将介绍动态时 间序列分析的定义以及其应用领域。
时间序列模型与分析方法
本节将介绍ARIMA模型、状态空间模型以及单位根检验方法,这些是时间序列模型与分析中常用的方法。
总结与展望
动态时间序列分析具有一定的局限性,但其发展前景依然广阔。本节将对动 态时间序列分析进行总结,并展望其未来的发展。

时间序列分析课后习题答案

时间序列分析课后习题答案

时间序列分析课后习题答案TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】第9章 时间序列分析课后习题答案第10章(1)30× 31.06×21.05= 30×1.3131 = 39.393(万辆)(2117.11%= (3)设按7.4%的增长速度n 年可翻一番则有 1.07460/302n ==所以 n = log2 / log1.074 = 9.71(年)故能提前0.29年达到翻一番的预定目标。

第11章 (1)以1987年为基期,2003年与1987年相比该地区社会商品零售额共增长:(2)年平均增长速度为1%)8.61(%)2.81(%)101(15555-+⨯+⨯+=0.0833=8.33%(3) 2004年的社会商品零售额应为509.52)0833.01(307=+⨯(亿元)第12章 (1)发展总速度%12.259%)81(%)101(%)121(343=+⨯+⨯+ 平均增长速度=%9892.91%12.25910=-(2)8.561%)61(5002=+⨯(亿元)(3)平均数∑====415.142457041j j y y (亿元),2002年一季度的计划任务:625.1495.142%105=⨯(亿元)。

第13章(1)用每股收益与年份序号回归得^0.3650.193t Y t =+。

预测下一年(第11年)的每股收益为488.211193.0365.0ˆ11=⨯+=Y 元(2)时间数列数据表明该公司股票收益逐年增加,趋势方程也表明平均每年增长0.193元。

是一个较为适合的投资方向。

第14章 (1)移动平均法消除季节变动计算表(2)t T t ⨯+=63995.09625.8ˆ(3)趋势剔出法季节比例计算表(一)上表中,其趋势拟合为直线方程t T t ⨯+=63995.09625.8ˆ。

趋势预测法

趋势预测法
(2)以观察期的每月平均值作为预测期对应月份 的预测值。
当时间序列资料在年度内变动显著,或呈季节性变化 时,如果用上一种方法求得预测值,其精确度难以保证。
例:假设某商品最近四年的每月销售量如表5.1 所示,在95%的可靠程度下,预测2008年的每月 销售量。
①如果以2007年的每月平均值作为2008年的每 月预测值;
零售量为:
y ˆ19 84 7 034 .8 4 7 5 5.7 3(万 8 5) 米
直线趋势延伸法的特点
• (1)直线趋势预测法仅适用于预测目标时间序列 呈现直线长期趋势变动情况。
• (2)它对时间序列资料一律同等看待,在拟合中 消除了季节、不规则、循环三类变动因素的影响
• (3)反映时间序列资料长期趋势的平均变动水平 。
②以四年的每月平均值335.7干元作为2008年的 每月预测值,标准差为:
Sx1
B 2.78 41
B ( 33 .4 3 33 .7 ) 25 ( 33 .5 6 33 .7 ) 25 ( 33 .7 3 33 .7 ) 25 ( 33 .2 9 33 .7 ) 25 2.1 38
在95%的可靠程度下,2008年每 月预测值区间为335.7土1.96x2.78, 即在330.25—341.15千元之间。
❖ 然后,计算某种可靠程度要求时的预测区间。
x tSx
①以2007年的月平均值339.2千元作为2008年 的每月预测值,标准差为:
Sx1
A 121
31.96181.703 11
在95%的可靠程度下,2008年每月预测区 间为339.2±1.96x17.03,即305.8—375.52千 元之间。
算术平均法,就是以观察期数据之和除以 求和时使用的数据个数(或资料期数),求得 平均数。

