2017年内蒙古自主招生数学模拟题

合集下载

2017年内蒙古呼和浩特市高考数学二模试卷(理科)

2017年内蒙古呼和浩特市高考数学二模试卷(理科)

2017年内蒙古呼和浩特市高考数学二模试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合M={x|x<1},N={x|x(x﹣1)<0},则M∪N=()A.∅B.{x|0<x<1}C.{x|x<0}D.{x|x<1}2.(5分)复数的虚部为()A.i B.1 C.﹣i D.﹣13.(5分)下列函数中满足在(﹣∞,0)上单调递减的偶函数是()A.B.y=|log2(﹣x)| C.D.y=sin|x|4.(5分)某工厂生产某种产品的产量x(吨)与相应的生产成本y(万元)有如下几组样本数据:据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得到其回归直线的斜率为0.8,则当该产品的生产成本是6.7万元时,其相应的产量约是()A.8 B.8.5 C.9 D.9.55.(5分)双曲线(a>0,b>0)的渐近线为等边三角形OAB的边OA、OB所在直线,直线AB过焦点,且|AB|=2,则双曲线实轴长为()A.B.C.D.36.(5分)如图,⊙O与x轴的正半轴交点为A,点B,C在⊙O上,且B(,﹣),点C在第一象限,∠AOC=α,BC=1,则cos(﹣α)=()A.﹣ B.﹣ C.D.7.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各面中,最长棱的长度是()A.B.C.6 D.8.(5分)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=3,n=3,输入的a依次为由小到大顺序排列的质数(从最小质数开始),直到结束为止,则输出的s=()A.9 B.27 C.32 D.1039.(5分)在封闭直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=15,BC=8,AA1=5,则V的最大值是()A. B.C.D.36π10.(5分)设函数,且αsinα﹣βsinβ>0,则下列不等式必定成立的是()A.α>βB.α<βC.α+β>0 D.α2>β211.(5分)已知椭圆(a>b>0)的左顶点和上顶点分别为A,B,左、右焦点分别是F1,F2,在线段AB上有且仅有一个点P满足PF1⊥PF2,则椭圆的离心率为()A.B.C.D.12.(5分)如果对一切实数x、y,不等式﹣cos2x≥asinx﹣恒成立,则实数a 的取值范围是()A.(﹣∞,]B.[3,+∞)C.[﹣2,2]D.[﹣3,3]二、填空题(本大题共4个小题,每小题5分,共20分.把答案直接填在题中横线上.)13.(5分)已知向量,,则向量在方向上的投影为.14.(5分)如图,在△ABC中,已知点D在BC边上,AD⊥AC,AB=2,sin∠BAC=,AD=3,则BD的长为.15.(5分)设随机向量η服从正态分布N(1,σ2),若P(η<﹣1)=0.2,则函数f(x)=x没有极值点的概率是.16.(5分)天干地支纪年法,源于中国.中国自古便有十天干与十二地支.十天干即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如说第一年为“甲子”,第二年为“乙丑”,第三年“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”从新开始,即“甲戊”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,以此类推.已知1949年为“己丑”年,那么到新中国成立80年时,即2029年为年.三、解答题(本大题共6个小题,满分60分,解答写出文字说明,证明过程或演算过程)17.(12分)已知数列{a n}的各项都是正数,它的前n项和为S n,满足2S n=a n2+a n,记b n=(﹣1)n.(1)求数列{a n}的通项公式;(2)求数列{b n}的前2016项的和.18.(12分)如图,在四棱锥P﹣ABCD中,AD∥BC,BC⊥CD,点P在底面ABCD上的射影为A,BC=CD=AD=1,E为棱AD的中点,M为棱PA的中点.(1)求证:BM∥平面PCD;(2)若∠ADP=45°,求二面角A﹣PC﹣E的余弦值.19.(12分)某厂用鲜牛奶在某台设备上生产A,B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产A,B两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.(1)求Z的分布列和均值;(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.20.(12分)在平面直角坐标系中,动圆经过点M(0,t﹣2),N(0,t+2),P (﹣2,0).其中t∈R.(1)求动圆圆心E的轨迹方程;(2)过点P作直线l交轨迹E于不同的两点A,B,直线OA与直线OB分别交直线x=2于两点C,D,记△ACD与△BCD的面积分别为S1,S2.求S1+S2的最小值.21.(12分)已知函f(x)=lnx﹣ax2+(2﹣a)x.①讨论f(x)的单调性;②设a>0,证明:当0<x<时,;③函数y=f(x)的图象与x轴相交于A、B两点,线段AB中点的横坐标为x0,证明f′(x0)<0.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计算,作答时请写清题号.选修4-4:坐标系与参数方程22.(10分)在极坐标系中,点P的坐标是(1,0),曲线C的方程为ρ=2.以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,斜率为﹣1的直线l经过点P.(1)写出直线l的参数方程和曲线C的直角坐标方程;(2)若直线l和曲线C相交于两点A,B,求|PA|2+|PB|2的值.选修4-5:不等式选讲23.已知函数f(x)=|x+1|+|x﹣2|,不等式f(x)≥t对∀x∈R恒成立.(1)求t的取值范围;(2)记t的最大值为T,若正实数a,b满足a2+b2=T,求证:≤.2017年内蒙古呼和浩特市高考数学二模试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合M={x|x<1},N={x|x(x﹣1)<0},则M∪N=()A.∅B.{x|0<x<1}C.{x|x<0}D.{x|x<1}【解答】解:集合M={x|x<1},N={x|x(x﹣1)<0}={x|0<x<1},∴M∪N={x|x<1}.故选:D.2.(5分)复数的虚部为()A.i B.1 C.﹣i D.﹣1【解答】解:.复数的虚部为1故选B.3.(5分)下列函数中满足在(﹣∞,0)上单调递减的偶函数是()A.B.y=|log2(﹣x)| C.D.y=sin|x|【解答】解:对于A:根据指数函数的性质,的图象是y=图象把y轴的右边图象翻折后得左边图象,在(﹣∞,0)上单调递增函数,∴A不对.对于B:根据图象,y=|log2(﹣x)|,在(﹣∞,﹣1)是减函数,(﹣1,0)是增函数,∴B不对.对于C:根据幂函数的性质可知:是偶函数,指数,(0,+∞)是增函数.(﹣∞,0)上单调递减.∴C对.对于D:根据正弦函数的性质可知:y=sin|x|的图象是由sinx在y轴的右边图象翻折后得左边图象.故选:C.4.(5分)某工厂生产某种产品的产量x(吨)与相应的生产成本y(万元)有如下几组样本数据:据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得到其回归直线的斜率为0.8,则当该产品的生产成本是6.7万元时,其相应的产量约是()A.8 B.8.5 C.9 D.9.5【解答】解:计算=×(3+4+5+6)=4.5,=×(2.5+3.1+3.9+4.5)=3.5;代入回归方程=0.8x+得3.5=0.8×4.5+,解得=﹣0.1;∴回归方程为=0.8x﹣0.1,令=0.8x﹣0.1=6.7,解得x=8.5,据此模型预测生产成本是6.7万元时,其相应的产量约是8.5吨.故选:B.5.(5分)双曲线(a>0,b>0)的渐近线为等边三角形OAB的边OA、OB所在直线,直线AB过焦点,且|AB|=2,则双曲线实轴长为()A.B.C.D.3【解答】解:双曲线(a>0,b>0)的渐近线为等边三角形OAB的边OA、OB所在直线,可得,直线AB过焦点,且|AB|=2,可得c=,则,解得a=.则双曲线实轴长为:3.故选:D.6.(5分)如图,⊙O与x轴的正半轴交点为A,点B,C在⊙O上,且B(,﹣),点C在第一象限,∠AOC=α,BC=1,则cos(﹣α)=()A.﹣ B.﹣ C.D.【解答】解:如图,由B(,﹣),得OB=OC=1,又BC=1,∴∠BOC=,∠AOB=,由直角三角形中的三角函数的定义可得sin ()=sin∠AOB=,cos∠AOB=∴sinα=sin()=sin cos∠AOB﹣cos sin∠AOB=,cosα=cos()=cos cos∠AOB+sin sin∠AOB=.∴cos(﹣α)==.故选:B.7.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各面中,最长棱的长度是()A.B.C.6 D.【解答】解:根据题意,得几何体如图;该几何体是三棱锥A﹣BCD,且该三棱锥是放在棱长为4的正方体中,所以,在三棱锥A﹣BCD中,最长的棱长为AD,且AD===6.故选C.8.(5分)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=3,n=3,输入的a依次为由小到大顺序排列的质数(从最小质数开始),直到结束为止,则输出的s=()A.9 B.27 C.32 D.103【解答】解:由题意,模拟程序的运行,可得x=3,n=3,k=0,s=0执行循环体,a=2,s=2,k=1不满足条件k>3,执行循环体,a=3,s=9,k=2不满足条件k>3,执行循环体,a=5,s=32,k=3不满足条件k>3,执行循环体,a=7,s=103,k=4满足条件k>3,退出循环,输出s的值为103.故选:D.9.(5分)在封闭直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=15,BC=8,AA1=5,则V的最大值是()A. B.C.D.36π【解答】解:要使球的体积V最大,必须使球的半径R最大.Rt△ABC中,AB⊥BC,AB=15,BC=8,∴AC=17,△ABC内切圆的半径为r=4,所以由题意易知球与直三棱柱的上、下底面都相切时,球的半径取得最大值为.此时球的体积为πR3=,故选:B.10.(5分)设函数,且αsinα﹣βsinβ>0,则下列不等式必定成立的是()A.α>βB.α<βC.α+β>0 D.α2>β2【解答】解:令f(x)=xsinx,x∈,∵f(﹣x)=﹣x•sin(﹣x)=x•sinx=f(x),∴f(x)=xsinx,x∈为偶函数.又f′(x)=sinx+xcosx,∴当x∈[0,],f′(x)>0,即f(x)=xsinx在x∈[0,]单调递增;同理可证偶函数f(x)=xsinx在x∈[﹣,0]单调递减;∴当0≤|β|<|α|≤时,f(α)>f(β),即αsinα﹣βsinβ>0,反之也成立;故选D.11.(5分)已知椭圆(a>b>0)的左顶点和上顶点分别为A,B,左、右焦点分别是F1,F2,在线段AB上有且仅有一个点P满足PF1⊥PF2,则椭圆的离心率为()A.B.C.D.【解答】解:依题意,作图如下:A(﹣a,0),B(0,b),F1(﹣c,0),F2(c,0),∴直线AB的方程为:,整理得:bx﹣ay+ab=0,设直线AB上的点P(x,y)则bx=ay﹣ab,∴x=y﹣a,∵PF1⊥PF2,∴•=(﹣c﹣x,﹣y)•(c﹣x,﹣y)=x2+y2﹣c2=()2+y2﹣c2,令f(y)=()2+y2﹣c2,则f′(y)=2(y﹣a)×+2y,∴由f′(y)=0得:y=,于是x=﹣,∴•=(﹣)2+()2﹣c2=0,整理得:=c2,又b2=a2﹣c2,e2=,∴e4﹣3e2+1=0,∴e2=,又椭圆的离心率e∈(0,1),∴e=.椭圆的离心率,故选:D.12.(5分)如果对一切实数x、y,不等式﹣cos2x≥asinx﹣恒成立,则实数a 的取值范围是()A.(﹣∞,]B.[3,+∞)C.[﹣2,2]D.[﹣3,3]【解答】解:∀实数x、y,不等式﹣cos2x≥asinx﹣恒成立⇔+≥asinx+1﹣sin2x恒成立,令f(y)=+,则asinx+1﹣sin2x≤f(y)min,当y>0时,f(y)=+≥2=3(当且仅当y=6时取“=”),f(y)min=3;当y<0时,f(y)=+≤﹣2=﹣3(当且仅当y=﹣6时取“=”),f (y)max=﹣3,f(y)min不存在;综上所述,f(y)min=3.所以,asinx+1﹣sin2x≤3,即asinx﹣sin2x≤2恒成立.①若sinx>0,a≤sinx+恒成立,令sinx=t,则0<t≤1,再令g(t)=t+(0<t≤1),则a≤g(t)min.由于g′(t)=1﹣<0,所以,g(t)=t+在区间(0,1]上单调递减,因此,g(t)min=g(1)=3,所以a≤3;②若sinx<0,则a≥sinx+恒成立,同理可得a≥﹣3;③若sinx=0,0≤2恒成立,故a∈R;综合①②③,﹣3≤a≤3.故选:D.二、填空题(本大题共4个小题,每小题5分,共20分.把答案直接填在题中横线上.)13.(5分)已知向量,,则向量在方向上的投影为﹣3.【解答】解:因为向量,,则向量在方向上的投影为;故答案为:﹣3.14.(5分)如图,在△ABC中,已知点D在BC边上,AD⊥AC,AB=2,sin∠BAC=,AD=3,则BD的长为3.【解答】解:在△ABC中,∵点D在BC边上,AD⊥AC,AB=2,sin∠BAC=,AD=3,∴sin(∠BAD+90°)=cos∠BAD=,∴BD===3.故答案为:3.15.(5分)设随机向量η服从正态分布N(1,σ2),若P(η<﹣1)=0.2,则函数f(x)=x没有极值点的概率是0.7.【解答】解:f′(x)=x2+2x+η2,若f(x)没有极值点,则f′(x)=0最多只有1个解,∴△=4﹣4η2≤0,解得η≤﹣1或η≥1.∵η~N(1,σ2),∴P(η≥1)=0.5,又P(η<﹣1)=0.2,∴P(η≤﹣1或η≥1)=0.5+0.2=0.7.故答案为:0.7.16.(5分)天干地支纪年法,源于中国.中国自古便有十天干与十二地支.十天干即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如说第一年为“甲子”,第二年为“乙丑”,第三年“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”从新开始,即“甲戊”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,以此类推.已知1949年为“己丑”年,那么到新中国成立80年时,即2029年为己酉年.【解答】解:天干是以10为构成的等差数列,地支是以12为公差的等差数列,从1949年到2029年经过80年,且1949年为“己丑”年,以1949年的天干和地支分别为首项,则80÷10=8,则2029的天干为己,80÷12=6余8,则2029的地支为酉,故答案为:己酉三、解答题(本大题共6个小题,满分60分,解答写出文字说明,证明过程或演算过程)17.(12分)已知数列{a n}的各项都是正数,它的前n项和为S n,满足2S n=a n2+a n,记b n=(﹣1)n.(1)求数列{a n}的通项公式;(2)求数列{b n}的前2016项的和.【解答】解:(1)∵∴…..(2分)∴….(3分)即(a n+1+a n)(a n+1﹣a n﹣1)=0∵a n>0∴a n+1+a n>0∴a n+1﹣a n=1…..(4分)令n=1,则∴a1=1或a1=0∵a n>0∴a1=1…(5分)∴数列{a n}是以1为首项,以为公差1的等差数列∴a n=a1+(n﹣1)d=n,n∈N*…(6分)(2)由(1)知:…(8分)∴数列{b n}的前2016项的和为T n=b1+b2+…+b2016==…(10分)==…(12分)18.(12分)如图,在四棱锥P﹣ABCD中,AD∥BC,BC⊥CD,点P在底面ABCD上的射影为A,BC=CD=AD=1,E为棱AD的中点,M为棱PA的中点.(1)求证:BM∥平面PCD;(2)若∠ADP=45°,求二面角A﹣PC﹣E的余弦值.【解答】解:(1)证明:法一:取PD的中点N,连接MN,CN.在△PAD中,N、M分别为棱PD、PA的中点∴∵∴四边形BCNM是平行四边形∴BM∥CN∵BM⊂平面PCD,CN⊄平面PCD∴BM∥平面PCD…(5分)(法二:连接EM,BE.在△PAD中,E、M分别为棱AD、PA的中点∴MN∥PD∵AD∥BC,∴四边形BCDE是平行四边形∴BE∥CD∵BE∩ME=E,MN∥PD,BE∥CD∴平面BEM∥平面PCD∵BM⊂平面BEM∴BM∥平面PCD)(2)以A为原点,以,的方向分别为x轴,z轴的正方向建立空间直角坐标系A﹣xyz…(6分)则A(0,0,0),C(2,1,0),E(1,0,0).∵点P在底面ABCD上的射影为A∴PA⊥平面ABCD∵∠ADP=45°∴PA=AD=2∴P(0,0,2)∴,,…..(7分)设平面PAC的一个法向量,则设a=1,则…..(9分)设平面PCE的一个法向量为,则,设x=2,则…(10分)∴cos==…..(11分)由图知:二面角A﹣PC﹣E是锐二面角,设其平面角为θ,则cosθ=|cos|=…(12分)19.(12分)某厂用鲜牛奶在某台设备上生产A,B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产A,B两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.(1)求Z的分布列和均值;(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.【解答】(12分)解:(1)设每天A,B两种产品的生产数量分别为x,y,相应的获利为z,则有,①如图1,目标函数为:z=1000x+1200y.当W=12时,①表示的平面区域如图1,三个顶点分别为A(0,0),B(2.4,4.8),C(6,0).将z=1000x+1200y变形为,当x=2.4,y=4.8时,直线l:在y轴上的截距最大,最大获利Z=Z max=2.4×1000+4.8×1200=8160.当W=15时,①表示的平面区域如图2,三个顶点分别为A(0,0),B(3,6),C(7.5,0)..将z=1000x+1200y变形为,当x=3,y=6时,直线l:在y轴上的截距最大,最大获利Z=Z max=3×1000+6×1200=10200.当W=18时,①表示的平面区域如图3,四个顶点分别为A(0,0),B(3,6),C(6,4),D(9,0).将z=1000x+1200y变形为:,当x=6,y=4时,直线l:y=﹣56x+z1200在y轴上的截距最大,最大获利Z=Z max=6×1000+4×1200=10800.故最大获利Z的分布列为:因此,E(Z)=8160×0.3+10200×0.5+10800×0.2=9708(2)由(Ⅰ)知,一天最大获利超过10000元的概率P1=P(Z>10000)=0.5+0.2=0.7,由二项分布,3天中至少有1天最大获利超过10000元的概率为:.20.(12分)在平面直角坐标系中,动圆经过点M(0,t﹣2),N(0,t+2),P (﹣2,0).其中t∈R.(1)求动圆圆心E的轨迹方程;(2)过点P作直线l交轨迹E于不同的两点A,B,直线OA与直线OB分别交直线x=2于两点C,D,记△ACD与△BCD的面积分别为S1,S2.求S1+S2的最小值.【解答】解:(1)设动圆的圆心为E(x,y)则即:(x+2)2+y2=4+x2∴y2=﹣4x即:动圆圆心的轨迹E的方程为y2=﹣4x….(4分)(2)当直线AB的斜率不存在时,AB⊥x轴,此时,∴∴∴….(5分)当直线AB的斜率存在时,设直线AB的斜率为k,则k≠0,直线AB的方程是y=k(x+2),k≠0.设A(x1,y1),B(x2,y2),联立方程,消去y,得:k2(x+2)2+4x=0(k≠0),即:k2x2+4(k2+1)x+4k2=0(k≠0)∴△=16(2k2+1)>0,,x1x2=4….(7分)由A(x1,y1),B(x2,y2)知,直线AC的方程为,直线AC的方程为,∴,∴,∴,…..(9分)∴,令,则t>0,,由于函数在(0,+∞)上是增函数…(11分)∴∴,综上所述,∴S1+S2的最小值为…(12分)21.(12分)已知函f(x)=lnx﹣ax2+(2﹣a)x.①讨论f(x)的单调性;②设a>0,证明:当0<x<时,;③函数y=f(x)的图象与x轴相交于A、B两点,线段AB中点的横坐标为x0,证明f′(x0)<0.【解答】解:①函数f(x)的定义域为(0,+∞),f'(x)=﹣2ax+(2﹣a)=﹣,(i)当a>0时,则由f'(x)=0,得x=,当x∈(0,)时,f'(x)>0,当x∈(,+∞)时,f'(x)<0,∴f(x)在(0,)单调递增,在(,+∞)上单调递减;(ii)当a≤0时,f(x)>0恒成立,∴f(x)在(0,+∞)单调递增;②设函数g(x)=f(+x)﹣f(﹣x),则g(x)=[ln(+x)﹣a(+x)2+(2﹣a)(+x)]﹣[ln(﹣x)﹣a(﹣x)2+(2﹣a)(﹣x)]=ln(1+ax)﹣ln(1﹣ax)﹣2ax,g'(x)=+﹣2a=,当x∈(0,)时,g'(x)>0,而g(0)=0,∴g(x)>g(0)=0,故当0<x<时,f(+x)>f(﹣x);③由①可得,当a≤0时,函数y=f(x)的图象与x轴至多有一个交点,故a>0,从而f(x)的最大值为f(),且f()>0,不妨设A(x1,0),B(x2,0),0<x1<x2,则0<x1<<x2,由②得,f(﹣x1)=f(﹣x1)>f(x1)=f(x2)=0,又f(x)在(,+∞)上单调递减,∴﹣x1<x2,于是x0=>,由①知,f'(x0)<0.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计算,作答时请写清题号.选修4-4:坐标系与参数方程22.(10分)在极坐标系中,点P的坐标是(1,0),曲线C的方程为ρ=2.以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,斜率为﹣1的直线l经过点P.(1)写出直线l的参数方程和曲线C的直角坐标方程;(2)若直线l和曲线C相交于两点A,B,求|PA|2+|PB|2的值.【解答】(本小题满分10分)解(1)由曲线C的极坐标方程可得,ρ2=2ρcosθ+2ρsinθ,因此曲线C的直角坐标方程为x2+y2=2x+2y点P的直角坐标为(1,0),直线l的倾斜角为135°,所以直线l的参数方程为为参数).(5分)(2)将为参数)代入x2+y2=2x+2y,有,设A,B对应参数分别为t 1,t2,有,根据直线参数方程t 的几何意义有,|PA|2+|PB|2=.(10分)选修4-5:不等式选讲23.已知函数f(x)=|x+1|+|x﹣2|,不等式f(x)≥t对∀x∈R恒成立.(1)求t的取值范围;(2)记t的最大值为T,若正实数a,b满足a2+b2=T,求证:≤.【解答】解:(1)f(x)=|x+1|+|2﹣x|≥|x+1+2﹣x|=3,所以t≤3.(5分)(2)证明:由(1)知T=3,所以a2+b2=3(a>0,b>0)因为a2+b2≥2ab,所以,又因为,所以(当且仅当a=b时取“=”).(10分)。

【配套K12】内蒙古鄂尔多斯市杭锦旗2017年中考数学一模试卷(含解析)

【配套K12】内蒙古鄂尔多斯市杭锦旗2017年中考数学一模试卷(含解析)

2017年内蒙古鄂尔多斯市杭锦旗中考数学一模试卷一、单项选择题(本大题共10题,每题3分,共30分)1.比﹣1大1的数是()A.﹣2 B.0 C.2 D.32.下列四个几何体中,左视图为圆的是()A.B.C.D.3.如果式子有意义,那么x的取值范围在数轴上表示出来,正确的是()A.B.C.D.4.下列运算正确的()A.(﹣a)•(﹣a)4=﹣a5B.(a﹣b)2=a2﹣b2C.(a3)2=a5D.a3+a3=2a65.某班数学兴趣小组10名同学的年龄情况如下表:则这10名同学年龄的平均数和中位数分别是()A.13.5,13.5 B.13.5,13 C.13,13.5 D.13,146.如图,直线m∥n,△ABC的顶点B,C分别在直线n,m上,且∠ACB=90°,若∠1=40°,则∠2的度数为()A.140°B.130°C.120°D.110°7.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.8.下列说法正确的有()①﹣2的值在3和4之间;②当a=1时,关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根;③命题“对顶角相等”的逆命题是真命题;④十边形的内角和为1440°;⑤等边三角形既是轴对称图形又是中心对称图形.A.1个B.2个C.3个D.4个9.如图,在空白网格内将某一个小正方形涂成阴影部分,且所涂的小正方形与原阴影图形的小正方形至少有一边重合.小红按要求涂了一个正方形,所得到的阴影图形恰好是轴对称图形的概率为()A.B.C.D.10.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A. B. C.D.二、填空题(本大题共6题,每题3分,共18分)11.随着空气质量的恶化,雾霾天气现象增多,危害加重.森林是“地球之肺”,每年能为人类提供大约28.3亿吨的有机物,28.3亿可用科学记数法表示为.12.不等式组的最小整数解是.13.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m﹣2]的一次函数是正比例函数,则关于x的方程的解为.14.如图,在△ABC中,CA=CB,∠ACB=90°,AB=,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰好在弧EF上,则图中阴影部分的面积为(结果保留π).15.如图,△ABC、△DCE、△FEG为等边三角形,边长分别为2、3、5,且从左至右如图排列,连接BF,交DC、DE分别于M、N两点,则△DMN的面积为.16.如图,下面每个图形中的四个数都是按相同的规律填写的,根据此规律确定x的值为.三.解答题(本大题共8题,共72分,解答时写出必要的文字说明,演算步骤或推证过程)17.(1)﹣0﹣4cos45°+(﹣3)2(2)先化简,再求代数式﹣÷的值,其中a=3tan30°﹣2.18.王老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:优秀;B:良好;C:合格;D:一般;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,王老师一共调查了多少名同学?(2)将上面的条形统计图补充完整;并求出“D”所占的圆心角的度数;(3)从被调查的A类和D类学生中分别选取一位同学进行“一对一”互助学习,请求出所选两位同学恰好是一位男同学和一位女同学的概率.19.“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A 到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)20.如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于P(n,2),与x 轴交于A(﹣4,0),与y轴交于C,PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象有一点D,使得以B、C、P、D为顶点的四边形是菱形,求出点D的坐标.21.某工艺品厂设计了一款成本为10元/件的小工艺品投放市场进行试销,经过调查,得到如下数据:(1)把上表中x,y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式.(2)当销售单价为多少元时,工艺品厂试销该小工艺品每天获得的利润最大?最大利润是多少?(利润=销售额﹣成本)22.如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,连接CD.过点C作CE⊥DB,垂足为E,直线AB与CE相交于F点.(1)求证:CF为⊙O的切线;(2)当BF=5,sinF=时,求BD的长.23.如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)请直接写出线段AF,AE的数量关系;(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.24.如图,在平面直角坐标系中,圆M经过原点O,直线y=﹣x﹣6与x轴、y轴分别相交于A,B两点.(1)求出A,B两点的坐标;(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设(2)中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得S△PDE=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.2017年内蒙古鄂尔多斯市杭锦旗中考数学一模试卷参考答案与试题解析一、单项选择题(本大题共10题,每题3分,共30分)1.比﹣1大1的数是()A.﹣2 B.0 C.2 D.3【考点】19:有理数的加法.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:﹣1+1=0,故选B2.下列四个几何体中,左视图为圆的是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形,由此可确定答案.【解答】解:因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是圆的几何体是球.故选:C3.如果式子有意义,那么x的取值范围在数轴上表示出来,正确的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;72:二次根式有意义的条件.【分析】根据式子有意义和二次根式的概念,得到2x+6≥0,解不等式求出解集,根据数轴上表示不等式解集的要求选出正确选项即可.【解答】解:由题意得,2x+6≥0,解得,x≥﹣3,故选:C.4.下列运算正确的()A.(﹣a)•(﹣a)4=﹣a5B.(a﹣b)2=a2﹣b2C.(a3)2=a5D.a3+a3=2a6【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法;4C:完全平方公式.【分析】直接利用同底数幂的乘法运算法则和幂的乘方运算法则、合并同类项法则分别判断求出答案.【解答】解:A、(﹣a)•(﹣a)4=﹣a5,故此选项正确;B、(a﹣b)2=a2﹣2ab+b2,故此选项错误;C、(a3)2=a6,故此选项错误;D、a3+a3=2a3,故此选项错误.故选:A.5.某班数学兴趣小组10名同学的年龄情况如下表:则这10名同学年龄的平均数和中位数分别是()A.13.5,13.5 B.13.5,13 C.13,13.5 D.13,14【考点】W4:中位数;W2:加权平均数.【分析】根据中位数及平均数的定义求解即可.【解答】解:将各位同学的成绩从小到大排列为:12,13,13,13,13,14,14,14,14,15,中位数是=13.5,平均数是=13.5.故选:A.6.如图,直线m∥n,△ABC的顶点B,C分别在直线n,m上,且∠ACB=90°,若∠1=40°,则∠2的度数为()A.140°B.130°C.120°D.110°【考点】JA:平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再由∠ACB=90°得出∠4的度数,根据补角的定义即可得出结论.【解答】解:∵m∥n,∠1=40°,∴∠3=∠1=40°.∵∠ACB=90°,∴∠4=∠ACB﹣∠3=90°﹣40°=50°,∴∠2=180°﹣∠4=180°﹣50°=130°.故选B.7.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.【考点】N3:作图—复杂作图.【分析】由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P 在AB的垂直平分线上,于是可判断D选项正确.【解答】解:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选D.8.下列说法正确的有()①﹣2的值在3和4之间;②当a=1时,关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根;③命题“对顶角相等”的逆命题是真命题;④十边形的内角和为1440°;⑤等边三角形既是轴对称图形又是中心对称图形.A.1个B.2个C.3个D.4个【考点】O1:命题与定理.【分析】利用无理数的估算对①进行判断;根据判别式的意义对②进行判断;根据对顶角的定义对③进行判断;根据多边形的内角和公式对④进行判断;根据等边三角形的性质对⑤进行判断.【解答】解:由于在5与6之间,则﹣2的值在3和4之间,所以①正确;当a=1时,关于x的一元二次方程x2+2x﹣a=0,△=4+4a=8,则方程有两个不相等的实数根,所以②错误;命题“对顶角相等”的逆命题为相等的角为对顶角,此逆命题为是假命题,所以③错误;十边形的内角和为1440°,所以④正确;等边三角形是轴对称图形,但它不是中心对称图形,所以⑤错误.故选B.9.如图,在空白网格内将某一个小正方形涂成阴影部分,且所涂的小正方形与原阴影图形的小正方形至少有一边重合.小红按要求涂了一个正方形,所得到的阴影图形恰好是轴对称图形的概率为()A.B.C.D.【考点】X5:几何概率;P3:轴对称图形.【分析】直接利用轴对称图形的定义得出符合题意的图形,进而利用概率公式求出答案.【解答】解:如图所示:所涂的小正方形与原阴影图形的小正方形至少有一边重合的一共有9个,能构成轴对称图形的有所标数据1,2,3,4,共4个,则所得到的阴影图形恰好是轴对称图形的概率为:.故选:C.10.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A. B. C.D.【考点】E7:动点问题的函数图象.【分析】当点N在AD上时,易得S△AMN的关系式;当点N在CD上时,高不变,但底边在增大,所以S△AMN的面积关系式为一个一次函数;当N在BC上时,表示出S△AMN的关系式,根据开口方向判断出相应的图象即可.【解答】解:当点N在AD上时,即0≤x≤1,S△AMN=×x×3x=x2,点N在CD上时,即1≤x≤2,S△AMN=×x×3=x,y随x的增大而增大,所以排除A、D;当N在BC上时,即2≤x≤3,S△AMN=×x×(9﹣3x)=﹣x2+x,开口方向向下.故选:B.二、填空题(本大题共6题,每题3分,共18分)11.随着空气质量的恶化,雾霾天气现象增多,危害加重.森林是“地球之肺”,每年能为人类提供大约28.3亿吨的有机物,28.3亿可用科学记数法表示为 2.83×109.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:28.3亿可用科学记数法表示为2.83×109,故答案为:2.83×109.12.不等式组的最小整数解是0 .【考点】CC:一元一次不等式组的整数解.【分析】先解不等式组,求出解集,再找出最小的整数解即可.【解答】解:,解①得x>﹣1,解②得x≤3,不等式组的解集为﹣1<x≤3,不等式组的最小整数解为0,故答案为0.13.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m﹣2]的一次函数是正比例函数,则关于x的方程的解为x=3 .【考点】B3:解分式方程;F1:一次函数的定义;F2:正比例函数的定义.【分析】首先根据题意可得y=x+m﹣2,再根据正比例函数的解析式为:y=kx(k≠0)可得m 的值,把m的值代入关于x的方程,再解分式方程即可.【解答】解:根据题意可得:y=x+m﹣2,∵“关联数”[1,m﹣2]的一次函数是正比例函数,∴m﹣2=0,解得:m=2,则关于x的方程变为+=1,解得:x=3,检验:把x=3代入最简公分母2(x﹣1)=4≠0,故x=3是原分式方程的解,故答案为:x=3.14.如图,在△ABC中,CA=CB,∠ACB=90°,AB=,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰好在弧EF上,则图中阴影部分的面积为﹣1 (结果保留π).【考点】MO:扇形面积的计算.【分析】连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.【解答】解:连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=AB=,四边形DMCN是正方形,DM=1.则扇形FDE的面积==.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA,又∵DM⊥BC,DN⊥AC,∴DM=DN,∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN,在△DMG和△DNH中,,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=1.∴阴影部分的面积=﹣1.故答案为:﹣1.15.如图,△ABC、△DCE、△FEG为等边三角形,边长分别为2、3、5,且从左至右如图排列,连接BF,交DC、DE分别于M、N两点,则△DMN的面积为.【考点】S9:相似三角形的判定与性质;KK:等边三角形的性质.【分析】易证BE=EF=5,从而可得∠EBF=∠FEG=30°,根据三角形外角的性质可得到∠DNM=90°;易证△BCM∽△BEF,根据相似三角形的性质可求出CM,从而得到DM的值,然后在Rt△DNM中,运用三角函数可求出MN、DN,就可求出△DMN的面积.【解答】解:∵△FEG为等边三角形,∴∠FEG=60°.∵BC=2,CE=3,EF=5,∴BE=5=EF,∴∠EBF=∠EFB=∠FEG=30°.∵△DCE为等边三角形,∴∠D=∠DCE=∠DEC=60°,∴∠DNM=∠EBF+∠DEC=90°.∵∠DCE=∠FEG=60°,∴CM∥EF,∴△BCM∽△BEF,∴=,即=,解得CM=2,∴DM=DC﹣CM=3﹣2=1,∴在Rt△DNM中,MN=DM•sin60°=,DN=DM•cos60°=,∴S△DNM=DN•MN=.故答案为.16.如图,下面每个图形中的四个数都是按相同的规律填写的,根据此规律确定x的值为370 .【考点】37:规律型:数字的变化类.【分析】首先观察规律,求得n与m的值,再由右下角数字第n个的规律:2n(2n﹣1)﹣n,求得答案.【解答】解:∵左下角数字为偶数,右上角数字为奇数,∴2n=20,m=2n﹣1,解得:n=10,m=19,∵右下角数字:第一个:1=1×2﹣1,第二个:10=3×4﹣2,第三个:27=5×6﹣3,∴第n个:2n(2n﹣1)﹣n,∴x=19×20﹣10=370.故答案为:370.三.解答题(本大题共8题,共72分,解答时写出必要的文字说明,演算步骤或推证过程)17.(1)﹣0﹣4cos45°+(﹣3)2(2)先化简,再求代数式﹣÷的值,其中a=3tan30°﹣2.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】(1)根据零指数幂和特殊角的三角函数值可以解答本题;(2)根据分式的除法和减法可以化简题目中的式子,然后将a的值代入即可解答本题.【解答】解:(1)﹣0﹣4cos45°+(﹣3)2===8;(2)﹣÷===,当a=3tan30°﹣2=3×=时,.18.王老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:优秀;B:良好;C:合格;D:一般;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,王老师一共调查了多少名同学?(2)将上面的条形统计图补充完整;并求出“D”所占的圆心角的度数;(3)从被调查的A类和D类学生中分别选取一位同学进行“一对一”互助学习,请求出所选两位同学恰好是一位男同学和一位女同学的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)由B类别男女生人数及其所占百分比可求得调查的总人数;(2)总人数乘以C类别百分比,再减去男生人数可得C类别女生人数,总人数减去A、B、C及D类别女生人数求得男生人数,即可补全条形图,用360°乘以D类别所占百分比可得其圆心角度数;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两位同学恰好是一位男同学和一位女同学的情况,再利用概率公式即可求得答案.【解答】解:(1)本次调查中,王老师一共调查了:(4+6)÷50%=20(名);(2)其中C类女生有:20×25%﹣3=2(名),D类男生有:20﹣1﹣2﹣4﹣6﹣3﹣2﹣1=1(名);补图如下:“D”所占的圆心角的度数为:360°×(1﹣15%﹣50%﹣25%)=36°;(3)画树状图得:∵共有6种等可能的结果,所选两位同学恰好是一位男同学和一位女同学的有3种情况,∴所选两位同学恰好是一位男同学和一位女同学的概率为: =.19.“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A 到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)【考点】KU:勾股定理的应用.【分析】根据题意结合锐角三角函数关系得出BH,CH,AB的长进而求出汽车的速度,进而得出答案.【解答】解:此车没有超速.理由:过C作CH⊥MN,∵∠CBN=60°,BC=200米,∴CH=BC•sin60°=200×=100(米),BH=BC•cos60°=100(米),∵∠CAN=45°,∴AH=CH=100米,∴AB=100﹣100≈73(m),∵60千米/小时=m/s,∴=14.6(m/s)<≈16.7(m/s),∴此车没有超速.20.如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于P(n,2),与x 轴交于A(﹣4,0),与y轴交于C,PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象有一点D,使得以B、C、P、D为顶点的四边形是菱形,求出点D的坐标.【考点】GB:反比例函数综合题.【分析】(1)先根据题意得出P点坐标,再将A、P两点的坐标代入y=kx+b求出kb的值,故可得出一次函数的解析式,把点P(4,2)代入反比例函数y=即可得出m的值,进而得出结论;(2)根据PB为菱形的对角线与PC为菱形的对角线两种情况进行讨论即可.【解答】解:(1)∵AC=BC,CO⊥AB,A(﹣4,0),∴O为AB的中点,即OA=OB=4,∴P(4,2),B(4,0),将A(﹣4,0)与P(4,2)代入y=kx+b得:,解得:k=,b=1,∴一次函数解析式为y=x+1,将P(4,2)代入反比例解析式得:m=8,即反比例解析式为y=.(2)如图所示,当PB为菱形的对角线时,∵四边形BCPD为菱形,∴PB垂直且平分CD,∵PB⊥x轴,P(4,2),∴点D(8,1).当PC为菱形的对角线时,PB∥CD,此时点D在y轴上,不可能在反比例函数的图象上,故此种情形不存在.综上所述,点D(8,1).21.某工艺品厂设计了一款成本为10元/件的小工艺品投放市场进行试销,经过调查,得到如下数据:(1)把上表中x,y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式.(2)当销售单价为多少元时,工艺品厂试销该小工艺品每天获得的利润最大?最大利润是多少?(利润=销售额﹣成本)【考点】HE:二次函数的应用.【分析】(1)将表中各点描在坐标系中,根据点的分别可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0),根据点的坐标利用待定系数法即可求出该函数关系式式,再验证其余各点是否在该函数关系式的图象上,由此即可得出结论;(2)设工艺品试销每天获得利润为W元,根据“利用=单件利润×销售数量”即可得出W 关于x的函数关系式,利用配方法结合二次函数的性质即可解决最值问题.【解答】解:(1)画出图形,如右图所示.由图可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0),∵这个一次函数的图象经过(20,500),(30,400)两点,∴,解得:,∴函数关系式是y=﹣10x+700.经验证,其他各点也在y=﹣10x+700上.(2)设工艺品试销每天获得利润为W元,由已知得:W=(x﹣10)(﹣10x+700)=﹣10x2+800x﹣7000=﹣10(x﹣40)2+9000,∵﹣10<0,∴当x=40时,W取最大值,最大值为9000.故:当销售单价为40元时,工艺品厂试销该小工艺品每天获得的利润最大,最大利润是9000元.22.如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,连接CD.过点C作CE⊥DB,垂足为E,直线AB与CE相交于F点.(1)求证:CF为⊙O的切线;(2)当BF=5,sinF=时,求BD的长.【考点】MD:切线的判定;S9:相似三角形的判定与性质.【分析】(1)连接OC.先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC∥DB,再由CE⊥DB,得到OC⊥CF,根据切线的判定即可证明CF 为⊙O的切线;(2)连结AD.先解Rt△BEF,得出BE=BF•sinF=3,由OC∥BE,得出△FBE∽△FOC,则,设⊙O的半径为r,由此列出方程,解方程求出r的值,由AB为⊙O直径,得出AB=15,∠ADB=90°,再根据三角形内角和定理证明∠F=∠BAD,则由sin∠BAD==,求出BD的长.【解答】(1)证明:连接OC.∵OA=OC,∴∠1=∠2.又∵∠3=∠1+∠2,∴∠3=2∠1.又∵∠4=2∠1,∴∠4=∠3,∴OC∥DB.∵CE⊥DB,∴OC⊥CF.又∵OC为⊙O的半径,∴CF为⊙O的切线;(2)解:连结AD.在Rt△BEF中,∵∠BEF=90°,BF=5,sinF=,∴BE=BF•sinF=3.∵OC∥BE,∴△FBE∽△FOC,∴.设⊙O的半径为r,∴,∴.∵AB为⊙O直径,∴AB=15,∠ADB=90°,∵∠4=∠EBF,∴∠F=∠BAD,∴,∴,∴BD=9.23.如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)请直接写出线段AF,AE的数量关系AF=AE ;(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.【考点】LO:四边形综合题.【分析】(1)如图①中,结论:AF=AE,只要证明△AEF是等腰直角三角形即可.(2)如图②中,结论:AF=AE,连接EF,DF交BC于K,先证明△EKF≌△EDA再证明△AEF是等腰直角三角形即可.(3)如图③中,结论不变,AF=AE,连接EF,延长FD交AC于K,先证明△EDF≌△ECA,再证明△AEF是等腰直角三角形即可.【解答】解:(1)如图①中,结论:AF=AE.理由:∵四边形ABFD是平行四边形,∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF,∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形,∴AF=AE.故答案为AF=AE.(2)如图②中,结论:AF=AE.理由:连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE,∵∠DKC=∠C,∴DK=DC,∵DF=AB=AC,∴KF=AD,在△EKF和△EDA中,,∴△EKF≌△EDA,∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.(3)如图③中,结论不变,AF=AE.理由:连接EF,延长FD交AC于K.∵∠EDF=180°﹣∠KDC﹣∠EDC=135°﹣∠KDC,∠ACE=(90°﹣∠KDC)+∠DCE=135°﹣∠KDC,∴∠EDF=∠ACE,∵DF=AB,AB=AC,∴DF=AC在△EDF和△ECA中,,∴△EDF≌△ECA,∴EF=EA,∠FED=∠AEC,∴∠FEA=∠DEC=90°,∴△AEF是等腰直角三角形,∴AF=AE.24.如图,在平面直角坐标系中,圆M经过原点O,直线y=﹣x﹣6与x轴、y轴分别相交于A,B两点.(1)求出A,B两点的坐标;(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设(2)中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得S△PDE=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)根据一次函数与坐标轴交点坐标求法得出答案即可;(2)利用顶点式由B点坐标求出二次函数解析式即可;(3)首先求出△ABC的面积,进而求出D,E坐标,设P(t,﹣x2﹣4x﹣6),根据S△PDE=S,得到|﹣t2﹣4t﹣6|=1,分两种情况讨论即可求出P点坐标.△ABC【解答】解:(1)对于直线y=﹣x﹣6,当x=0,y=﹣6;当y=0,得0=﹣x﹣6,解得x=﹣8.故A(﹣8,0),B(0,﹣6);(2)在Rt△AOB中,AB==10,∵∠AOB=90°,∴AB为⊙M的直径,∴点M为AB的中点,M(﹣4,﹣3),∵MC∥y轴,MC=5,∴C(﹣4,2),设抛物线的解析式为y=a(x+4)2+2,把B(0,﹣6)代入得16a+2=﹣6,解得a=﹣,∴抛物线的解析式为y=﹣(x+4)2+2,即y=﹣x2﹣4x﹣6,(3)存在.如图,当y=0时,﹣(x+4)2+2=0,解得x1=﹣2,x2=﹣6,∴D(﹣6,0),E(﹣2,0),S△ABC=S△ACM+S△BCM=×CM×8=20,设P(t,﹣x2﹣4x﹣6),∵S△PDE=S△ABC,∴(﹣2+6)|﹣t2﹣4t﹣6|=×20,即|﹣t2﹣4t﹣6|=1,当﹣t2﹣4t﹣6=﹣1,解得t1=﹣4+,t2=﹣4﹣,此时P点坐标为(﹣4+,﹣1)或(﹣4﹣,﹣1);当﹣t2﹣4t﹣6=1,解得t1=﹣4+,t2=﹣4﹣,此时P点坐标为(﹣4+,1)或(﹣4﹣,1).综上所述,P点坐标为(﹣4+,﹣1)或(﹣4﹣,﹣1)或(﹣4+,1)或(﹣4﹣,1)时,使得S△PDE=S△ABC.。