什么是时间序列分析

什么是时间序列分析

什么是时间序列分析关键信息项:1、时间序列分析的定义2、时间序列分析的目的3、时间序列分析的常用方法4、时间序列数据的特点5、时间序列分析的应用领域6、时间序列分析的步骤7、时间序列分析的局限性11 时间序列分析的定义时间序列分析是一种用于研究数据随时间变化规律的统计方法。

它通过对一系列按时间顺序排列的数据点进行分析,以揭示数据中的趋势、季节性、周期性和随机性等特征。

时间序列分析在经济学、金融学、气象学、工程学等多个领域都有广泛的应用。

111 时间序列数据的特点时间序列数据具有以下几个主要特点:1111 顺序性:数据是按照时间顺序依次记录的,时间顺序对于分析结果具有重要影响。

1112 相关性:相邻时间点的数据之间往往存在一定的相关性。

1113 趋势性:数据可能呈现出长期的上升、下降或稳定的趋势。

1114 季节性:某些数据在一年内的特定时间段内会表现出相似的模式,如销售数据在节假日期间的增加。

1115 随机性:数据中还包含了一些无法预测的随机波动。

12 时间序列分析的目的时间序列分析的主要目的包括:121 预测未来值:通过对历史数据的分析,预测未来一段时间内数据的可能取值,为决策提供依据。

122 理解数据的动态特征:揭示数据的趋势、季节性和周期性等模式,帮助人们更好地理解数据产生的机制。

123 监测和控制:用于监测系统的运行状态,及时发现异常情况并采取相应的控制措施。

124 评估政策和干预的效果:在政策实施或干预措施执行后,通过时间序列分析评估其对相关数据的影响。

13 时间序列分析的常用方法常用的时间序列分析方法包括:131 移动平均法:通过计算一定时期内数据的平均值来平滑数据,消除随机波动。

132 指数平滑法:对历史数据进行加权平均,给予近期数据更高的权重,以更好地反映数据的最新变化。

133 自回归模型(AR):利用数据自身的滞后值来预测当前值。

134 移动平均自回归模型(ARMA):结合自回归和移动平均的特点进行建模。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
增长速度=报告期增长量/基期发展水平 =(报告期发展水平-基期发展水平)/基期发展水平 =发展速度-1
(1)定基增长速度
1 0 0
(2)环比增长速度
1 0 0 2 1 1
2 0 0
3 0 0
n 0 0
n n1 3 2 n1 2
3、随机型时间序列(非平稳时间序列)
时间序列由一系列随机变量Xt构成,带有较大偶然性和随机 性,不能完整表现为Y=F(t),但可用回归分析对之加以拟合, 用Y=F(t)+ε来近似。
4、季节型和循环型时间序列
观察法和季节指数法。
第二节 确定型时间序列的分析方法
一、确定型时间序列动态分析指标 对时间序列分析的一系列动态分析指标可 以分为两大类, 水平指标(发展水平、增长水平、平均 发展水平、平均增长水平 )
3、定基发展速度与环比发展速度关系
定基发展速度等于相应的各环比发展速度的 连乘积
n n i 0 i 1 i 1
4、平均发展速度
• 平均发展速度是某一段时间内,各时期环比发展速度 的平均数,用以说明现象在这段时间内逐年平均发展 变化的程度。
• 由于社会经济现象在各个时期所处的条件及影响其变 化的因素不同,因而各时期的发展速度有差别,平均 发展速度通过对各个时期发展速度的平均,消除了差 别,便于对不同时期社会经济现象的发展变化情况进 行对比。它是编制计划的依据,也常是进行各种推算 和预测的依据。 • 平均发展速度依据速度指标的特性采用几何平均法和 方程法两种计算方法。
1、平均水平指标--序时平均数计算
时期指标
①时间间隔相等:序时平均数计算算术平均数。 i
n
式中:a 是序时平均数;ai(i=1,2,⋯,n)是各个时期的发展水平; n 是时期数目。 f ②时间间隔不等:序时平均数取时间加权平均数。 i i