【精品】2017年内蒙古包头市包钢一中高考数学二模试卷(文科)含答案

【精品】2017年内蒙古包头市包钢一中高考数学二模试卷(文科)含答案

2017年内蒙古包头市包钢一中高考数学二模试卷(文科)一、选择题:(每题只有一个正确答案,每题5分,共60分.)1.(5分)已知集合A={ x丨﹣2<x<1},B={x丨x2﹣2x≤0},则A∩B等于()A.{ x丨0<x<1}B.{ x丨0≤x<1}C.{ x丨0<x≤1}D.{x丨﹣2<x≤1}2.(5分)i是虚数单位,若z=,则||=()A.B.C.D.23.(5分)在区间[0,2]上随机地取一个数x,则事件“﹣1≤log(x+)≤1”发生的概率为()A.B.C.D.4.(5分)椭圆以x轴和y轴为对称轴,经过点(2,0),长轴长是短轴长的2倍,则椭圆的方程为()A.+y2=1B.+=1C.+y2=1或+=1 D.+y2=1或+x2=15.(5分)已知变量x,y满足,则z=x2+y2的取值范围是()A.[1,13] B.[2,13] C.D.6.(5分)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()A.35πcm3B.cm3C.70πcm3D.cm37.(5分)等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q=()A.B.﹣ C.2 D.﹣28.(5分)一算法的程序框图如图,若输出的y=,则输入的x的值可能为()A.﹣1 B.0 C.1 D.59.(5分)已知函数f(x)=,且f(α)=﹣3,则f(6﹣α)=()A.﹣ B.﹣ C.﹣ D.﹣10.(5分)在△ABC中,a,b,c是角A,B的对边,若a,b,c成等比数列,A=60°,=()A.B.1 C.D.11.(5分)设抛物线y2=2x的焦点为F,过点M(,0)的直线与抛物线相交于A、B两点,与抛物线的准线相交于点C,|BF|=2,则△BCF与△ACF的面积之比=()A.B.C.D.12.(5分)已知定义在[0,+∞)上的函数f(x)满足f(x)=2f(x+2),当x∈[0,2)时,f(x)=﹣2x2+4x.设f(x)在[2n﹣2,2n)上的最大值为a n(n∈N*),且{a n}的前n项和为S n,则S n=()A.B.C.D.二、填空题:(每题5分,共20分)13.(5分)已知函数f(x)=ax3+x+2的图象在点(1,f(1))处的切线过点(2,8),则a=.14.(5分)已知△ABC的外接圆的圆心为O,半径为1,若+=2,且||=||,则向量在向量方向上的投影为.15.(5分)已知四棱锥P﹣ABCD的底面是边长为2的正方形,侧面PAD是等边三角形,且有侧面PAD⊥底面ABCD,则四棱锥P﹣ABCD的外接球表面积为.16.(5分)设直线l:3x+4y+a=0,圆C:(x﹣2)2+y2=22,若在圆C上存在两点P,Q,在直线l上存在一点M,使得∠PMQ=90°,则a的取值范围是.三.解答题(共70分)17.(12分)已知函数f(x)=sin(2x+)+sin(2x﹣)+2cos2x﹣1,x∈R.(1)求函数f(x)的最小正周期;(2)求函数f(x)在区间[]上的最大值和最小值.18.(12分)如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2,E、F 分别是AB、PD的中点.(1)求证:AF∥平面PCE;(2)求证:平面PCE⊥平面PCD;(3)求四面体PEFC的体积.19.(12分)某中学将100名高一新生分成水平相同的甲,乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲,乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下,计成绩不低于90分者为“成绩优秀”.(1)从乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;(2)由以上统计数据填写下面2x2列联表,并判断是否有90%的把握认为“成绩优秀”与教学方式有关.附:K2=20.(12分)已知点A(﹣4,4)、B(4,4),直线AM与BM相交于点M,且直线AM的斜率与直线BM的斜率之差为﹣2,点M的轨迹为曲线C.(Ⅰ)求曲线C 的轨迹方程;(Ⅱ)Q为直线y=﹣1上的动点,过Q做曲线C的切线,切点分别为D、E,求△QDE的面积S的最小值.21.(12分)设函数f(x)=ax2+b(lnx﹣x),g(x)=﹣2+(1﹣b)x,已知曲线y=f(x)在点(1,f(1))处的切线与直线x﹣y+1=0垂直.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的极值点;(Ⅲ)若对于任意b∈(1,+∞),总存在x1,x2∈[1,b],使得f(x1)﹣f(x2)﹣1>g(x1)﹣g(x2)+m成立,求实数m的取值范围.[选修4-4:坐标系与参数方程]22.(10分)已知椭圆C的极坐标方程为ρ2=,点F1,F2为其左右焦点.以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数,t∈R).(1)求直线l的普通方程和椭圆C的直角坐标方程;(2)求点F1,F2到直线l的距离之和.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|(Ⅰ)解不等式f(2x)+f(x+4)≥8;(Ⅱ)若|a|<1,|b|<1,a≠0,求证:.2017年内蒙古包头市包钢一中高考数学二模试卷(文科)参考答案与试题解析一、选择题:(每题只有一个正确答案,每题5分,共60分.)1.(5分)已知集合A={ x丨﹣2<x<1},B={x丨x2﹣2x≤0},则A∩B等于()A.{ x丨0<x<1}B.{ x丨0≤x<1}C.{ x丨0<x≤1}D.{x丨﹣2<x≤1}【解答】解:∵集合A={ x丨﹣2<x<1},B={x丨x2﹣2x≤0}={x|0≤x≤2},∴A∩B={x|0≤x<1}.故选:B.2.(5分)i是虚数单位,若z=,则||=()A.B.C.D.2【解答】解:z===,∴=,∴==.故选:B.3.(5分)在区间[0,2]上随机地取一个数x,则事件“﹣1≤log(x+)≤1”发生的概率为()A.B.C.D.【解答】解:利用几何概型,其测度为线段的长度.∵﹣1≤log(x+)≤1∴解得0≤x≤,∵0≤x≤2∴0≤x≤∴所求的概率为:P=故选:A.4.(5分)椭圆以x轴和y轴为对称轴,经过点(2,0),长轴长是短轴长的2倍,则椭圆的方程为()A.+y2=1B.+=1C.+y2=1或+=1 D.+y2=1或+x2=1【解答】解:由于椭圆长轴长是短轴长的2倍,即有a=2b,由于椭圆经过点(2,0),则若焦点在x轴上,则a=2,b=1,椭圆方程为=1;若焦点y轴上,则b=2,a=4,椭圆方程为=1.故选:C.5.(5分)已知变量x,y满足,则z=x2+y2的取值范围是()A.[1,13] B.[2,13] C.D.【解答】解:满足的平面区域如下图所示:∵z=x2+y2表示原点到可行域内任一点距离的平方又∵可行域内B点距离原点最近,此时z=x2+y2=可行域内A点距离原点最近,此时z=x2+y2=13故z=x2+y2的取值范围是[,13]故选:C.6.(5分)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()A.35πcm3B.cm3C.70πcm3D.cm3【解答】解:由已知的三视图可得:该几何体是一个圆台与半球的组合体,球的半径与圆台的上底面半径均为4cm,故半球的体积为:××π×43=cm3,圆台的上底面半径为2cm,高为3cm,故圆台的体积为:π(42+4×2+22)×3=cm3,故组合体的体积V=+=cm3,故选:D.7.(5分)等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q=()A.B.﹣ C.2 D.﹣2【解答】解:∵等比数列{a n}满足a2+a4=20,a3+a5=40,∴a3+a5=q(a2+a4)=20q=40,解得q=2.故选:C.8.(5分)一算法的程序框图如图,若输出的y=,则输入的x的值可能为()A.﹣1 B.0 C.1 D.5【解答】解:模拟执行程序可得程序功能是求分段函数y=的值,∵y=,∴sin()=∴=2kπ+,k∈Z,即可解得x=12k+1,k∈Z.∴当k=0时,有x=1.故选:C.9.(5分)已知函数f(x)=,且f(α)=﹣3,则f(6﹣α)=()A.﹣ B.﹣ C.﹣ D.﹣【解答】解:由题意,α≤1时,2α﹣1﹣2=﹣3,无解;α>1时,﹣log2(α+1)=﹣3,∴α=7,∴f(6﹣α)=f(﹣1)=2﹣1﹣1﹣2=﹣.故选:A.10.(5分)在△ABC中,a,b,c是角A,B的对边,若a,b,c成等比数列,A=60°,=()A.B.1 C.D.【解答】解:∵a,b,c成等比数列∴b2=ac由正弦定理可得sin2B=sinAsinC==故选:D.11.(5分)设抛物线y2=2x的焦点为F,过点M(,0)的直线与抛物线相交于A、B两点,与抛物线的准线相交于点C,|BF|=2,则△BCF与△ACF的面积之比=()A.B.C.D.【解答】解:如图过B作准线l:x=﹣的垂线,垂足分别为A1,B1,∵=,又∵△B1BC∽△A1AC、∴=,由拋物线定义==.由|BF|=|BB1|=2知x B=,y B=﹣,∴AB:y﹣0=(x﹣).把x=代入上式,求得y A=2,x A=2,∴|AF|=|AA1|=.故===.故选:A.12.(5分)已知定义在[0,+∞)上的函数f(x)满足f(x)=2f(x+2),当x∈[0,2)时,f(x)=﹣2x2+4x.设f(x)在[2n﹣2,2n)上的最大值为a n(n∈N*),且{a n}的前n项和为S n,则S n=()A.B.C.D.【解答】解:∵定义在[0,+∞)上的函数f(x)满足f(x)=2f(x+2),∴f(x+2)=f(x),∴f(x+4)=f(x+2)=f(x),f(x+6)=f(x+4)=f(x),…f(x+2n)=f (x)设x∈[2n﹣2,2n),则x﹣(2n﹣2)∈[0,2)∵当x∈[0,2)时,f(x)=﹣2x2+4x.∴f[x﹣(2n﹣2)]=﹣2[(x﹣(2n﹣2)]2+4[x﹣(2n﹣2)].∴=﹣2(x﹣2n+1)2+2∴f(x)=21﹣n[﹣2(x﹣2n+1)2+2],x∈[2n﹣2,2n),∴x=2n﹣1时,f(x)的最大值为22﹣n∴a n=22﹣n∴{a n}表示以2为首项,为公比的等比数列∴{a n}的前n项和为S n==故选:B.二、填空题:(每题5分,共20分)13.(5分)已知函数f(x)=ax3+x+2的图象在点(1,f(1))处的切线过点(2,8),则a=1.【解答】解:函数f(x)=ax3+x+2的导数为:f′(x)=3ax2+1,故f′(1)=3a+1,而f(1)=a+3,切线方程为:y﹣a﹣3=(3a+1)(x﹣1),因为切线方程经过(2,8),所以8﹣a﹣3=(3a+1)(2﹣1),解得a=1.故答案为:1.14.(5分)已知△ABC 的外接圆的圆心为O ,半径为1,若+=2,且||=||,则向量在向量方向上的投影为.【解答】解:如图,取BC 边的中点D ,连接AD ,则:;∴O 和D 重合,O 是△ABC 外接圆圆心,;∴∠BAC=90°,∠BOA=120°,∠ABO=30°; 又|OA |=|OB |=1;∴在△AOB 中由余弦定理得:,,∠ABO=30°;∴向量在向量方向上的投影为. 故答案为:.15.(5分)已知四棱锥P ﹣ABCD 的底面是边长为2的正方形,侧面PAD 是等边三角形,且有侧面PAD ⊥底面ABCD ,则四棱锥P ﹣ABCD 的外接球表面积为.【解答】解:设球心为O ,半径为R ,O 到底面的距离为h ,则∵四棱锥P ﹣ABCD 的底面是边长为2的正方形,侧面PAD 是等边三角形,且有侧面PAD ⊥底面ABCD , ∴四棱锥的高为,底面正方形外接圆半径为,∴2+h 2=(﹣h )2+1,∴h=,∴R 2=2+h 2=,∴四棱锥P ﹣ABCD 的外接球表面积为4π×()=.故答案为:.16.(5分)设直线l:3x+4y+a=0,圆C:(x﹣2)2+y2=22,若在圆C上存在两点P,Q,在直线l上存在一点M,使得∠PMQ=90°,则a的取值范围是[﹣16,4] .【解答】解:圆C:(x﹣2)2+y2=22,圆心为:(2,0),半径为2,∵在圆C上存在两点P,Q,在直线l上存在一点M,使得∠PMQ=90°,∴在直线l上存在一点M,使得M到C(2,0)的距离等于2,∴只需C(2,0)到直线l的距离小于或等于2,故≤2,解得﹣16≤a≤4.故答案为:[﹣16,4];三.解答题(共70分)17.(12分)已知函数f(x)=sin(2x+)+sin(2x﹣)+2cos2x﹣1,x∈R.(1)求函数f(x)的最小正周期;(2)求函数f(x)在区间[]上的最大值和最小值.【解答】解:(1)∵f(x)=sin2x•cos+cos2x•sin+sin2x•cos﹣cos2x•sin+cos2x=sin2x+cos2x=sin(2x+),∴函数f(x)的最小正周期T==π.(2)∵函数f(x)在区间[]上是增函数,在区间[,]上是减函数,又f(﹣)=﹣1,f()=,f()=1,∴函数f(x)在区间[]上的最大值为,最小值为﹣1.18.(12分)如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2,E、F 分别是AB、PD的中点.(1)求证:AF∥平面PCE;(2)求证:平面PCE⊥平面PCD;(3)求四面体PEFC的体积.【解答】解:(1)证明:设G为PC的中点,连接FG,EG,∵F为PD的中点,E为AB的中点,∴FG CD,AE CD∴FG AE,∴AF∥GE∵GE⊂平面PEC,∴AF∥平面PCE;(2)证明:∵PA=AD=2,∴AF⊥PD又∵PA⊥平面ABCD,CD⊂平面ABCD,∴PA⊥CD,∵AD⊥CD,PA∩AD=A,∴CD⊥平面PAD,∵AF⊂平面PAD,∴AF⊥CD.∵PD∩CD=D,∴AF⊥平面PCD,∴GE⊥平面PCD,∵GE⊂平面PEC,∴平面PCE⊥平面PCD;(3)由(2)知,GE⊥平面PCD,所以EG为四面体PEFC的高,又GF∥CD,所以GF⊥PD,EG=AF=,GF=CD=,S△PCF=PD•GF=2.得四面体PEFC的体积V=S•EG=.△PCF19.(12分)某中学将100名高一新生分成水平相同的甲,乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲,乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下,计成绩不低于90分者为“成绩优秀”.(1)从乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;(2)由以上统计数据填写下面2x2列联表,并判断是否有90%的把握认为“成绩优秀”与教学方式有关.附:K2=【解答】解:(1)设“抽出的两个均“成绩优秀”“为事件A.从不低于86分的成绩中随机抽取2个的基本事件为(86,93),(86,96),(86,97),(86,99)(86,99),(93,96),(93,97),(93,99),(93,99),(96,97),(96,99),(96,99),(97,99),(97,99),(99,99),共15个,而事件A包含基本事件:(93,96),(93,97),(93,99),(93,99),(96,97),(96,99),(96,99),(97,99),(97,99),(99,99),共10个.所以所求概率为P(A)==(2)由已知数据得:根据2×2列联表中数据,K2=≈3.137>2.706所以有90%的把握认为“成绩优秀”与教学方式有关.20.(12分)已知点A(﹣4,4)、B(4,4),直线AM与BM相交于点M,且直线AM的斜率与直线BM的斜率之差为﹣2,点M的轨迹为曲线C.(Ⅰ)求曲线C 的轨迹方程;(Ⅱ)Q为直线y=﹣1上的动点,过Q做曲线C的切线,切点分别为D、E,求△QDE的面积S的最小值.【解答】解:(I)设M(x,y),由题意可得:,化为x2=4y.∴曲线C 的轨迹方程为x2=4y且(x≠±4).(II)设Q(m,﹣1),切线方程为y+1=k(x﹣m),联立,化为x2﹣4kx+4(km+1)=0,由于直线与抛物线相切可得△=0,即k2﹣km﹣1=0.∴x2﹣4kx+4k2=0,解得x=2k.可得切点(2k,k2),由k2﹣km﹣1=0.∴k 1+k2=m,k1•k2=﹣1.∴切线QD⊥QE.∴△QDE为直角三角形,|QD|•|QE|.令切点(2k,k2)到Q的距离为d,则d2=(2k﹣m)2+(k2+1)2=4(k2﹣km)+m2+(km+2)2=4(k2﹣km)+m2+k2m2+4km+4=(4+m2)(k2+1),∴|QD|=,|QE|=,∴(4+m2)=≥4,当m=0时,即Q(0,﹣1)时,△QDE的面积S取得最小值4.21.(12分)设函数f(x)=ax2+b(lnx﹣x),g(x)=﹣2+(1﹣b)x,已知曲线y=f(x)在点(1,f(1))处的切线与直线x﹣y+1=0垂直.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的极值点;(Ⅲ)若对于任意b∈(1,+∞),总存在x1,x2∈[1,b],使得f(x1)﹣f(x2)﹣1>g(x1)﹣g(x2)+m成立,求实数m的取值范围.【解答】解:(Ⅰ),所以k=f'(1)=2a=﹣1,所以…(2分)(Ⅱ),其定义域为(0,+∞),,令h(x)=﹣x2﹣bx+b,x∈(0,+∞)△=b2+4b(i)当﹣4≤b≤0时,△=b2+4b≤0,有h(x)≤0,即f'(x)≤0,所以f(x)在区间(0,+∞)上单调递减,故f(x)在区间(0,+∞)无极值点;(ii)当b<﹣4时,△>0,令h(x)=0,有,,x2>x1>0,当x∈(0,x1)时,h(x)<0,即f'(x)<0,得f(x)在(0,x1)上递减;当x∈(x1,x2)时,h(x)>0,即f'(x)>0,得f(x)在(x1,x2)上递增;当x∈(x2,+∞)时,h(x)<0,即f'(x)<0,得f(x)在(x2,+∞)上递减.此时f(x)有一个极小值点和一个极大值点.(iii)当b>0时,△>0,令h(x)=0,有,,当x∈(0,x2)时,h(x)>0,即f'(x)>0,得f(x)在(0,x2)上递增;当x∈(x2,+∞)时,h(x)<0,即f'(x)<0,得f(x)在(x2,+∞)上递减.此时f(x)唯一的极大值点,无极小值点.综上可知,当b<﹣4时,函数f(x)有一个极小值点和一个极大值点.当﹣4≤b≤0时,函数f(x)在(0,+∞)上有无极值点;当b>0时,函数f(x)有唯一的极大值点,无极小值点;…(8分)(III)令F(x)=f(x)﹣g(x),x∈[1,b],则F(x)==blnx﹣x若总存在x1,x2∈[1,b],使得f(x1)﹣f(x2)﹣1>g(x1)﹣g(x2)+m成立,即总存在x1,x2∈[1,b],使得f(x1)﹣g(x1)>f(x2)﹣g(x2)+m+1成立,即总存在x1,x2∈[1,b],使得F(x1)﹣F(x2)>m+1成立,即F(x)max﹣F(x)min>m+1,因为x∈[1,b],所以F'(x)≥0,即F(x)在[1,b]上单调递增,所以F(x)max﹣F(x)min=F(b)﹣F(1)=blnb﹣b+1,即blnb﹣b+1>m+1对任意b∈(1,+∞)成立,即blnb﹣b>m对任意b∈(1,+∞)成立.构造函数:t(b)=blnb﹣b,b∈[1,+∞),t'(b)=lnb,当b∈[1,+∞)时,t'(b)≥0,∴t(b)在[1,+∞)上单调递增,∴t(b)min=t(1)=﹣1.∴对于任意b∈(1,+∞),∴t(b)>t(1)=﹣1.所以m≤﹣1…(14分)[选修4-4:坐标系与参数方程]22.(10分)已知椭圆C的极坐标方程为ρ2=,点F1,F2为其左右焦点.以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数,t∈R).(1)求直线l的普通方程和椭圆C的直角坐标方程;(2)求点F1,F2到直线l的距离之和.【解答】解:(1)由直线l的参数方程为(t为参数,t∈R),消去t,可得y=x﹣2,即直线l的普通方程为x﹣y﹣2=0.由椭圆C的极坐标方程为ρ2=,可得3ρ2cos2θ+4ρ2sin2θ=12,化为直角坐标方程为3x2+4y2=12,即+=1.故椭圆C的直角坐标方程为+=1.(2)由(1)可得点F1(﹣1,0),F2(1,0),求点F1到直线l的距离为=,F2到直线l的距离为=,∴点F1,F2到直线l的距离之和为+=2.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|(Ⅰ)解不等式f(2x)+f(x+4)≥8;(Ⅱ)若|a|<1,|b|<1,a≠0,求证:.【解答】(Ⅰ)解:f(2x)+f(x+4)=|2x﹣1|+|x+3|=,当x<﹣3时,由﹣3x﹣2≥8,解得x≤﹣;当﹣3时,由﹣x+4≥8,解得x∈∅;当x≥时,由3x+2≥8,解得x≥2…4分所以,不等式f(2x)+f(x+4)≥8的解集为{x|x≤﹣或x≥2}…5分;(Ⅱ)证明:等价于f(ab)>|a|f(),即|ab﹣1|>|a﹣b|,因为|a|<1,|b|<1,所以|ab﹣1|2﹣|a﹣b|2=(a2b2﹣2ab+1)﹣(a2﹣2ab+b2)=(a2﹣1)(b2﹣1)>0,所以,|ab﹣1|>|a﹣b|,故所证不等式成立…10分.赠送—高考物理解答题规范化要求物理计算题可以综合地考查学生的知识和能力,在高考物理试题中,计算题在物理部分中的所占的比分很大(60%),单题的分值也很高。

2017年内蒙古包头市包钢一中高考二模试卷Word版含答案.doc

2017年内蒙古包头市包钢一中高考二模试卷Word版含答案.doc

2017年内蒙古包头市包钢一中高考二模试卷(理科数学)一、选择题:(每题只有一个正确答案,每题5分,共60分.)1.若i是虚数单位,复数的虚部为()A. B. C.D.A=()2.已知全集U={﹣2,0,1,2},集合A={x|x2+x﹣2=0},则∁UA.{﹣2,1} B.{﹣2,0} C.{0,2} D.{0,1}3.如图,正方形ABCD中,E为DC的中点,若=λ+μ,则λ+μ的值为()A.B. C.1 D.﹣14.函数y=2x﹣x2的图象大致是()A. B. C. D.5.已知(x2+)n的展开式的各项系数和为32,则展开式中x4的系数为()A.5 B.40 C.20 D.106.某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为()A. B. C. D.37.已知函数f(x)=cos2x﹣sin2x,下列说法错误的是()A.f(x)的最小正周期为πB.x=是f(x)的一条对称轴C.f(x)在(﹣,)上单调递增 D.|f(x)|的值域是[0,1]8.阅读如图所示的程序框图,则该算法的功能是()A.计算数列{2n﹣1}前5项的和B.计算数列{2n﹣1}前6项的和C.计算数列{2n﹣1}前5项的和D.计算数列{2n﹣1}前6项的和9.已知{an}是等差数列,公差d不为零,前n项和是Sn,若a3,a4,a8成等比数列,则()A.a1d>0,dS4>0 B.a1d<0,dS4<0 C.a1d>0,dS4<0 D.a1d<0,dS4>010.已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在(3,6)内的概率为()附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=0.6826,P(μ﹣2σ<ξ<μ+2σ)=0.9544.A.0.2718 B.0.0456 C.0.3174 D.0.135911.过曲线C1:﹣=1(a>0,b>0)的左焦点F1作曲线C2:x2+y2=a2的切线,设切点为M,延长F1M交曲线C3:y2=2px(p>0)于点N,其中曲线C1与C3有一个共同的焦点,若|MF1|=|MN|,则曲线C1的离心率为()A.B.﹣1 C. +1 D.12.已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<e x的解集为()A.(﹣2,+∞)B.(0,+∞)C.(1,+∞)D.(4,+∞)二.填空题(每题5分,共20分)13.已知l,m是两条不同的直线,α,β是两个不同的平面.下列命题:①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l⊥α,m∥l,α∥β,则m⊥β.其中真命题是(写出所有真命题的序号).14.若实数x,y满足不等式组,则z=2|x|+y的最大植为.15.已知A,B,C三人中,一个是油漆工,一个是木工,一个是泥瓦工,但不知A,B,C三人具体谁是什么工种,三人合作一件工程,由于其中的某一个人而做糟了,为了弄清楚责任,分别询问三人,得到的回答如下:A说:“C做坏了,B做好了”;B说:“我做坏了,C做好了”;C说:“我做坏了,A做好了”.现在又了解到,油漆工从来不说假话,泥瓦工从来不说真话,而木工说的话总是时真时假,则该负责任的是.16.定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x<b),满足f(x)=,则称函数y=f(x)是[a,b]上的“平均值函数”,x是它的一个均值点.例如y=|x|是[﹣2,2]上的平均值函数,0就是它的均值点.若函数f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函数”,则实数m的取值范围是.三、解答题17.设向量=(sin2ωx,cos2ωx),=(cosφ,sinφ),其中|φ|<,ω>0,函数f(x)=的图象在y轴右侧的第一个最高点(即函数取得最大值的点)为,在原点右侧与x轴的第一个交点为.(Ⅰ)求函数f(x)的表达式;(Ⅱ)在△ABC中,角A′B′C的对边分别是a′b′c′若f(C)=﹣1,,且a+b=2,求边长c.18.某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温x(°C)与该小卖部的这种饮料销量y(杯),得到如下数据:(Ⅰ)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;(Ⅱ)请根据所给五组数据,求出y关于x的线性回归方程=x+;(Ⅲ)根据(Ⅱ)中所得的线性回归方程,若天气预报1月16日的白天平均气温7(°C),请预测该奶茶店这种饮料的销量.(参考公式: =, =﹣)19.已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,AA1=4.(Ⅰ)求证:BD⊥A1C;(Ⅱ)求二面角A﹣A1C﹣D1的余弦值;(Ⅲ)在线段CC1上是否存在点P,使得平面A1CD1⊥平面PBD,若存在,求出的值;若不存在,请说明理由.20.平面直角坐标系xOy中,已知椭圆的左焦点为F,离心率为,过点F且垂直于长轴的弦长为.(I)求椭圆C的标准方程;(Ⅱ)设点A,B分别是椭圆的左、右顶点,若过点P(﹣2,0)的直线与椭圆相交于不同两点M,N.(i)求证:∠AFM=∠BFN;(ii)求△MNF面积的最大值.21.已知函数f(x)=(x+1)lnx,g(x)=a(x﹣1)(a∈R).(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)≥g(x)对任意的x∈[1,+∞)恒成立,求实数a的取值范围;(Ⅲ)求证:ln2•ln3…lnn>(n≥2,n∈N+).[极坐标方程]22.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.[不等式选讲】23.已知函数f(x)=|x﹣1|(Ⅰ)解不等式f(2x)+f(x+4)≥8;(Ⅱ)若|a|<1,|b|<1,a≠0,求证:.2017年内蒙古包头市包钢一中高考数学二模试卷(理科)参考答案与试题解析一、选择题:(每题只有一个正确答案,每题5分,共60分.)1.若i是虚数单位,复数的虚部为()A. B. C.D.【考点】A5:复数代数形式的乘除运算.【分析】根据复数的运算法则计算即可.【解答】解:复数===+i,∴复数的虚部为,故选:D.2.已知全集U={﹣2,0,1,2},集合A={x|x2+x﹣2=0},则∁A=()UA.{﹣2,1} B.{﹣2,0} C.{0,2} D.{0,1}【考点】1F:补集及其运算.【分析】由题意求出集合A,然后直接写出它的补集即可.【解答】解:全集U={﹣2,0,1,2},集合A={x|x2+x﹣2=0}={﹣2,1},A={0,2}则∁U故选:C.3.如图,正方形ABCD中,E为DC的中点,若=λ+μ,则λ+μ的值为()A.B. C.1 D.﹣1【考点】9V:向量在几何中的应用;9H:平面向量的基本定理及其意义.【分析】利用向量转化求解即可.【解答】解:由题意正方形ABCD 中,E 为DC 的中点,可知: =.则λ+μ的值为:. 故选:A .4.函数y=2x ﹣x 2的图象大致是( )A .B .C .D .【考点】3O :函数的图象.【分析】分别画出y=2x ,y=x 2的图象,由图象可以函数与x 轴有三个交点,且当x <﹣1时,y <0,故排除BCD ,问题得以解决. 【解答】解:y=2x ﹣x 2, 令y=0, 则2x ﹣x 2=0,分别画出y=2x ,y=x 2的图象,如图所示, 由图象可知,有3个交点,∴函数y=2x ﹣x 2的图象与x 轴有3个交点, 故排除BC ,当x <﹣1时,y <0, 故排除D 故选:A .5.已知(x2+)n的展开式的各项系数和为32,则展开式中x4的系数为()A.5 B.40 C.20 D.10【考点】DB:二项式系数的性质.【分析】在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得【解答】解:由题意,在(x2+)n的展开式中,令x=1,可得各项系数和为2n=32,n=5.故展开式的通项公式为 T=•x10﹣2r•x﹣r=•x10﹣3r,r+1令10﹣3r=4,求得r=2,∴展开式中x4的系数为=10,故选:D.6.某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为()A. B. C. D.3【考点】L!:由三视图求面积、体积.【分析】由三视图可知,几何体的直观图如图所示,平面AED⊥平面BCDE,四棱锥A﹣BCDE 的高为1,四边形BCDE是边长为1的正方形,分别计算侧面积,即可得出结论.【解答】解:由三视图可知,几何体的直观图如图所示,平面AED⊥平面BCDE,四棱锥A﹣BCDE 的高为1,四边形BCDE是边长为1的正方形,则S△AED==,S△ABC=S△ABE==,S△ACD==,故选:B.7.已知函数f(x)=cos2x﹣sin2x,下列说法错误的是()A.f(x)的最小正周期为πB.x=是f(x)的一条对称轴C.f(x)在(﹣,)上单调递增 D.|f(x)|的值域是[0,1]【考点】GL:三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】由三角函数公式化简可得f(x)=cos2x,由三角函数的性质逐个选项验证可得.【解答】解:∵f(x)=cos2x﹣sin2x=cos2x,∴f(x)的最小正周期T==π,选项A正确;由2x=kπ可得x=,k∈Z,∴x=是f(x)的一条对称轴,选项B正确;由2kπ+π≤2x≤2kπ+2π可得kπ+≤x≤kπ+π,∴函数的单调递增区间为[kπ+,kπ+π],k∈Z,C错误;|f(x)|=|cos2x|,故值域为[0,1],D正确.故选:C8.阅读如图所示的程序框图,则该算法的功能是()A.计算数列{2n﹣1}前5项的和B.计算数列{2n﹣1}前6项的和C.计算数列{2n﹣1}前5项的和D.计算数列{2n﹣1}前6项的和【考点】E7:循环结构.【分析】根据算法流程,依次计算运行结果,由等比数列的前n项和公式,判断程序的功能.【解答】解:由算法的流程知,第一次运行,A=2×0+1=1,i=1+1=2;第二次运行,A=2×1+1=3,i=2+1=3;第三次运行,A=2×3+1=7,i=3+1=4;第四次运行,A=2×7+1=15,i=5;第五次运行,A=2×15+1=31,i=6;第六次运行,A=2×31+1=63,i=7;满足条件i>6,终止运行,输出A=63,∴A=1+2+22+…+25==26﹣1=64﹣1=63.故选D.9.已知{an }是等差数列,公差d不为零,前n项和是Sn,若a3,a4,a8成等比数列,则()A.a1d>0,dS4>0 B.a1d<0,dS4<0 C.a1d>0,dS4<0 D.a1d<0,dS4>0【考点】8M:等差数列与等比数列的综合.【分析】由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.【解答】解:设等差数列{an }的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d ≠0,∴,∴,=<0.故选:B .10.已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在(3,6)内的概率为( )附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ﹣σ<ξ<μ+σ)=0.6826,P (μ﹣2σ<ξ<μ+2σ)=0.9544.A .0.2718B .0.0456C .0.3174D .0.1359【考点】CP :正态分布曲线的特点及曲线所表示的意义. 【分析】利用正态分布的对称性计算概率.【解答】解:∵设零件误差为ξ,则ξ~N (0,32), ∴P (﹣6<ξ<6)=0.9544,P (﹣3<ξ<3)=0.6826,∴P (3<ξ<6)=(0.9544﹣0.6826)=0.1359. 故选:D .11.过曲线C 1:﹣=1(a >0,b >0)的左焦点F 1作曲线C 2:x 2+y 2=a 2的切线,设切点为M ,延长F 1M 交曲线C 3:y 2=2px (p >0)于点N ,其中曲线C 1与C 3有一个共同的焦点,若|MF 1|=|MN|,则曲线C 1的离心率为( )A .B .﹣1 C .+1 D .【考点】KC :双曲线的简单性质.【分析】双曲线的右焦点的坐标为(c ,0),利用O 为F 1F 2的中点,M 为F 1N 的中点,可得OM 为△NF 1F 2的中位线,从而可求|NF 1|,再设N (x ,y ) 过点F 作x 轴的垂线,由勾股定理得出关于a ,c 的关系式,最后即可求得离心率.【解答】解:设双曲线的右焦点为F 2,则F 2的坐标为(c ,0)因为曲线C1与C3有一个共同的焦点,所以y2=4cx因为O为F1F2的中点,M为F1N的中点,所以OM为△NF1F2的中位线,所以OM∥NF2,因为|OM|=a,所以|NF2|=2a又NF2⊥NF1,|FF2|=2c 所以|NF1|=2b设N(x,y),则由抛物线的定义可得x+c=2a,∴x=2a﹣c过点F1作x轴的垂线,点N到该垂线的距离为2a由勾股定理 y2+4a2=4b2,即4c(2a﹣c)+4a2=4(c2﹣a2)得e2﹣e﹣1=0,∴e=.故选:D12.已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<e x的解集为()A.(﹣2,+∞)B.(0,+∞)C.(1,+∞)D.(4,+∞)【考点】6B:利用导数研究函数的单调性;3N:奇偶性与单调性的综合.【分析】构造函数g(x)=(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解【解答】解:∵y=f(x+2)为偶函数,∴y=f(x+2)的图象关于x=0对称∴y=f(x)的图象关于x=2对称∴f(4)=f(0)又∵f(4)=1,∴f(0)=1设g(x)=(x∈R),则g′(x)==又∵f′(x)<f(x),∴f′(x)﹣f(x)<0∴g′(x)<0,∴y=g(x)在定义域上单调递减∵f(x)<e x∴g(x)<1又∵g(0)==1∴g(x)<g(0)∴x>0故选B.二.填空题(每题5分,共20分)13.已知l,m是两条不同的直线,α,β是两个不同的平面.下列命题:①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l⊥α,m∥l,α∥β,则m⊥β.其中真命题是②④(写出所有真命题的序号).【考点】LQ:平面与平面之间的位置关系;LP:空间中直线与平面之间的位置关系.【分析】①考查面面平行的判定定理,看条件是否都有即可判断出真假;②考查线面平行的性质定理,看条件是否都有即可判断出真假;③可以采用举反例的方法说明其为假命题;④先由两平行线中的一条和已知平面垂直,另一条也和平面垂直推得m⊥α,再由两平行平面中的一个和已知直线垂直,另一个也和直线垂直推得m⊥β.即为真命题.【解答】解:对于①,没有限制是两条相交直线,故①为假命题;对于②,利用线面平行的性质定理可得其为真命题;对于③,l也可以在平面β内,故其为假命题;对于④,由l⊥α,m∥l可得m⊥α,再由α∥β可得m⊥β,即④为真命题.故真命题有②④.故答案为:②④.14.若实数x,y满足不等式组,则z=2|x|+y的最大植为11 .【考点】7C:简单线性规划.【分析】将z=2|x|+y转化为分段函数,利用数形结合即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由,解得B(6,﹣1),由解得C(﹣2,﹣1),当x≥0时,z=2x+y,即y=﹣2x+z,x≥0,当x<0时,z=﹣2x+y,即y=2x+z,x<0,当x≥0时,平移直线y=﹣2x+z,(红线),当直线y=﹣2x+z经过点A(0,﹣1)时,直线y=﹣2x+z的截距最小为z=﹣1,当y=﹣2x+z经过点B(6,﹣1)时,直线y=﹣2x+z的截距最大为z=11,此时﹣1≤z≤11.当x<0时,平移直线y=2x+z,(蓝线),当直线y=2x+z经过点A(0,﹣1)时,直线y=2x+z的截距最小为z=﹣1,当y=2x+z经过点C(﹣2,﹣1)时,直线y=2x+z的截距最大为z=4﹣1=3,此时﹣1≤z≤3,综上﹣1≤z≤11,故z=2|x|+y的取值范围是[﹣1,11],故z的最大值为11,故答案为:11.15.已知A,B,C三人中,一个是油漆工,一个是木工,一个是泥瓦工,但不知A,B,C三人具体谁是什么工种,三人合作一件工程,由于其中的某一个人而做糟了,为了弄清楚责任,分别询问三人,得到的回答如下:A说:“C做坏了,B做好了”;B说:“我做坏了,C做好了”;C说:“我做坏了,A做好了”.现在又了解到,油漆工从来不说假话,泥瓦工从来不说真话,而木工说的话总是时真时假,则该负责任的是 C .【考点】F4:进行简单的合情推理.【分析】因为三个人的话分别都具有真假意义,所以其中每个人的都是一个命题,而每人个命题都有其真值.一般地,如果一个命题p是真命题,记为1,如果命题p为假命题,记为0,则任一个命题的值只能是0或1,且不能兼得,根据人的话,3个命题都有有其真假,我们可以利用各命题间的逻辑关系列表,加以讨论解决.【解答】解:将甲、乙、丙三人所述命题依次记为PA ,PB,PC,则由这3个命题的逻辑关系知:P A 与PC同真同假,PA与PB一真一假,∵油漆工从来不说假话,泥瓦工从来不说真话,而木工说的话总是时真时假,∴C是本工,如下表所示,若PC 是假命题,则PA必为假命题,∴PB必为真命题,而由PB内容知A,B两人都做坏了,与题意不符,∴PC是真命题,即C做对了,∴A是油漆工,B是泥瓦工,C是木工,是木工做了.故答案为:C.16.定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x<b),满足f(x)=,则称函数y=f(x)是[a,b]上的“平均值函数”,x是它的一个均值点.例如y=|x|是[﹣2,2]上的平均值函数,0就是它的均值点.若函数f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函数”,则实数m的取值范围是(0,2).【考点】31:函数的概念及其构成要素.【分析】函数f(x)=x2﹣mx﹣1是区间[﹣1,1]上的平均值函数,故有x2﹣mx﹣1=在(﹣1,1)内有实数根,求出方程的根,让其在(﹣1,1)内,即可求出实数m的取值范围.【解答】解:∵函数f(x)=x2﹣mx﹣1是区间[﹣1,1]上的平均值函数,∴关于x的方程x2﹣mx﹣1=在(﹣1,1)内有实数根.即x2﹣mx﹣1=﹣m在(﹣1,1)内有实数根.即x2﹣mx+m﹣1=0,解得x=m﹣1,x=1.又1∉(﹣1,1)∴x=m﹣1必为均值点,即﹣1<m﹣1<1⇒0<m<2.∴所求实数m的取值范围是(0,2).故答案为:(0,2)三、解答题17.设向量=(sin2ωx,cos2ωx),=(cosφ,sinφ),其中|φ|<,ω>0,函数f(x)=的图象在y轴右侧的第一个最高点(即函数取得最大值的点)为,在原点右侧与x轴的第一个交点为.(Ⅰ)求函数f(x)的表达式;(Ⅱ)在△ABC中,角A′B′C的对边分别是a′b′c′若f(C)=﹣1,,且a+b=2,求边长c.【考点】HS:余弦定理的应用;9Y:平面向量的综合题.【分析】(I)利用向量的数量积通过两角和与差的三角函数化简函数的解析式,利用已知条件求解解析式即可.(II)求出C,利用,以及余弦定理即可求出c的值.【解答】解:(I)因为向量=(sin2ωx,cos2ωx),=(cosφ,sinφ),所以=sin2ωxcosφ+cos2ωxsinφ=sin(2ωx+φ),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣1分由题意,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣3分将点代入y=sin(2x+φ),得,所以,又因为,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣5分即函数的表达式为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣6分(II)由f(C)=﹣1,即又∵0<C<π,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣8分由,知,所以ab=3﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣10分由余弦定理知c2=a2+b2﹣2abcosC=(a+b)2﹣2ab﹣2abcosC=所以 c=3﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣12分.18.某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温x(°C)与该小卖部的这种饮料销量y(杯),得到如下数据:(Ⅰ)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;(Ⅱ)请根据所给五组数据,求出y关于x的线性回归方程=x+;(Ⅲ)根据(Ⅱ)中所得的线性回归方程,若天气预报1月16日的白天平均气温7(°C),请预测该奶茶店这种饮料的销量.(参考公式: =, =﹣)【考点】BK:线性回归方程.【分析】(Ⅰ)根据题意列举出从5组数据中选取2组数据共有10种情况,每种情况都是可能出现的,满足条件的事件包括的基本事件有4种.根据等可能事件的概率做出结果.(Ⅱ)根据所给的数据,先做出x,y的平均数,即做出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程.(Ⅲ)利用线性回归方程,x取7,即可预测该奶茶店这种饮料的销量.【解答】解:(Ⅰ)设“选取的2组数据恰好是相邻2天数据”为事件A,所有基本事件(m,n)(其中m,n为1月份的日期数)有:(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15),共有10种.事件A包括的基本事件有(11,12),(12,13),(13,14),(14,15)共4种.所以为所求.…6分(Ⅱ)由数据,求得,.由公式,求得,,所以y关于x的线性回归方程为.…10分(Ⅲ)当x=7时,.所以该奶茶店这种饮料的销量大约为19杯. (12)分.19.已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,AA1=4.(Ⅰ)求证:BD⊥A1C;(Ⅱ)求二面角A﹣A1C﹣D1的余弦值;(Ⅲ)在线段CC1上是否存在点P,使得平面A1CD1⊥平面PBD,若存在,求出的值;若不存在,请说明理由.【考点】MJ :与二面角有关的立体几何综合题;LT :直线与平面平行的性质;LX :直线与平面垂直的性质.【分析】(Ⅰ)由已知条件推导出BD ⊥AA 1,BD ⊥AC ,从而得到BD ⊥平面A 1AC ,由此能证明BD ⊥A 1C .(Ⅱ) 以D 为原点建立空间直角坐标系D ﹣xyz ,利用向量法能求出二面角A ﹣A 1C ﹣D 1的余弦值.(Ⅲ)设P (x 2,y 2,z 2)为线段CC 1上一点,且=,利用向量法能求出当=时,平面A 1CD 1⊥平面PBD . 【解答】(本小题满分14分)(Ⅰ)证明:∵ABCD ﹣A 1B 1C 1D 1为正四棱柱, ∴AA 1⊥平面ABCD ,且ABCD 为正方形.… ∵BD ⊂平面ABCD ,∴BD ⊥AA 1,BD ⊥AC .… ∵AA 1∩AC=A ,∴BD ⊥平面A 1AC .… ∵A 1C ⊂平面A 1AC , ∴BD ⊥A 1C .…(Ⅱ)解:如图,以D 为原点建立空间直角坐标系D ﹣xyz .则D (0,0,0),A (2,0,0),C (0,2,0),A 1(2,0,4),B 1(2,2,4), C 1(0,2,4),D 1(0,0,4),…∵=(2,0,0),=(0,2,﹣4).设平面A 1D 1C 的法向量=(x 1,y 1,z 1).∴.即,…令z 1=1,则y 1=2.∴ =(0,2,1).由(Ⅰ)知平面AA 1C 的法向量为=(2,2,0).…∴cos <>==.…∵二面角A ﹣A 1C ﹣D 1为钝二面角,∴二面角A ﹣A 1C ﹣D 1的余弦值为﹣.…(Ⅲ)解:设P (x 2,y 2,z 2)为线段CC 1上一点,且=.∵=(x 2,y 2﹣2,z 2),=(﹣x 2,2﹣y 2,4﹣z 2).∴(x 2,y 2﹣2,z 2)=λ(﹣x 2,2﹣y 2,4﹣z 2).…即.∴P (0,2,).…设平面PBD 的法向量.∵,,∴.即.…令y 3=1,得=(﹣1,1,﹣).…若平面A 1CD 1⊥平面PBD ,则=0.即2﹣=0,解得.所以当=时,平面A 1CD 1⊥平面PBD .…20.平面直角坐标系xOy 中,已知椭圆的左焦点为F ,离心率为,过点F 且垂直于长轴的弦长为.(I )求椭圆C 的标准方程;(Ⅱ)设点A,B分别是椭圆的左、右顶点,若过点P(﹣2,0)的直线与椭圆相交于不同两点M,N.(i)求证:∠AFM=∠BFN;(ii)求△MNF面积的最大值.【考点】K4:椭圆的简单性质.【分析】(1)运用椭圆的离心率公式和过焦点垂直于对称轴的弦长,结合a,b,c的关系解得a,b,可得椭圆的方程;(II)方法一、(i)讨论直线AB的斜率为0和不为0,设A(x1,y1),B(x2,y2),AB方程为x=my﹣2,代入椭圆方程,运用韦达定理和判别式大于0,运用直线的斜率公式求斜率之和,即可得证;(ii)求得△MNF的面积,化简整理,运用基本不等式可得最大值.方法二、(i)由题知,直线AB的斜率存在,设直线AB的方程为:y=k(x+2),设A(x1,y1),B(x2,y2),联立椭圆方程,消去y,可得x的方程,运用韦达定理和判别式大于0,再由直线的斜率公式,求得即可得证;(ii)求得弦长|MN|,点F到直线的距离d,运用三角形的面积公式,化简整理,运用换元法和基本不等式,即可得到所求最大值.【解答】解:(1)由题意可得,令x=﹣c,可得y=±b=±,即有,又a2﹣b2=c2,所以.所以椭圆的标准方程为;(II)方法一、(i)当AB的斜率为0时,显然∠AFM=∠BFN=0,满足题意;当AB的斜率不为0时,设A(x1,y1),B(x2,y2),AB方程为x=my﹣2,代入椭圆方程,整理得(m2+2)y2﹣4my+2=0,则△=16m2﹣8(m2+2)=8m2﹣16>0,所以m2>2.,可得==.则kMF +kNF=0,即∠AFM=∠BFN;(ii)当且仅当,即m2=6.(此时适合△>0的条件)取得等号.则三角形MNF面积的最大值是.方法二(i)由题知,直线AB的斜率存在,设直线AB的方程为:y=k(x+2),设A(x1,y1),B(x2,y2),联立,整理得(1+2k2)x2+8k2x+8k2﹣2=0,则△=64k4﹣4(1+2k2)(8k2﹣2)=8﹣16k2>0,所以.,可得=∴kMF +kNF=0,即∠AFM=∠BFN;(ii),点F(﹣1,0)到直线MN的距离为,即有==.令t=1+2k2,则t∈[1,2),u(t)=,当且仅当,即(此时适合△>0的条件)时,,即,则三角形MNF面积的最大值是.21.已知函数f(x)=(x+1)lnx,g(x)=a(x﹣1)(a∈R).(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)≥g(x)对任意的x∈[1,+∞)恒成立,求实数a的取值范围;(Ⅲ)求证:ln2•ln3…lnn>(n≥2,n∈N+).【考点】6B:利用导数研究函数的单调性;6K:导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)求出h(x)的导数,通过讨论a的范围,结合函数的单调性确定a的具体范围即可;(Ⅲ)得到lnx≥,令x=n(n≥2,n∈N*),得lnn>,x取不同的值,相乘即可.【解答】解:(Ⅰ)f(x)的定义域为(0,+∞),f′(x)=lnx++1,设g(x)=f′(x),g′(x)=,令g′(x)>0,得x>1,g′(x)<0,得0<x<1,∴g(x)在(0,1)递减,在(1,+∞)递增,g(x)min=g(1)=2,∴f′(x)>0在(0,+∞)上恒成立,∴f(x)的递增区间为(0,+∞),无递减区间.(Ⅱ)设h(x)=(x﹣1)lnx﹣ax+a,由(Ⅰ)知:h′(x)=lnx+=1﹣a=g(x)﹣a,g(x)在(1,+∞)递增,∴g(x)≥g(1)=2,(1)当a≤2时,h′(x)≥0,h(x)在[1,+∞)递增,∴h(x)≥h(1)=0,满足题意.(2)当a>2时,设ω(x)=h′(x),ω′(x)=,当x≥1时,ω′(x)≥0,∴ω(x)在[1,+∞)递增,ω(1)=2﹣a<0,ω(e a)=1+e﹣a>0,∴∃x0∈(1,e a),使ω(x)=0,∵ω(x)在[1,+∞)递增,∴x∈(1,x),ω(x)<0,即h′(x)<0,∴当x∈(1,x时,h(x)<h(1)=0,不满足题意.综上,a的取值范围为(﹣∞,2].(Ⅲ)由(Ⅱ)知,令a=2,(x+1)lnx≥2(x﹣1),∴x≥1,lnx≥(当且仅当x=1取“=”),令x=n(n≥2,n∈N*)得lnn>,即ln2>,ln3>,ln4>,…,ln(n﹣2)>,ln(n﹣1)>,lnn>,将上述n﹣1个式子相乘得:ln2•ln3…lnn>=,∴原命题得证.[极坐标方程]22.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.【考点】Q4:简单曲线的极坐标方程.【分析】(I)把圆与直线的极坐标方程分别化为直角坐标方程,利用直线与圆相切的性质即可得出a;(II)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=2cos(θ+),利用三角函数的单调性即可得出.【解答】解:(Ⅰ)曲线C:ρ=2acosθ(a>0),变形ρ2=2ρacosθ,化为x2+y2=2ax,即(x ﹣a)2+y2=a2.∴曲线C是以(a,0)为圆心,以a为半径的圆;由l:ρcos(θ﹣)=,展开为,∴l的直角坐标方程为x+y﹣3=0.由直线l与圆C相切可得=a,解得a=1.(Ⅱ)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=3cosθ﹣sinθ=2cos(θ+),当θ=﹣时,|OA|+|OB|取得最大值2.[不等式选讲】23.已知函数f(x)=|x﹣1|(Ⅰ)解不等式f(2x)+f(x+4)≥8;(Ⅱ)若|a|<1,|b|<1,a≠0,求证:.【考点】R5:绝对值不等式的解法.【分析】(Ⅰ)依题意,f(2x)+f(x+4)=|2x﹣1|+|x+3|=,利用分段函数分段解不等式f(2x)+f(x+4)≥8,即可求得其解集.(Ⅱ)|a|<1,|b|<1,⇔f(ab)>|a|f()⇔|ab﹣1|>|a﹣b|,要证该不等式成立,只需证明|ab﹣1|2﹣|a﹣b|2>0即可.【解答】(Ⅰ)解:f(2x)+f(x+4)=|2x﹣1|+|x+3|=,当x<﹣3时,由﹣3x﹣2≥8,解得x≤﹣;当﹣3时,由﹣x+4≥8,解得x∈∅;当x≥时,由3x+2≥8,解得x≥2…4分所以,不等式f(2x)+f(x+4)≥8的解集为{x|x≤﹣或x≥2}…5分;(Ⅱ)证明:等价于f(ab)>|a|f(),即|ab﹣1|>|a﹣b|,因为|a|<1,|b|<1,所以|ab﹣1|2﹣|a﹣b|2=(a2b2﹣2ab+1)﹣(a2﹣2ab+b2)=(a2﹣1)(b2﹣1)>0,所以,|ab﹣1|>|a﹣b|,故所证不等式成立…10分.。