fi
时点指标:
①时间间隔相等:首末折半。
三、时间序列种类
1、绝对数动态序列 总量指标动态序列,将一系列总 量绝对标志值按时间先后顺序排列起来的数列,反映 现象在一段时间内达到的水平及增减变化状况。根据 绝对量反映的具体对象在时间上不同,又可分为: 时期数列 (流量值) 时点数列 (存量值) 2、相对数动态数列 将某一相对指标在不同时间上的 指标值按时间顺序排列而成的序列,它反映的是社会 经济现象间相互联系的发展变化情况及规律性。 3、平均数相对数列 以平均指标值形式出现的时间序 列,反映现象在不同时间上的一般代表水平。各指标 值不能直接相加。
• 为了研究社会经济现象发展变化的趋势或规律,就需要将这些 不同因素的不同作用结果从时间数列的实际数据中分离出来, 通过时间数列的结构深入分析,研究社会经济现象发展变化的 趋势或规律,为预测、决策、管理提供有效依据。
二、时间数列的构成因素
• • • • 长期趋势(T-trend,general) 季节变动 (S-seasonal) 循环变动(C-circle) 不规则变动(I-irregular)
三、不同形态时间序列分析方法
1、确定型时间序列
用指标分析法,通过指标值Y与时间t之间确切的时间函数关 系方程式来计算,如 Y=f(t). 指标包括:水平指标和速度指标
2、趋势型时间序列(平稳性随机时间序列)
在现实生活中往往受到市场干扰,气候,局地自然境影响, 个人行为,素质偏差等因素干扰而表现出更多的数值特征的 随机性和趋势性,将它们分解为Trend,Sensond,Cycle, Rand/ lirregular)四种波动来进行动态近似分析。
(1)时距扩大法 • 把原有时间序列中各时期资料加以合并,扩大每段 计算所包括的时间,得出较长时距的新动态数列, 同时消除远序列中时距较短受偶然因素所引起的不 规则波动,使时间序列某种趋势变动明显化,清楚 化。
(1)几何平均法 即水平法,若以x1,x2,⋯,xn 分别表示各 期的环比发展速度,则这段时间年的平均 发展速度x 为
x
n
i i 1 i 1
n
n x n 0