内蒙古杭锦旗2017届初中毕业第一次模拟考试数学试题

内蒙古杭锦旗2017届初中毕业第一次模拟考试数学试题

绝密★启用前内蒙古杭锦旗2017届初中毕业第一次模拟考试数学试题试卷副标题考试范围:xxx ;考试时间:77分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(题型注释)1、比-1大1的数是( )A .-2B .0C .2D .3【答案】B【解析】由题意得:-1+1=0,所以比-1大1的数是0.故选B. 2、下列四个几何体中,左视图为圆的是A .B .C .D .【答案】D【解析】因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形, 所以,左视图是圆的几何体是球。

故选:D.试卷第2页,共21页3、下列运算正确的 A . B .C .D .【答案】A【解析】试题解析:A. ,该选项计算正确;B. ,故原选项错误;C. ,故原选项错误;D. ,故原选项错误.故选A.4、某班数学兴趣小组10名同学的年龄情况如下表: 年龄(岁) 12 13 14 15 人数 1 4 4 1则这10名同学年龄的平均数和中位数分别是 A. 13.5,13.5 B. 13.5,13 C. 13,13.5 D. 13,14【答案】A【解析】将这10位同学的成绩从小到大排列为:12,13,13,13,13,14,14,14,14,15,中位数是=13.5,平均数是=13.5.故选A .5、如图,直线m ∥n ,△ABC 的顶点B ,C 分别在直线n ,m 上,且∠ACB=90°,若∠1=40°,则∠2的度数为A .110°B .120°C .130°D .140°【答案】C【解析】∵m ∥n,∠1=40°, ∴∠3=∠1=40°. ∵∠ACB=90°,∴∠4=∠ACB−∠3=90°−40°=50°, ∴∠2=180°−∠4=180°−50°=130°. 故选C.点睛:本题考查了平行线的性质,用到的知识点为:两直线平行,内错角相等. 6、下列说法正确的有 ①的值在3和4之间; ②当时,关于x 的一元二次方程有两个相等的实数根;③命题“对顶角相等”的逆命题是真命题; ④十边形的内角和为1440º;⑤等边三角形既是轴对称图形又是中心对称图形. A .1个 B .2个 C .3个 D .4个【答案】B【解析】试题解析:①的值在3和4之间,正确;②当时,关于x 的一元二次方程有两个不相等的实数根,故原说法错误;③命题“对顶角相等”的逆命题是假命题,故原说法错误;试卷第4页,共21页④十边形的内角和为1440º,正确;⑤等边三角形是轴对称图形不是中心对称图形,故原说法错误. 故选B.7、如图,在空白网格内将某一个小正方形涂成阴影部分,且所涂的小正方形与原阴影图形的小正方形至少有一边重合.小红按要求涂了一个正方形,所得到的阴影图形恰好是轴对称图形的概率为A .B .C .D .【答案】D 【解析】如图所示:所涂的小正方形与原阴影图形的小正方形至少有一边重合的一共有9个,能构成轴对称图形的有所标数据1,2,3,4,共4个,则所得到的阴影图形恰好是轴对称图形的概率为:. 故选:D.8、如图,在正方形ABCD 中,AB=3cm ,动点M 自A 点出发沿AB 方向以每秒1cm 的速度运动,同时动点N 从A 点出发沿折线AD→DC→CB 以每秒3cm 的速度运动,到达B 时运动同时停止,设△AMN 的面积为y (cm 2),运动时间为x(秒),则下列图象中能大致反映与之间的函数关系的是A .B .C .D .【答案】B【解析】当点N 在AD 上时,即0≤x≤1,,点N 在CD 上时,即1≤x≤2,,y 随x 的增大而增大,所以排除A. D ;当N 在BC 上时,即2≤x≤3,,开口方向向下。

内蒙古赤峰市2017届高三数学(4月份)模拟试卷 文(含解析)

内蒙古赤峰市2017届高三数学(4月份)模拟试卷 文(含解析)

内蒙古赤峰市2017届高三数学(4月份)模拟试卷文一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={x|﹣2<x<3}N={﹣2,﹣1,0,1}},则M∩N=()A.{﹣2,﹣1,0} B.{0,1,2} C.{﹣1,0,1} D.{﹣2,﹣1,0,1}2.复数z=i(2﹣i)(i是虚数单位),则z的共轭复数=()A.1﹣2i B.1+2i C.﹣1+2i D.﹣1﹣2i3.若函数f(x)的定义域为R,则“函数f(x)是奇函数”是“f(0)=0”的()A.必要不充分条件B.既不充分也不必要条件C.充要条件 D.充分不必要条件4.下列函数中,值域为,则直线l的斜率不小于1的概率为.14.变量x,y满足约束条件,当目标函数z=2x﹣y取得最大值时,其最优解为.15.三棱锥P﹣ABC中,PC⊥平面ABC,∠CAB=90°,PC=3,AC=4,AB=5,则此三棱锥外接球的表面积为.16.数列{a n}满足a1=1,且a n+1﹣a n=n+1,n∈N*,则数列的前n项和S n= .三、解答题(本大题共5小题,满分60分.解答须写出文字说明、证明过程和演算步骤)17.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足acosC=b﹣c.(Ⅰ)求角A的大小;(Ⅱ)若B=,AC=4,求BC边上的中线AM的长.18.已知长方形ABCD如图1中,AD=,AB=2,E为AB中点,将△ADE沿DE折起到△PDE,所得四棱锥P﹣BCDE如图2所示.(Ⅰ)若点M为PC中点,求证:BM∥平面PDE;(Ⅱ)当平面PDE⊥平面BCDE时,求三棱锥E﹣PCD的体积.19.某校高三特长班的一次月考数学成绩的茎叶图和频率分布直方图1都受到不同程度的损坏,但可见部分如图2,据此解答如下问题:(Ⅰ)求分数在22.在平面直角坐标系xOy中,曲线C1的参数方程为,(θ为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是ρ=sinθ+cosθ,曲线C3的极坐标方程是θ=.(Ⅰ)求曲线C1的极坐标方程;(Ⅱ)曲线C3与曲线C1交于点O,A,曲线C3与曲线C2曲线交于点O,B,求|AB|.23.已知函数f(x)=|x+1|.(I)求不等式f(x)<|2x+1|﹣1的解集M;(Ⅱ)设a,b∈M,证明:f(ab)>f(a)﹣f(﹣b).- 2 -2017年内蒙古赤峰市高考数学模拟试卷(文科)(4月份)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={x|﹣2<x<3}N={﹣2,﹣1,0,1}},则M∩N=()A.{﹣2,﹣1,0} B.{0,1,2} C.{﹣1,0,1} D.{﹣2,﹣1,0,1}【考点】1E:交集及其运算.【分析】根据交集的定义即可求出【解答】解:集合M={x|﹣2<x<3}N={﹣2,﹣1,0,1}},则M∩N={﹣1,0,1}故选C.2.复数z=i(2﹣i)(i是虚数单位),则z的共轭复数=()A.1﹣2i B.1+2i C.﹣1+2i D.﹣1﹣2i【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解:z=i(2﹣i)=2i+1,则z的共轭复数=1﹣2i.故选:A.3.若函数f(x)的定义域为R,则“函数f(x)是奇函数”是“f(0)=0”的()A.必要不充分条件B.既不充分也不必要条件C.充要条件 D.充分不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】函数f(x)的定义域为R,则“函数f(x)是奇函数”⇒“f(0)=0”,反之不成立,例如f(x)=x2.【解答】解:函数f(x)的定义域为R,则“函数f(x)是奇函数”⇒“f(0)=0”,反之不成立,例如f(x)=x2.∴函数f(x)的定义域为R,则“函数f(x)是奇函数”是“f(0)=0”的充分不必要条件.故选:D.4.下列函数中,值域为的偶函数,不正确,故选B.5.已知向量,若垂直,则m的值为()A.1 B.﹣1 C.﹣D.【考点】9T:数量积判断两个平面向量的垂直关系.【分析】根据向量坐标运算的公式,求出向量的坐标.再利用向量与互相垂直,得到它们的数量积等于0,利用两个向量数量积的坐标表达式列方程,可求解m的值.【解答】解∵∴向量=(1﹣4,3+2m)=(﹣3,3+2m)又∵向量与互相垂直,∴•()=1×(﹣3)+3(3+2m)=0∴﹣3+9+6m=0⇒m=﹣1故选B.6.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)- 4 -A.12 B.24 C.36 D.48【考点】EF:程序框图.【分析】列出循环过程中S与n的数值,满足判断框的条件即可结束循环.【解答】解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:B.7.圆x2+y2+4x﹣2y+1=0的圆心到直线x+ay﹣1=0的距离等于1,则a=()A.B.C.D.2【考点】J9:直线与圆的位置关系.【分析】圆x2+y2+4x﹣2y+1=0,即(x+2)2+(y﹣1)2=4的圆心(﹣2,1),再利用点到直线的距离公式即可得出结论.【解答】解:圆x2+y2+4x﹣2y+1=0,即(x+2)2+(y﹣1)2=4的圆心(﹣2,1)到直线x+ay﹣1=0的距离d==1,∴a=.故选:A.8.某几何体的三视图如图所示,图中的四边形都是边长为4的正方形,两条虚线互相垂直,则该几何体的表面积是()A.B.C.D.【考点】L!:由三视图求面积、体积.【分析】通过三视图可知该几何体是一个正方体扣去一个正四棱锥,计算五个正方形的面积与四个等腰三角形的面积即可.【解答】解:由三视图可知该几何体是一个正方体扣去一个正四棱锥,如图.则正四棱锥的侧面是底为4、高为=的等腰三角形,其面积S1=×4×=,所以该几何体的面积为5×4×4+4×S1=80+16,故选:B.9.已知各项均为正数的等比数列{a n}满足a1=1,a1+a3+a5=21,则a2+a4+a6=()- 6 -A.﹣42 B.84 C.42 D.168【考点】88:等比数列的通项公式.【分析】设各项均为正数的等比数列{a n}的公比为q>0,a1=1,a1+a3+a5=21,可得1+q2+q4=21,解得q.即可得出.【解答】解:设各项均为正数的等比数列{a n}的公比为q>0,∵a1=1,a1+a3+a5=21,∴1+q2+q4=21,解得q=2.则a2+a4+a6=q(a1+a3+a5)=2×21=42,故选:C.10.己知x0=是函数f(x)=sin(2x+φ)的一个极大值点,则f(x)的一个单调递减区间是()A.(,)B.(,)C.(,π)D.(,π)【考点】H5:正弦函数的单调性;H2:正弦函数的图象.【分析】由极值点可得φ=﹣,解2kπ+<2x﹣<2kπ+可得函数f(x)的单调递减区间,结合选项可得.【解答】解:∵x0=是函数f(x)=sin(2x+φ)的一个极大值点,∴sin(2×+φ)=1,∴2×+φ=2kπ+,解得φ=2kπ﹣,k∈Z,不妨取φ=﹣,此时f(x)=sin(2x﹣)令2kπ+<2x﹣<2kπ+可得kπ+<x<kπ+,∴函数f(x)的单调递减区间为(kπ+,kπ+)k∈Z,结合选项可知当k=0时,函数的一个单调递减区间为(,),故选:B.11.已知点A(0,2),抛物线C:y2=mx(m>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:2,则△OFN的面积为()A.B.C.D.【考点】K8:抛物线的简单性质.【分析】作出M在准线上的射影K,根据|KM|:|MN|确定|KN|:|KM|的值,进而列方程求得m,再由三角形的面积公式,计算即可得到所求值.【解答】解:抛物线C:y2=mx的焦点F(,0)设M在准线上的射影为K,由抛物线的定义知|MF|=|MK|,由|FM|:|MN|=1:2,可得|KM|:|MN|=1:2,则|KN|:|KM|=:1,k FN=﹣k FN==﹣,即有=,求得m=,则三角形OFN的面积为•y N•|OF|=×2×=.故选D.12.设函数在(t,10﹣t2)上有最大值,则实数t的取值范围为()A.B.C.,则直线l的斜率不小于1的概率为.【考点】CF:几何概型.- 8 -【分析】先求出直线的斜率的范围,再根据几何概型的概率公式计算即可.【解答】解:由ax+2y﹣3=0得到y=﹣x+,故直线的斜率为﹣,∵直线l的斜率不小于1,∴﹣≥1,即a≤﹣2,∵a∈,∴﹣5≤a≤﹣2,∴直线l的斜率不小于1的概率为=,故答案为:.14.变量x,y满足约束条件,当目标函数z=2x﹣y取得最大值时,其最优解为(2,0).【考点】7C:简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最优解.【解答】解:画出满足条件的平面区域,如图示:,由z=2x﹣y得:y=2x﹣z,显然直线过A(2,0)时,z最大,故答案为:(2,0).15.三棱锥P﹣ABC中,PC⊥平面ABC,∠CAB=90°,PC=3,AC=4,AB=5,则此三棱锥外接球的表面积为50π.【考点】LG:球的体积和表面积.【分析】根据已知中PC⊥平面ABC,∠CAB=90°,PC=3,AC=4,AB=5,可得三棱锥P﹣ABC的外接球,即为以PC,AC,AB为长宽高的长方体的外接球,根据已知PC、AC、AB的长,代入长方体外接球直径(长方体对角线)公式,易得球半径,即可求出三棱锥外接球的表面积.【解答】解:PC⊥平面ABC,∠CAB=90°,PC=3,AC=4,AB=5,则该三棱锥P﹣ABC的外接球即为以PC,AC,AB为长宽高的长方体的外接球,故2R==5故R=,三棱锥外接球的表面积为50π.故答案为50π16.数列{a n}满足a1=1,且a n+1﹣a n=n+1,n∈N*,则数列的前n项和S n= .【考点】8E:数列的求和.【分析】数列{a n}满足a1=1,且a n+1﹣a n=n+1,n∈N*,利用a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1与等差数列的求和公式可得a n,再利用裂项求和方法即可得出.【解答】解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1,n∈N*,∴a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=n+(n﹣1)+…+2+1=.∴=2.∴数列的前n项和S n=2++…+=2=.故答案为:.三、解答题(本大题共5小题,满分60分.解答须写出文字说明、证明过程和演算步骤)- 10 -17.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足acosC=b﹣c.(Ⅰ)求角A的大小;(Ⅱ)若B=,AC=4,求BC边上的中线AM的长.【考点】HT:三角形中的几何计算.【分析】(Ⅰ)根据正弦定理和两角和的正弦公式即可求出;(Ⅱ)利用余弦定理即可求出.【解答】解:(Ⅰ)∵acosC=b﹣c,由正弦定理可得sinAcosC=sinB﹣sinC,∵sinB=sin(A+C)=sinAcosC+cosAsinC,∴cosAsinC=sinC,∵sinC≠0,∴cosA=,∴A=,(Ⅱ)由A=B=,则C=,∴BC=AC=4,AB=4,∴AM=2,由余弦定理可得AM2=BM2+AB2﹣2BM•ABcosB=4+48﹣16•=28,∴AM=2.18.已知长方形ABCD如图1中,AD=,AB=2,E为AB中点,将△ADE沿DE折起到△PDE,所得四棱锥P﹣BCDE如图2所示.(Ⅰ)若点M为PC中点,求证:BM∥平面PDE;(Ⅱ)当平面PDE⊥平面BCDE时,求三棱锥E﹣PCD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行的判定.【分析】(Ⅰ)取DP中点F,连结EF、FM,推导出FEBM是平行四边形,从而BM∥EF,由此能证明BM∥平面PDE.(Ⅱ)过P作PH⊥DE于H,则PH⊥平面EBCD,三棱锥E﹣PCD的体积V E﹣PCD=V P﹣DEC,由此能求出结果.【解答】证明:(Ⅰ)取DP中点F,连结EF、FM,∵△PDC中,点F、M分别是DP、PC的中点,∴FM DC,又EB DC,∴FM EB,∴FEBM是平行四边形,∴BM∥EF,又EF⊂平面PDE,BM⊄平面PDE,∴BM∥平面PDE.解:(Ⅱ)∵平面PDE⊥平面EBCD,且平面PDE∩平面EBCD=DE,过P作PH⊥DE于H,∴PH⊥平面EBCD,在Rt△PDE中,过P作PH⊥DE于H,∴PH⊥平面EBCD,在Rt△PDE中,由题意得PH=,在Rt△DEC中,DE==2,且DE=EC=2,∴=,∴三棱锥E﹣PCD的体积V E﹣PCD=V P﹣DEC===.- 12 -19.某校高三特长班的一次月考数学成绩的茎叶图和频率分布直方图1都受到不同程度的损坏,但可见部分如图2,据此解答如下问题:(Ⅰ)求分数在22.在平面直角坐标系xOy中,曲线C1的参数方程为,(θ为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是ρ=sinθ+cosθ,曲线C3的极坐标方程是θ=.(Ⅰ)求曲线C1的极坐标方程;(Ⅱ)曲线C3与曲线C1交于点O,A,曲线C3与曲线C2曲线交于点O,B,求|AB|.【考点】QH:参数方程化成普通方程;Q4:简单曲线的极坐标方程.【分析】(Ⅰ)先把参数方程转化为普通方程,利用由x=ρcosθ,y=ρsinθ可得极坐标方程;(Ⅱ)利用|AB|=|ρ1﹣ρ2|即可得出.【解答】解:(Ⅰ)曲线C1的参数方程为,(θ为参数),普通方程为(x﹣3)2+y2=9,x2+y2﹣6x=0,由x=ρcosθ,y=ρsinθ,得ρ2﹣6ρcosθ=0,∴曲线C1的极坐标方程为ρ=6cosθ;(Ⅱ)设点A的极坐标为(ρ1,),点B的极坐标为(ρ2,),则ρ1=6cos=3,ρ2=sin+cos=2,所以AB|=|ρ1﹣ρ2|=1.23.已知函数f(x)=|x+1|.(I)求不等式f(x)<|2x+1|﹣1的解集M;(Ⅱ)设a,b∈M,证明:f(ab)>f(a)﹣f(﹣b).【考点】R5:绝对值不等式的解法;R4:绝对值三角不等式.【分析】(I)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(Ⅱ)由题意可得|a+1|>0,|b|﹣1>0,化简f(ab)﹣为|a+1|•(|b|﹣1|)>0,从而证得不等式成立.【解答】解:(I)不等式f(x)<|2x+1|﹣1,即|x+1|<|2x+1|﹣1,∴①,或②,或③.解①求得x<﹣1;解②求得x∈∅;解③求得x>1.故要求的不等式的解集M={x|x<﹣1或 x>1}.(Ⅱ)证明:设a,b∈M,∴|a+1|>0,|b|﹣1>0,则 f(ab)=|ab+1|,f(a)﹣f(﹣b)=|a+1|﹣|﹣b+1|.- 14 -∴f(ab)﹣=f(ab)+f(﹣b)﹣f(a)=|ab+1|+|1﹣b|﹣|a+1| =|ab+1|+|b﹣1|﹣|a+1|≥|ab+1+b﹣1|﹣|a+1|=|b(a+1)|﹣|a+1| =|b|•|a+1|﹣|a+1|=|a+1|•(|b|﹣1|)>0,故f(ab)>f(a)﹣f(﹣b)成立.。

2017年普通高等学校招生全国统一考试数学模拟试题

2017年普通高等学校招生全国统一考试数学模拟试题D的序号).三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分12分)设数列 {a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和为T n ,求T n .17.(本小题满分12分)一辆小客车上有5个座位,其座位号为1,2,3,4,5.乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5,他们按照座位号从小到大的顺序先后上车.乘客P1因身体原因没有坐自己的1号座位,这时司机要求余下的乘客按以下规则就座:如果自己的座位空着,就只能坐自己的座位;如果自己的座位已有乘客就座,就在这5个座位的剩余空位中任意选择座位.(1)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出了其中两种坐法,请填入余下两种坐法(将乘客就座的座位号填入表中空格处);2015·乘客P1P2P3P4P5座位号3214 53245 1(2)若乘客P1坐到了2号座位,其他乘客按规则就座,求乘客P5坐到5号座位的概率.18.(本小题满分12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1) 请将字母F,G,H标记在正方体相应的顶点处(不需要说明理由);(2) 判断平面BEG与平面ACH的位置关系,并证明你的结论;(3) 证明:直线DF⊥平面BEG.19.(本小题满分12分)已知A,B,C为△ABC 的内角,tan A,tan B是关于x的方程x2+3px -p+1=0(p∈R)的两个实根.(1) 求C的大小;(2) 若AB=3,AC=6,求p的值.20.(本小题满分13分)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD→=-1.(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB→+λPA →·PB→为定值?若存在,求λ的值;若不存在,请说明理由.21.(本小题满分14分)已知函数f(x)=-2x ln x+x2-2ax+a2,其中a>0.(1) 设g(x)是f(x)的导函数,讨论g(x)的单调性;(2) 证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.。

2017年内蒙古包头市包钢一中高考数学二模试卷(理科)(解析版)