某企业生产发展情况
1984年 677
(单位:万元)
1986年 757 118.82 103.42 1987年 779 115.07 102.91 1988年 819 120.97 105.13
第11章 动态时间序列分析
时间序列的概念及分类 不同形态时间序列分析 确定型时间序列分析 趋势型时间序列分析 时间序列预测与修正
第一节 时间序列的概念及种类
一、时间序列概念
反映观察和研究对象随时间发展变化的指标数 值顺序排列,形成的观测数据序列Xt称为时间 序列或动态数列。
如某实验中混凝土固结情况测试:
• 增长1%的绝对值 = 逐期增长量/环比增长速度 = 前期水平/100
i i 1 i i 1 i 1 i i 1 ( i 1) 100 100 100 i 1 i 1
3、平均增长速度
指时间数列中各期环比增长速度的序时平均数, 它表明社会经济现象在一个较长时期内逐期增长 的平均程度。 平均增长速度=平均发展速度一1
1 2 3 n i
n i 1 n
0 x 0 x 0 x 0 x i
i 1 n i 1
2
3
n
0 x x
n
n
i
i
i
0
解这个高次方程,得到的x的正根就是所求的平均发展速度。
②时间间隔不相等:以时间间隔长度f 为权数,计算加权序时平 均数:
2、相对数(平均数)数列序时平均数
根据时期数列和时点数列序时平均数的求法,分别 求出构成相对数和平均数时间数列的子项和母项 数列的序时平均数,然后将它们对比求出相对数 和平均数时间数列的序时平均数。其基本计算公 式为 a c b
其中,为分子数列的序时平均数, a b 为分母数列的序时平均 数,c 为相对数或平均数时间数列的序时平均数。
速度指标(发展速度、增长速度、平均 发展速度、平均增长速度)
二、 发展水平和平均发展水平
发展水平是时间序列中原有的统计指标数值,它 通常用符号a 表示。a0,a1,⋯,an 是序列各个 时期(或时点)的发展水平,其中a0-最初水平, an-最末水平,ai-中间各时期(或各时点)的水 平。基期和报告期是随对比的时间而确定。 平均发展水平是把不同时间的发展指标值加以 平均所得到的平均数,表示一段时间发展变化 的趋势的平均水平,也称为序时平均数,它将 同一总体在不同时间上的数量差异抽样化,从 动态上反映现象在一段时间的一般发展水平。
第三节 趋势型(平稳)时间数列的动态分析
一、时间数列结构分析的意义
①有些属于基本因素,它对事物的发展起决定性作用,影响事 物在一段较长时间内呈现出一定的趋向,沿着一个方向(上升 或下降)发展; ②有些属于偶然的或非基本的因素,它对事物的发展只起局部 的非决定性作用,影响时间数列各期发展水平出现短期不规则 的波动; ③还有些属于季节性因素,影响时间数列以一年为周期的季节 性波动。
3、序时平均数的意义
• 序时平均数在时间序列的动态分析中,可 以用来修匀序列,消除现象在短时间内的 波动,使序列能更明显地反映出现象的发 展变化趋势。 • 序时平均数还广泛用来对比不同单位、不 同地区、不同部门以至不同国家在某一时 间内现象发展的一般水平。
三、发展速度和平均发展速度
发展速度是时间序列中两个时期发展水平的比,即 发展速度=报告期水平/基期水平 发展速度是用来研究社会经济现象发展程度的相对 指标,说明报告期水平已发展到基期水平的若干倍 或百分之几。由于计算发展速度时采用的基期不同, 发展速度可分为定基与环比两种。 发展速度不仅表明社会经济现象发展的程度,还表 明其发展的方向。若发展速度大于1 即大于100%, 说明现象是上升的发展趋势;着小于1 即小于100 %,说明现象是下降的发展趋势。
(3)当报告期水平高于基期水平时,发展速度大于 1或100%,增长速度为正值,表示现象增长的程度, 亦称增长率;当计算期水平低于基期水平时,发展 速度小于1或100%,增长速度为负值,表示现象降 低的程度,亦称降低率。
(4)增长1%的绝对值指标
统计上把增长速度和增长量结合起来的分析指标,就是增 长百分之一的绝对值。这一指标不仅可用于比较同一事物 不同时期增长速度的经济意义,还可以用于比较不同国家、 不同地区、不同单位之间同一事物增长速度所隐含的不同 经济意义。能反映不同的对比基点下,增长速度和增长绝 对数值上的差异。其计算公式为:
时间(t) 1小时 耐压力 ( Xt )
12 kg
单位:kg/m2
5小时
22 kg
2小时
18 kg
3小时
20 kg
4小时
21 kg
6小时
22 kg
二、时间数列的作用
1、对时间序列进行分析的目的是描述时 间序列的过去行为,总结其随着时间 发展变化的趋势和分析其规律,预测 未来的情况。 2、研究长期趋势、季节变动、循环变动 及不规则变动的影响,对社会经济现 象的发展过程、发展前景进行数学模 型分析和评价、预测。
i 0
n
i 1
i
i 1
n
0
平均增长量:指时间数列中各逐期增长量的序时
平均数,说明某社会经济现象在一段时期内平均 每期增加或减少的数量。
平均增长量
i 1
( i
n
i 1 ) n

n 0
n
2、增长速度
表明社会经济现象增长程度的动态相对指标,它是根 据增长量与基期发展水平对比求得的,用以说明报告 期水平比基期水平增加了若干倍(或百分之几),其计 算结果一般用倍数或百分数表示。用公式表示为:
三、影响时间数列的因素作用方式
相关文档
最新文档