2017年内蒙古包头市包钢一中高考数学二模试卷(理科)一、选择题:(每题只有一个正确答案,每题5分,共60分.)1.(5分)若i是虚数单位,复数的虚部为()A.B.C.D.2.(5分)已知全集U={﹣2,0,1,2},集合A={x|x2+x﹣2=0},则∁U A=()A.{﹣2,1}B.{﹣2,0}C.{0,2}D.{0,1}3.(5分)如图,正方形ABCD中,E为DC的中点,若=λ+μ,则λ+μ的值为()A.B.C.1D.﹣14.(5分)函数y=2x﹣x2的图象大致是()A.B.C.D.5.(5分)已知(x2+)n的展开式的各项系数和为32,则展开式中x4的系数为()A.5B.40C.20D.106.(5分)某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为()A.B.C.D.37.(5分)已知函数f(x)=cos2x﹣sin2x,下列说法错误的是()A.f(x)的最小正周期为πB.x=是f(x)的一条对称轴C.f(x)在(﹣,)上单调递增D.|f(x)|的值域是[0,1]8.(5分)阅读如图所示的程序框图,则该算法的功能是()A.计算数列{2n﹣1}前5项的和B.计算数列{2n﹣1}前6项的和C.计算数列{2n﹣1}前5项的和D.计算数列{2n﹣1}前6项的和9.(5分)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A.a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>010.(5分)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在(3,6)内的概率为()附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=0.6826,P(μ﹣2σ<ξ<μ+2σ)=0.9544.A.0.2718B.0.0456C.0.3174D.0.135911.(5分)过曲线C1:﹣=1(a>0,b>0)的左焦点F1作曲线C2:x2+y2=a2的切线,设切点为M,延长F1M交曲线C3:y2=2px(p>0)于点N,其中曲线C1与C3有一个共同的焦点,若|MF1|=|MN|,则曲线C1的离心率为()A.B.﹣1C.+1D.12.(5分)已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<e x的解集为()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,e4)D.(e4,+∞)二.填空题(每题5分,共20分)13.(5分)已知l,m是两条不同的直线,α,β是两个不同的平面.下列命题:①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l⊥α,m∥l,α∥β,则m⊥β.其中真命题是(写出所有真命题的序号).14.(5分)若实数x,y满足不等式组,则z=2|x|+y的最大植为.15.(5分)已知A,B,C三人中,一个是油漆工,一个是木工,一个是泥瓦工,但不知A,B,C三人具体谁是什么工种,三人合作一件工程,由于其中的某一个人而做糟了,为了弄清楚责任,分别询问三人,得到的回答如下:A说:“C做坏了,B做好了”;B说:“我做坏了,C做好了”;C说:“我做坏了,A做好了”.现在又了解到,油漆工从来不说假话,泥瓦工从来不说真话,而木工说的话总是时真时假,则该负责任的是.16.(5分)定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)=,则称函数y=f(x)是[a,b]上的“平均值函数”,x0是它的一个均值点.例如y=|x|是[﹣2,2]上的平均值函数,0就是它的均值点.若函数f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函数”,则实数m的取值范围是.三、解答题17.(12分)设向量=(sin2ωx,cos2ωx),=(cosφ,sinφ),其中|φ|<,ω>0,函数f(x)=的图象在y轴右侧的第一个最高点(即函数取得最大值的点)为,在原点右侧与x轴的第一个交点为.(Ⅰ)求函数f(x)的表达式;(Ⅱ)在△ABC中,角A′B′C的对边分别是a′b′c′若f(C)=﹣1,,且a+b=2,求边长c.18.(12分)某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温x (°C)与该小卖部的这种饮料销量y(杯),得到如下数据:(Ⅰ)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;(Ⅱ)请根据所给五组数据,求出y关于x的线性回归方程=x+;(Ⅲ)根据(Ⅱ)中所得的线性回归方程,若天气预报1月16日的白天平均气温7(°C),请预测该奶茶店这种饮料的销量.(参考公式:=,=﹣)19.(12分)已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,AA1=4.(Ⅰ)求证:BD⊥A1C;(Ⅱ)求二面角A﹣A1C﹣D1的余弦值;(Ⅲ)在线段CC1上是否存在点P,使得平面A1CD1⊥平面PBD,若存在,求出的值;若不存在,请说明理由.20.(12分)平面直角坐标系xOy中,已知椭圆的左焦点为F,离心率为,过点F且垂直于长轴的弦长为.(I)求椭圆C的标准方程;(Ⅱ)设点A,B分别是椭圆的左、右顶点,若过点P(﹣2,0)的直线与椭圆相交于不同两点M,N.(i)求证:∠AFM=∠BFN;(ii)求△MNF面积的最大值.21.(12分)已知函数f(x)=(x+1)lnx,g(x)=a(x﹣1)(a∈R).(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)≥g(x)对任意的x∈[1,+∞)恒成立,求实数a的取值范围;(Ⅲ)求证:ln2•ln3…lnn>(n≥2,n∈N+).[极坐标方程]22.(10分)在极坐标系中,曲线C:ρ=2a cosθ(a>0),l:ρcos(θ﹣)=,C与l 有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.[不等式选讲】23.已知函数f(x)=|x﹣1|(Ⅰ)解不等式f(2x)+f(x+4)≥8;(Ⅱ)若|a|<1,|b|<1,a≠0,求证:.2017年内蒙古包头市包钢一中高考数学二模试卷(理科)参考答案与试题解析一、选择题:(每题只有一个正确答案,每题5分,共60分.)1.(5分)若i是虚数单位,复数的虚部为()A.B.C.D.【解答】解:复数===+i,∴复数的虚部为,故选:D.2.(5分)已知全集U={﹣2,0,1,2},集合A={x|x2+x﹣2=0},则∁U A=()A.{﹣2,1}B.{﹣2,0}C.{0,2}D.{0,1}【解答】解:全集U={﹣2,0,1,2},集合A={x|x2+x﹣2=0}={﹣2,1},则∁U A={0,2}故选:C.3.(5分)如图,正方形ABCD中,E为DC的中点,若=λ+μ,则λ+μ的值为()A.B.C.1D.﹣1【解答】解:由题意正方形ABCD中,E为DC的中点,可知:=.则λ+μ的值为:.故选:A.4.(5分)函数y=2x﹣x2的图象大致是()A.B.C.D.【解答】解:分别画出函数f(x)=2x(红色曲线)和g(x)=x2(蓝色曲线)的图象,如图所示,由图可知,f(x)与g(x)有3个交点,所以y=2x﹣x2=0,有3个解,即函数y=2x﹣x2的图象与x轴由三个交点,故排除B,C,当x=﹣3时,y=2﹣3﹣(﹣3)2<0,故排除D故选:A.5.(5分)已知(x2+)n的展开式的各项系数和为32,则展开式中x4的系数为()A.5B.40C.20D.10【解答】解:由题意,在(x2+)n的展开式中,令x=1,可得各项系数和为2n=32,n=5.故展开式的通项公式为T r+1=•x10﹣2r•x﹣r=•x10﹣3r,令10﹣3r=4,求得r=2,∴展开式中x4的系数为=10,故选:D.6.(5分)某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为()A.B.C.D.3【解答】解:由三视图可知,几何体的直观图如图所示,平面AED⊥平面BCDE,四棱锥A ﹣BCDE的高为1,四边形BCDE是边长为1的正方形,则S△AED==,S△ABC=S△ABE==,S△ACD==,故选:B.7.(5分)已知函数f(x)=cos2x﹣sin2x,下列说法错误的是()A.f(x)的最小正周期为πB.x=是f(x)的一条对称轴C.f(x)在(﹣,)上单调递增D.|f(x)|的值域是[0,1]【解答】解:∵f(x)=cos2x﹣sin2x=cos2x,∴f(x)的最小正周期T==π,选项A正确;由2x=kπ可得x=,k∈Z,∴x=是f(x)的一条对称轴,选项B正确;由2kπ+π≤2x≤2kπ+2π可得kπ+≤x≤kπ+π,∴函数的单调递增区间为[kπ+,kπ+π],k∈Z,C错误;|f(x)|=|cos2x|,故值域为[0,1],D正确.故选:C.8.(5分)阅读如图所示的程序框图,则该算法的功能是()A.计算数列{2n﹣1}前5项的和B.计算数列{2n﹣1}前6项的和C.计算数列{2n﹣1}前5项的和D.计算数列{2n﹣1}前6项的和【解答】解:由算法的流程知,第一次运行,A=2×0+1=1,i=1+1=2;第二次运行,A=2×1+1=3,i=2+1=3;第三次运行,A=2×3+1=7,i=3+1=4;第四次运行,A=2×7+1=15,i=5;第五次运行,A=2×15+1=31,i=6;第六次运行,A=2×31+1=63,i=7;满足条件i>6,终止运行,输出A=63,∴A=1+2+22+…+25==26﹣1=64﹣1=63.故选:D.9.(5分)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A.a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>0【解答】解:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.10.(5分)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在(3,6)内的概率为()附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=0.6826,P(μ﹣2σ<ξ<μ+2σ)=0.9544.A.0.2718B.0.0456C.0.3174D.0.1359【解答】解:∵设零件误差为ξ,则ξ~N(0,32),∴P(﹣6<ξ<6)=0.9544,P(﹣3<ξ<3)=0.6826,∴P(3<ξ<6)=(0.9544﹣0.6826)=0.1359.故选:D.11.(5分)过曲线C1:﹣=1(a>0,b>0)的左焦点F1作曲线C2:x2+y2=a2的切线,设切点为M,延长F1M交曲线C3:y2=2px(p>0)于点N,其中曲线C1与C3有一个共同的焦点,若|MF1|=|MN|,则曲线C1的离心率为()A.B.﹣1C.+1D.【解答】解:设双曲线的右焦点为F2,则F2的坐标为(c,0)因为曲线C1与C3有一个共同的焦点,所以y2=4cx因为O为F1F2的中点,M为F1N的中点,所以OM为△NF1F2的中位线,所以OM∥NF2,因为|OM|=a,所以|NF2|=2a又NF2⊥NF1,|FF2|=2c所以|NF1|=2b设N(x,y),则由抛物线的定义可得x+c=2a,∴x=2a﹣c过点F1作x轴的垂线,点N到该垂线的距离为2a由勾股定理y2+4a2=4b2,即4c(2a﹣c)+4a2=4(c2﹣a2)得e2﹣e﹣1=0,∴e=.故选:D.12.(5分)已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<e x的解集为()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,e4)D.(e4,+∞)【解答】解:设,∵f′(x)<f(x),∴h′(x)<0.所以函数h(x)是R上的减函数,∵函数f(x+2)是偶函数,∴函数f(﹣x+2)=f(x+2),∴函数关于x=2对称,∴f(0)=f(4)=1,原不等式等价为h(x)<1,∴不等式f(x)<e x等价h(x)<1⇔h(x)<h(0),.∵h(x)在R上单调递减,∴x>0.故选:B.二.填空题(每题5分,共20分)13.(5分)已知l,m是两条不同的直线,α,β是两个不同的平面.下列命题:①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l⊥α,m∥l,α∥β,则m⊥β.其中真命题是②④(写出所有真命题的序号).【解答】解:对于①,没有限制是两条相交直线,故①为假命题;对于②,利用线面平行的性质定理可得其为真命题;对于③,l也可以在平面β内,故其为假命题;对于④,由l⊥α,m∥l可得m⊥α,再由α∥β可得m⊥β,即④为真命题.故真命题有②④.故答案为:②④.14.(5分)若实数x,y满足不等式组,则z=2|x|+y的最大植为11.【解答】解:作出不等式组对应的平面区域如图:由,解得B(6,﹣1),由解得C(﹣2,﹣1),当x≥0时,z=2x+y,即y=﹣2x+z,x≥0,当x<0时,z=﹣2x+y,即y=2x+z,x<0,当x≥0时,平移直线y=﹣2x+z,(红线),当直线y=﹣2x+z经过点A(0,﹣1)时,直线y=﹣2x+z的截距最小为z=﹣1,当y=﹣2x+z经过点B(6,﹣1)时,直线y=﹣2x+z的截距最大为z=11,此时﹣1≤z≤11.当x<0时,平移直线y=2x+z,(蓝线),当直线y=2x+z经过点A(0,﹣1)时,直线y=2x+z的截距最小为z=﹣1,当y=2x+z经过点C(﹣2,﹣1)时,直线y=2x+z的截距最大为z=4﹣1=3,此时﹣1≤z≤3,综上﹣1≤z≤11,故z=2|x|+y的取值范围是[﹣1,11],故z的最大值为11,故答案为:11.15.(5分)已知A,B,C三人中,一个是油漆工,一个是木工,一个是泥瓦工,但不知A,B,C三人具体谁是什么工种,三人合作一件工程,由于其中的某一个人而做糟了,为了弄清楚责任,分别询问三人,得到的回答如下:A说:“C做坏了,B做好了”;B说:“我做坏了,C做好了”;C说:“我做坏了,A做好了”.现在又了解到,油漆工从来不说假话,泥瓦工从来不说真话,而木工说的话总是时真时假,则该负责任的是C.【解答】解:将甲、乙、丙三人所述命题依次记为P A,P B,P C,则由这3个命题的逻辑关系知:P A与P C同真同假,P A与P B一真一假,∵油漆工从来不说假话,泥瓦工从来不说真话,而木工说的话总是时真时假,∴C是本工,如下表所示,若P C是假命题,则P A必为假命题,∴P B必为真命题,而由P B内容知A,B两人都做坏了,与题意不符,∴P C是真命题,即C做对了,∴A是油漆工,B是泥瓦工,C是木工,是木工做了.故答案为:C.16.(5分)定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)=,则称函数y=f(x)是[a,b]上的“平均值函数”,x0是它的一个均值点.例如y=|x|是[﹣2,2]上的平均值函数,0就是它的均值点.若函数f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函数”,则实数m的取值范围是(0,2).【解答】解:∵函数f(x)=x2﹣mx﹣1是区间[﹣1,1]上的平均值函数,∴关于x的方程x2﹣mx﹣1=在(﹣1,1)内有实数根.即x2﹣mx﹣1=﹣m在(﹣1,1)内有实数根.即x2﹣mx+m﹣1=0,解得x=m﹣1,x=1.又1∉(﹣1,1)∴x=m﹣1必为均值点,即﹣1<m﹣1<1⇒0<m<2.∴所求实数m的取值范围是(0,2).故答案为:(0,2)三、解答题17.(12分)设向量=(sin2ωx,cos2ωx),=(cosφ,sinφ),其中|φ|<,ω>0,函数f(x)=的图象在y轴右侧的第一个最高点(即函数取得最大值的点)为,在原点右侧与x轴的第一个交点为.(Ⅰ)求函数f(x)的表达式;(Ⅱ)在△ABC中,角A′B′C的对边分别是a′b′c′若f(C)=﹣1,,且a+b=2,求边长c.【解答】解:(I)因为向量=(sin2ωx,cos2ωx),=(cosφ,sinφ),所以=sin2ωx cosφ+cos2ωx sinφ=sin(2ωx+φ),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣1分由题意,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣3分将点代入y=sin(2x+φ),得,所以,又因为,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣5分即函数的表达式为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣6分(II)由f(C)=﹣1,即又∵0<C<π,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣8分由,知,所以ab=3﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣10分由余弦定理知c2=a2+b2﹣2ab cos C=(a+b)2﹣2ab﹣2ab cos C=所以c=3﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣12分.18.(12分)某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温x (°C)与该小卖部的这种饮料销量y(杯),得到如下数据:(Ⅰ)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;(Ⅱ)请根据所给五组数据,求出y关于x的线性回归方程=x+;(Ⅲ)根据(Ⅱ)中所得的线性回归方程,若天气预报1月16日的白天平均气温7(°C),请预测该奶茶店这种饮料的销量.(参考公式:=,=﹣)【解答】解:(Ⅰ)设“选取的2组数据恰好是相邻2天数据”为事件A,所有基本事件(m,n)(其中m,n为1月份的日期数)有:(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15),共有10种.事件A包括的基本事件有(11,12),(12,13),(13,14),(14,15)共4种.所以为所求.…6分(Ⅱ)由数据,求得,.由公式,求得,,所以y关于x的线性回归方程为.…10分(Ⅲ)当x=7时,.所以该奶茶店这种饮料的销量大约为19杯.…12分.19.(12分)已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,AA1=4.(Ⅰ)求证:BD⊥A1C;(Ⅱ)求二面角A﹣A1C﹣D1的余弦值;(Ⅲ)在线段CC1上是否存在点P,使得平面A1CD1⊥平面PBD,若存在,求出的值;若不存在,请说明理由.【解答】(本小题满分14分)(Ⅰ)证明:∵ABCD﹣A1B1C1D1为正四棱柱,∴AA1⊥平面ABCD,且ABCD为正方形.…(1分)∵BD⊂平面ABCD,∴BD⊥AA1,BD⊥AC.…(2分)∵AA1∩AC=A,∴BD⊥平面A1AC.…(3分)∵A1C⊂平面A1AC,∴BD⊥A1C.…(4分)(Ⅱ)解:如图,以D为原点建立空间直角坐标系D﹣xyz.则D(0,0,0),A(2,0,0),C(0,2,0),A1(2,0,4),B1(2,2,4),C1(0,2,4),D1(0,0,4),…(5分)∵=(2,0,0),=(0,2,﹣4).设平面A1D1C的法向量=(x1,y1,z1).∴.即,…(6分)令z1=1,则y1=2.∴=(0,2,1).由(Ⅰ)知平面AA1C的法向量为=(2,2,0).…(7分)∴cos<>==.…(8分)∵二面角A﹣A1C﹣D1为钝二面角,∴二面角A﹣A1C﹣D1的余弦值为﹣.…(9分)(Ⅲ)解:设P(x2,y2,z2)为线段CC1上一点,且=.∵=(x2,y2﹣2,z2),=(﹣x2,2﹣y2,4﹣z2).∴(x2,y2﹣2,z2)=λ(﹣x2,2﹣y2,4﹣z2).…(10分)即.∴P(0,2,).…(11分)设平面PBD的法向量.∵,,∴.即.…(12分)令y3=1,得=(﹣1,1,﹣).…(13分)若平面A1CD1⊥平面PBD,则=0.即2﹣=0,解得.所以当=时,平面A1CD1⊥平面PBD.…(14分)20.(12分)平面直角坐标系xOy中,已知椭圆的左焦点为F,离心率为,过点F且垂直于长轴的弦长为.(I)求椭圆C的标准方程;(Ⅱ)设点A,B分别是椭圆的左、右顶点,若过点P(﹣2,0)的直线与椭圆相交于不同两点M,N.(i)求证:∠AFM=∠BFN;(ii)求△MNF面积的最大值.【解答】解:(1)由题意可得,令x=﹣c,可得y=±b=±,即有,又a2﹣b2=c2,所以.所以椭圆的标准方程为;(II)方法一、(i)当AB的斜率为0时,显然∠AFM=∠BFN=0,满足题意;当AB的斜率不为0时,设M(x1,y1),N(x2,y2),MN方程为x=my﹣2,代入椭圆方程,整理得(m2+2)y2﹣4my+2=0,则△=16m2﹣8(m2+2)=8m2﹣16>0,所以m2>2.,可得==.则k MF+k NF=0,即∠AFM=∠BFN;(ii)当且仅当,即m2=6.(此时适合△>0的条件)取得等号.则三角形MNF面积的最大值是.方法二(i)由题知,直线AB的斜率存在,设直线MN的方程为:y=k(x+2),设M(x1,y1),N(x2,y2),联立,整理得(1+2k2)x2+8k2x+8k2﹣2=0,则△=64k4﹣4(1+2k2)(8k2﹣2)=8﹣16k2>0,所以.,可得=∴k MF+k NF=0,即∠AFM=∠BFN;(ii),点F(﹣1,0)到直线MN的距离为,即有==.令t=1+2k2,则t∈[1,2),u(t)=,当且仅当,即(此时适合△>0的条件)时,,即,则三角形MNF面积的最大值是.21.(12分)已知函数f(x)=(x+1)lnx,g(x)=a(x﹣1)(a∈R).(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)≥g(x)对任意的x∈[1,+∞)恒成立,求实数a的取值范围;(Ⅲ)求证:ln2•ln3…lnn>(n≥2,n∈N+).【解答】解:(Ⅰ)f(x)的定义域为(0,+∞),f′(x)=lnx++1,设g(x)=f′(x),g′(x)=,令g′(x)>0,得x>1,g′(x)<0,得0<x<1,∴g(x)在(0,1)递减,在(1,+∞)递增,g(x)min=g(1)=2,∴f′(x)>0在(0,+∞)上恒成立,∴f(x)的递增区间为(0,+∞),无递减区间.(Ⅱ)设h(x)=(x﹣1)lnx﹣ax+a,由(Ⅰ)知:h′(x)=lnx+=1﹣a=g(x)﹣a,g(x)在(1,+∞)递增,∴g(x)≥g(1)=2,(1)当a≤2时,h′(x)≥0,h(x)在[1,+∞)递增,∴h(x)≥h(1)=0,满足题意.(2)当a>2时,设ω(x)=h′(x),ω′(x)=,当x≥1时,ω′(x)≥0,∴ω(x)在[1,+∞)递增,ω(1)=2﹣a<0,ω(e a)=1+e﹣a>0,∴∃x0∈(1,e a),使ω(x0)=0,∵ω(x)在[1,+∞)递增,∴x∈(1,x0),ω(x)<0,即h′(x)<0,∴当x∈(1,x0时,h(x)<h(1)=0,不满足题意.综上,a的取值范围为(﹣∞,2].(Ⅲ)由(Ⅱ)知,令a=2,(x+1)lnx≥2(x﹣1),∴x≥1,lnx≥(当且仅当x=1取“=”),令x=n(n≥2,n∈N*)得lnn>,即ln2>,ln3>,ln4>,…,ln(n﹣2)>,ln(n﹣1)>,lnn>,将上述n﹣1个式子相乘得:ln2•ln3…lnn>=,∴原命题得证.[极坐标方程]22.(10分)在极坐标系中,曲线C:ρ=2a cosθ(a>0),l:ρcos(θ﹣)=,C与l 有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.【解答】解:(Ⅰ)曲线C:ρ=2a cosθ(a>0),变形ρ2=2ρa cosθ,化为x2+y2=2ax,即(x ﹣a)2+y2=a2.∴曲线C是以(a,0)为圆心,以a为半径的圆;由l:ρcos(θ﹣)=,展开为,∴l的直角坐标方程为x+y﹣3=0.由直线l与圆C相切可得=a,解得a=1.(Ⅱ)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=3cosθ﹣sinθ=2cos(θ+),当θ=﹣时,|OA|+|OB|取得最大值2.[不等式选讲】23.已知函数f(x)=|x﹣1|(Ⅰ)解不等式f(2x)+f(x+4)≥8;(Ⅱ)若|a|<1,|b|<1,a≠0,求证:.【解答】(Ⅰ)解:f(2x)+f(x+4)=|2x﹣1|+|x+3|=,当x<﹣3时,由﹣3x﹣2≥8,解得x≤﹣;当﹣3时,由﹣x+4≥8,解得x∈∅;当x≥时,由3x+2≥8,解得x≥2…4分所以,不等式f(2x)+f(x+4)≥8的解集为{x|x≤﹣或x≥2}…5分;(Ⅱ)证明:等价于f(ab)>|a|f(),即|ab﹣1|>|a﹣b|,因为|a|<1,|b|<1,所以|ab﹣1|2﹣|a﹣b|2=(a2b2﹣2ab+1)﹣(a2﹣2ab+b2)=(a2﹣1)(b2﹣1)>0,所以,|ab﹣1|>|a﹣b|,故所证不等式成立…10分.。

内蒙古呼和浩特市2017届中考数学一模试卷(有答案)

2017年内蒙古呼和浩特市中考数学一模试卷一、选择题(本题共10个小题,每小题3分,共30分)1.﹣2,﹣1,0,四个数中,绝对值最小的数是()A.B.﹣2 C.0 D.﹣12.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.3.要使分式有意义,则x的取值应满足()A.x≠﹣2 B.x≠2 C.x≠﹣1 D.x=14.对“某市明天下雨的概率是80%”这句话,理解正确的是()A.某市明天将有80%的时间下雨B.某市明天将有80%的地区下雨C.某市明天一定会下雨D.某市明天下雨的可能性较大5.在平面直角坐标系中,点P(﹣,2)在()A.第一象限B.第二象限C.第三象限D.第四象限6.下列计算正确的是()A.2a3•3a2=6a6B.a3+2a2=3a5C.a÷b×=a D.(﹣)÷x﹣1=7.设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x的函数图象可能为()A.B.C.D.8.已知a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.用两个相等的实数根B.有两个不相等的实数根C.不确定,与b的取值有关D.无实数根9.有以下四个命题:①半径为2的圆内接正三角形的边长为2;②有两边及其一个角对应相等的两个三角形全等;③从装有大小和质地完全相同的3个红球和2个黑球的袋子中,随机摸取1个球,摸到红色球和黑色球的可能性相等;④函数y=﹣x2+2x,当y>﹣3时,对应的x的取值为x>3或x <﹣1,其中假命题的个数为()A.4个 B.3个 C.2个 D.1个10.如图,△ABC中AB=AC=4,∠C=72°,D是AB的中点,点E在AC上,DE⊥AB,则cos∠ABE的值为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)11.如图,已知a,b,c,d四条直线,a∥b,c∥d,∠1=110°,则∠2等于.12.某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件元.13.在数轴上从满足|x|<2的任意实数x对应的点中随机选取一点,则取到的点对应的实数大于1的概率为.14.分解因式:a3﹣6a2+5a=.15.如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么这个圆锥的左视图的面积是.16.如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为.三、解答题(本大题共9小题,共72分)17.(10分)计算、求值:(1)计算:|﹣2|+()﹣1﹣(+1)(﹣1);(2)已知单项式2x m﹣1y n+3与﹣x n y2m是同类项,求m,n的值.18.(7分)如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F(1)求证:EF=DE;(2)若AC=BC,判断四边形ADCF的形状.19.(10分)为了解“足球进校园”活动开展情况,某中学利用体育课进行了定点射门测试,每人射门5次,所有班级测试结束后,随机抽取了某班学生的射门情况作为样本,对进球的人数进行整理后,绘制了不完整的统计图表,该班女生有22人,女生进球个数的众数为2,中位数为3.女生进球个数的统计表数;(2)写出女生进球个数统计表中x,y的值;(3)若该校共有学生1880人,请你估计全校进球数不低于3个的学生大约多少人?20.(6分)如图所示,某学生在河东岸点A处观测到河对岸水边有一点C,测得C在A北偏西31°的方向上,沿河岸向北前行30米到达B处,测得C在B北偏西45°的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(结果用含非特殊角的三角函数和根式表示即可)21.(6分)已知关于x的不等式组有解,求实数a的取值范围,并写出该不等式组的解集.22.(7分)在直角坐标系中,直线y=kx+1(k≠0)与双曲线y=(x>0)相交于点P(1,m)(1)求k的值;(2)若双曲线上存在一点Q与点P关于直线y=x对称,直线y=kx+1与x轴交于点A,求△APQ的面积.23.(7分)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并求出最大利润.24.(9分)如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC 的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.25.(10分)抛物线y=ax2+c与x轴交于A,B两点,顶点C,点P为抛物线上一点,且位于x轴下方.(1)如图1,若P(1,﹣3),B(4,0).D是抛物线上一点,满足∠DPO=∠POB,且D与B分布位于直线OP的两侧,求点C与点D的坐标;(2)如图2,A,B是抛物线y=ax2+c与x轴的两个交点,直线PA,PB与y轴分别交于E,F两点,当点P在x轴下方的抛物线上运动时,是否为定值?若是,试求出该定值;若不是,请说明理由(记OA=OB=t)2017年内蒙古呼和浩特市中考数学一模试卷参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分)1.﹣2,﹣1,0,四个数中,绝对值最小的数是()A.B.﹣2 C.0 D.﹣1【考点】18:有理数大小比较;15:绝对值.【分析】首先求出每个数的绝对值各是多少;然后根据有理数大小比较的法则,判断出﹣2,﹣1,0,四个数中,绝对值最小的数是哪个即可.【解答】解:|﹣2|=2,|﹣1|=1,|0|=0,||=,∵2>1>>0,∴﹣2,﹣1,0,四个数中,绝对值最小的数是0.故选:C.【点评】此题主要考查了绝对值的含义和求法,以及有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故此选项正确;B、是轴对称图形,也是中心对称图形.故此选项错误;C、是轴对称图形,不是中心对称图形.故此选项错误;D、是轴对称图形,不是中心对称图形.故此选项错误.故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.要使分式有意义,则x的取值应满足()A.x≠﹣2 B.x≠2 C.x≠﹣1 D.x=1【考点】62:分式有意义的条件.【分析】分式有意义:分母不等于零.【解答】解:依题意得:﹣x+2≠0,解得x≠2.故选:B.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.4.对“某市明天下雨的概率是80%”这句话,理解正确的是()A.某市明天将有80%的时间下雨B.某市明天将有80%的地区下雨C.某市明天一定会下雨D.某市明天下雨的可能性较大【考点】X3:概率的意义.【分析】根据概率的意义进行解答即可.【解答】解:“某市明天下雨的概率是80%”说明某市明天下雨的可能性较大,故选:D.【点评】本题考查的是概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.5.在平面直角坐标系中,点P(﹣,2)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】根据各象限内点的坐标特征解答.【解答】解:∵﹣>0,∴点P(﹣,2)在第一象限.故选A.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.下列计算正确的是()A.2a3•3a2=6a6B.a3+2a2=3a5C.a÷b×=a D.(﹣)÷x﹣1=【考点】6C:分式的混合运算;49:单项式乘单项式;6F:负整数指数幂.【分析】根据整式的运算以及分式的运算法则即可求出答案.【解答】解:(A)原式=6a5,故A错误;(B)a3与2a2不是同类项,不能合并,故B错误;(C)原式=a××=,故C错误;故选(D)【点评】本题考查学生的计算能力,解题的关键是熟练运用运算法则,本题属于基础题型.7.设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x的函数图象可能为()A.B.C.D.【考点】G2:反比例函数的图象.【分析】根据反比例函数解析式以及z=,即可找出z关于x的函数解析式,再根据反比例函数图象在第一象限可得出k>0,结合x的取值范围即可得出结论.【解答】解:∵y=(k≠0,x>0),∴z===(k≠0,x>0).∵反比例函数y=(k≠0,x>0)的图象在第一象限,∴k>0,∴>0.∴z关于x的函数图象为第一象限内,且不包括原点的正比例的函数图象.故选D.【点评】本题考查了反比例函数的图象以及正比例函数的图象,解题的关键是找出z关于x的函数解析式.本题属于基础题,难度不大,解决该题型题目时,根据分式的变换找出z关于x的函数关系式是关键.8.已知a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.用两个相等的实数根B.有两个不相等的实数根C.不确定,与b的取值有关D.无实数根【考点】AA:根的判别式.【分析】利用完全平方的展开式将(a﹣c)2展开,即可得出ac<0,再结合方程ax2+bx+c=0根的判别式△=b2﹣4ac,即可得出△>0,由此即可得出结论.【解答】解:∵(a﹣c)2=a2+c2﹣2ac>a2+c2,∴ac<0.在方程ax2+bx+c=0中,∵△=b2﹣4ac≥﹣4ac>0,∴方程ax2+bx+c=0有两个不相等的实数根.故选B.【点评】此题考查了根的判别式,用到的知识点是一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了完全平方公式.9.有以下四个命题:①半径为2的圆内接正三角形的边长为2;②有两边及其一个角对应相等的两个三角形全等;③从装有大小和质地完全相同的3个红球和2个黑球的袋子中,随机摸取1个球,摸到红色球和黑色球的可能性相等;④函数y=﹣x2+2x,当y>﹣3时,对应的x的取值为x>3或x <﹣1,其中假命题的个数为()A.4个 B.3个 C.2个 D.1个【考点】O1:命题与定理.【分析】利用正多边形和圆、全等三角形的判定、概率公式及二次函数的性质分别判断后即可确定正确的选项.【解答】解:①半径为2的圆内接正三角形的边长为2,正确,是真命题;②有两边及其夹角对应相等的两个三角形全等,故错误,是假命题;③从装有大小和质地完全相同的3个红球和2个黑球的袋子中,随机摸取1个球,摸到红色球的可能性大于摸到黑色球的可能性,故错误,是假命题;④函数y=﹣x2+2x,当y>﹣3时,对应的x的取值为﹣1<x<3,故错误,是假命题,假命题有3个,故选B.【点评】本题考查了命题与定理的知识,解题的关键是了解正多边形和圆、全等三角形的判定、概率公式及二次函数的性质的知识,难度不大.10.如图,△ABC中AB=AC=4,∠C=72°,D是AB的中点,点E在AC上,DE⊥AB,则cos∠ABE的值为()A.B.C.D.【考点】S3:黄金分割;KG:线段垂直平分线的性质;KH:等腰三角形的性质;T7:解直角三角形.【分析】根据三角形内角和定理求出∠A,根据等腰三角形的性质得到点E是线段AC的黄金分割点,根据余弦的概念计算即可.【解答】解:∵AB=AC,∠C=72°,∴∠A=36°,∵D是AB的中点,点E在AC上,DE⊥AB,∴EA=EB,∴∠ABE=∠A=36°,∴点E是线段AC的黄金分割点,∴BE=AE=×4=2(﹣1),∴cos∠ABE==,故选:C.【点评】本题考查的是等腰三角形的性质、线段垂直平分线的判定和性质、黄金分割的概念,掌握等腰三角形的性质、熟记黄金比值是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.如图,已知a,b,c,d四条直线,a∥b,c∥d,∠1=110°,则∠2等于70°.【考点】JA:平行线的性质.【分析】根据平行线的性质得到∠3=∠1,4=∠3,然后由邻补角的定义即可得到结论.【解答】解:∵a∥b,c∥d,∴∠3=∠1,∠4=∠3,∴∠1=∠4=110°,∴∠2=180°﹣∠4=70°,故答案为:70°.【点评】本题考查了平行线的性质,解题时注意:运用两直线平行,同位角相等是解答此题的关键.12.某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件150元.【考点】8A:一元一次方程的应用.【分析】设该商品的标价为每件为x元,根据八折出售可获利20元,可得出方程:80%x﹣100=20,再解答即可.【解答】解:设该商品的标价为每件x元,由题意得:80%x﹣100=20,解得:x=150.答:该商品的标价为每件150元.故答案为:150.【点评】此题考查了一元一次方程的应用,关键是仔细审题,得出等量关系,列出方程,难度一般.13.在数轴上从满足|x|<2的任意实数x对应的点中随机选取一点,则取到的点对应的实数大于1的概率为.【考点】X5:几何概率;29:实数与数轴.【分析】直接利用数轴的性质,结合a的取值范围得出答案.【解答】解:∵|x|<2,∴﹣2<x<2,在数轴上任取一个比﹣2大比2小的实数a对应的点有:﹣2<a<﹣1,﹣1<a<0,0<a<1,1<a<2,4种情况,当a>1时有1<a<2,∴取到的点对应的实数大于1的概率为:,故答案为:.【点评】此题主要考查了几何概率,正确利用数轴,结合a的取值范围求解是解题关键.14.分解因式:a3﹣6a2+5a=a(a﹣5)(a﹣1).【考点】57:因式分解﹣十字相乘法等;53:因式分解﹣提公因式法.【分析】原式提取公因式,再利用十字相乘法分解即可.【解答】解:原式=a(a2﹣6a+5)=a(a﹣5)(a﹣1).故答案是:a(a﹣5)(a﹣1).【点评】此题考查了提公因式法与十字相乘法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么这个圆锥的左视图的面积是4.【考点】MP:圆锥的计算;U3:由三视图判断几何体.【分析】先利用圆的面积公式得到圆锥的底面圆的半径为2,再利用等边三角形的性质得母线长,然后根据勾股定理计算圆锥的高.【解答】解:设圆锥的底面圆的半径为r,则πr2=4π,解得r=2,因为圆锥的主视图是等边三角形,所以圆锥的母线长为4,所以它的左视图的高==2,所以左视图的面积为×4×2=4.故答案为4.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为2﹣2.【考点】L8:菱形的性质;KI:等腰三角形的判定;KK:等边三角形的性质.【分析】分三种情形讨论①若以边BC为底.②若以边PC为底.③若以边PB为底.分别求出PD的最小值,即可判断.【解答】解:①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P与点A重合时,PD值最小,为2;②若以边PC为底,∠PBC为顶角时,以点B为圆心,BC长为半径作圆,与BD相交于一点,则弧AC (除点C外)上的所有点都满足△PBC是等腰三角形,当点P在BD上时,PD最小,最小值为2√3﹣2;③若以边PB为底,∠PCB为顶角,以点C为圆心,BC为半径作圆,则弧BD上的点A与点D均满足△PBC为等腰三角形,当点P与点D重合时,PD最小,显然不满足题意,故此种情况不存在;综上所述,PD的最小值为2﹣2.【点评】本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.三、解答题(本大题共9小题,共72分)17.(10分)(2017•呼和浩特一模)计算、求值:(1)计算:|﹣2|+()﹣1﹣(+1)(﹣1);(2)已知单项式2x m﹣1y n+3与﹣x n y2m是同类项,求m,n的值.【考点】79:二次根式的混合运算;34:同类项;6F:负整数指数幂.【分析】(1)利用绝对值的定义结合平方差公式计算得出答案;(2)直接利用同类项的定义分析得出答案.【解答】解:(1)|﹣2|+()﹣1﹣(+1)(﹣1)=2﹣+2﹣(5﹣1)=﹣;(2)∵单项式2x m﹣1y n+3与﹣x n y2m是同类项,∴,解得:.【点评】此题主要考查了二次根式的混合运算以及同类项定义,正确化简各数是解题关键.18.如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F(1)求证:EF=DE;(2)若AC=BC,判断四边形ADCF的形状.【考点】LC:矩形的判定;KD:全等三角形的判定与性质;KX:三角形中位线定理.【分析】(1)首先根据三角形的中位线定理得出AE=EC,然后根据CF∥BD得出∠ADE=∠F,继而根据AAS证得△ADE≌△CFE,最后根据全等三角形的性质即可推出EF=DE;(2)首先证得四边形ADCF是平行四边形、四边形DBCF也为平行四边形,从而得到BC=DF,然后根据AC=BC得到AC=DE,从而得到四边形ADCF是矩形.【解答】解:(1)∵DE是△ABC的中位线,∴E为AC中点,∴AE=EC,∵CF∥BD,∴∠ADE=∠F,在△ADE和△CFE中,∵,∴△ADE≌△CFE(AAS),∴DE=FE.(2)解:四边形ADCF是矩形.∵DE=FE,AE=AC,∴四边形ADCF是平行四边形,∵AD=BD,∴BD=CF,∴四边形DBCF为平行四边形,∴BC=DF,∵AC=BC,∴AC=DE,∴四边形ADCF是正方形.【点评】本题考查了矩形的判定、全等三角形的判定与性质及三角形的中位线定理的知识,三角形的中位线平行于第三边且等于第三边的一半,难度不大.19.(10分)(2017•呼和浩特一模)为了解“足球进校园”活动开展情况,某中学利用体育课进行了定点射门测试,每人射门5次,所有班级测试结束后,随机抽取了某班学生的射门情况作为样本,对进球的人数进行整理后,绘制了不完整的统计图表,该班女生有22人,女生进球个数的众数为2,中位数为3.女生进球个数的统计表数;(2)写出女生进球个数统计表中x,y的值;(3)若该校共有学生1880人,请你估计全校进球数不低于3个的学生大约多少人?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图;W4:中位数;W5:众数.【分析】(1)根据进球数为3个的人数除以占的百分比求出男生总人数即可;求出进球数为4个的人数,以及进球数为2个的圆心角度数,补全条形统计图即可;(2)由题意得,x+y=22﹣1﹣2﹣4﹣2=13,由于女生进球个数的众数为2,中位数为3,于是得到结论;(3)求出进球数不低于3个的百分比,乘以1880即可得到结果.【解答】解:(1)这个班级的男生人数为6÷24%=25(人),则这个班级的男生人数为25人;男生进球数为4个的人数为25﹣(1+2+5+6+4)=7(人),进2个球的扇形圆心角度数为360°×=72°;补全条形统计图,如图所示:(2)由题意得,x+y=22﹣1﹣2﹣4﹣2=13,∵n女生进球个数的众数为2,中位数为3,∴x=7,y=6;(3)根据题意得:47个学生中女生进球个数为6+4+2=12;男生进球数为6+7+4=17,∴1880×=1160(人),则全校进球数不低于3个的学生大约有1160人.【点评】此题考查了条形统计图,扇形统计图,用样本估计总体,弄清题中的数据是解本题的关键.20.如图所示,某学生在河东岸点A处观测到河对岸水边有一点C,测得C在A北偏西31°的方向上,沿河岸向北前行30米到达B处,测得C在B北偏西45°的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(结果用含非特殊角的三角函数和根式表示即可)【考点】TB:解直角三角形的应用﹣方向角问题.【分析】作CE⊥AB于E.由题意可以假设CE=BE=x,在Rt△CAE中,求出AE,根据AB=AE﹣BE,列出方程即可解决问题.【解答】解:作CE⊥AB于E.由题意:∠CAE=31°,∠CBE=45°,AB=30,在Rt△CBE中,∵∠CEB=90°,∠CBE=45°,∴可以假设CE=BE=x,在Rt△CAE中,∵∠CEA=90°,∴AE==,∵AB=AE﹣BE=﹣x=30,∴x=,答:这条河的宽度为m.【点评】本题考查解直角三角形、方位角、锐角三角函数等知识,解题的关键是熟练掌握三角函数的定义,学会用方程的思想思考问题,属于中考常考题型.21.已知关于x的不等式组有解,求实数a的取值范围,并写出该不等式组的解集.【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x﹣a≥0,得:x≥,解不等式(x﹣2)>3x+4,得:x<﹣2,由题意得:<﹣2,解得:a<﹣6,∴不等式组的解集为≤x<﹣2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.在直角坐标系中,直线y=kx+1(k≠0)与双曲线y=(x>0)相交于点P(1,m)(1)求k的值;(2)若双曲线上存在一点Q与点P关于直线y=x对称,直线y=kx+1与x轴交于点A,求△APQ的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)将P的坐标代入双曲线中求出m的值,然后将P的坐标代入直线解析式中求出k的值.(2)求出P关于y=x的对称点Q,然后利用待定系数法求出直线PQ的解析式,然后求出点B的坐=S△APB﹣S△AQB即可求出答案.标,最后利用S△APQ【解答】解:(1)将x=1代入y=,∴y=2,∴P(1,2)∴将P(1,2)代入y=kx+1∴k=1,(2)易知P(1,2)关于直线y=x的对称点为Q(2,1)设直线PQ的解析式为:y=kx+b,将P、Q的坐标代入上式,∴解得:∴直线PQ的解析式为:y=﹣x+3∴令y=0代入y=﹣x+3∴x=3,=S△APB﹣S△AQB∴S△APQ=×4×(2﹣1)=2【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是熟练运用待定系数法,本题属于中等题型.23.春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并求出最大利润.【考点】FH:一次函数的应用;9A:二元一次方程组的应用;C9:一元一次不等式的应用.【分析】(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以得到利润与甲种商品的关系,由甲种商品的数量不少于乙种商品数量的4倍,可以得到甲种商品的取值范围,从而可以求得获利最大的进货方案,以及最大利润.【解答】解:(1)设甲、乙两种商品每件的进价分别是x元、y元,,解得,,即甲、乙两种商品每件的进价分别是30元、70元;(2)设购买甲种商品a件,获利为w元,w=(40﹣30)a+(90﹣70)(100﹣a)=﹣10a+2000,∵a≥4(100﹣a),解得,a≥80,∴当a=80时,w取得最大值,此时w=1200,即获利最大的进货方案是购买甲种商品80件,乙种商品20件,最大利润是1200元.【点评】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和不等式的性质解答问题.24.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.【考点】S9:相似三角形的判定与性质;M2:垂径定理;MC:切线的性质.【分析】(1)由平行线的性质得出EF⊥AD,由线段垂直平分线的性质得出FA=FD,由等腰三角形的性质得出∠FAD=∠D,证出∠DCB=∠G,由对顶角相等得出∠GCF=∠G,即可得出结论;(2)连接AC,由圆周角定理证出AC是⊙O的直径,由弦切角定理得出∠DCB=∠CAB,证出∠CAB=∠G,再由∠CBA=∠GBA=90°,证明△ABC∽△GBA,得出对应边成比例,即可得出结论.【解答】证明:(1)∵EF∥BC,AB⊥BG,∴EF⊥AD,∵E是AD的中点,∴FA=FD,∴∠FAD=∠D,∵GB⊥AB,∴∠GAB+∠G=∠D+∠DCB=90°,∴∠DCB=∠G,∵∠DCB=∠GCF,∴∠GCF=∠G,∴FC=FG;(2)连接AC,如图所示:∵AB⊥BG,∴AC是⊙O的直径,∵FD是⊙O的切线,切点为C,∴∠DCB=∠CAB,∵∠DCB=∠G,∴∠CAB=∠G,∵∠CBA=∠GBA=90°,∴△ABC∽△GBA,∴=,∴AB2=BC•BG.【点评】本题考查了圆周角定理、相似三角形的判定与性质、等腰三角形的判定与性质、弦切角定理等知识;熟练掌握圆周角定理和弦切角定理,证明三角形相似是解决问题(2)的关键.25.(10分)(2017•呼和浩特一模)抛物线y=ax2+c与x轴交于A,B两点,顶点C,点P为抛物线上一点,且位于x轴下方.(1)如图1,若P(1,﹣3),B(4,0).D是抛物线上一点,满足∠DPO=∠POB,且D与B分布位于直线OP的两侧,求点C与点D的坐标;(2)如图2,A,B是抛物线y=ax2+c与x轴的两个交点,直线PA,PB与y轴分别交于E,F两点,当点P在x轴下方的抛物线上运动时,是否为定值?若是,试求出该定值;若不是,请说明理由(记OA=OB=t)【考点】HF:二次函数综合题.【分析】(1)根据待定系数法求函数解析式,可得答案;根据平行线的判定,可得PD∥OB,根据函数值相等两点关于对称轴对称,可得D点坐标;(2)根据待定系数法,可得E、F点的坐标,根据分式的性质,可得答案.【解答】解:(1)将P(1,﹣3),B(4,0)代入y=ax2+c,得,解得,抛物线的解析式为y=x2﹣.∴C(0,﹣)如图1,当点D在OP左侧时,由∠DPO=∠POB,得DP∥OB,D与P关于y轴对称,P(1,﹣3),得D(﹣1,﹣3);(2)点P运动时,是定值,定值为2,理由如下:作PQ⊥AB于Q点,设P(m,am2+c),A(﹣t,0),B(t,0),则at2+c=0,c=﹣at2.∵PQ∥OF,∴=,∴OF==﹣==amt+at2.同理OE=﹣amt+at2.∴OE+OF=2at2=﹣2c=2OC.∴=2.【点评】本题考查了二次函数综合题,①利用待定系数法求函数解析式;②利用函数值相等的点关于对称轴对称得出D点坐标是解题关键;(2)利用待定系数法求出E、F点坐标是解题关键.。

2017年内蒙古包头市包钢一中高考数学二模试卷含参考答案(理科)

2017年内蒙古包头市包钢一中高考数学二模试卷(理科)一、选择题:(每题只有一个正确答案,每题5分,共60分.)1.(5分)若i是虚数单位,复数的虚部为()A.B.C.D.2.(5分)已知全集U={﹣2,0,1,2},集合A={x|x2+x﹣2=0},则∁U A=()A.{﹣2,1}B.{﹣2,0}C.{0,2}D.{0,1}3.(5分)如图,正方形ABCD中,E为DC的中点,若=λ+μ,则λ+μ的值为()A.B.C.1 D.﹣14.(5分)函数y=2x﹣x2的图象大致是()A.B.C.D.5.(5分)已知(x2+)n的展开式的各项系数和为32,则展开式中x4的系数为()A.5 B.40 C.20 D.106.(5分)某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为()A.B.C.D.37.(5分)已知函数f(x)=cos2x﹣sin2x,下列说法错误的是()A.f(x)的最小正周期为π B.x=是f(x)的一条对称轴C.f(x)在(﹣,)上单调递增D.|f(x)|的值域是[0,1]8.(5分)阅读如图所示的程序框图,则该算法的功能是()A.计算数列{2n﹣1}前5项的和B.计算数列{2n﹣1}前6项的和C.计算数列{2n﹣1}前5项的和D.计算数列{2n﹣1}前6项的和9.(5分)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A.a1d>0,dS4>0 B.a1d<0,dS4<0 C.a1d>0,dS4<0 D.a1d<0,dS4>0 10.(5分)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在(3,6)内的概率为()附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=0.6826,P (μ﹣2σ<ξ<μ+2σ)=0.9544.A.0.2718 B.0.0456 C.0.3174 D.0.135911.(5分)过曲线C1:﹣=1(a>0,b>0)的左焦点F1作曲线C2:x2+y2=a2的切线,设切点为M,延长F1M交曲线C3:y2=2px(p>0)于点N,其中曲线C1与C3有一个共同的焦点,若|MF1|=|MN|,则曲线C1的离心率为()A.B.﹣1 C.+1 D.12.(5分)已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<e x的解集为()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,e4) D.(e4,+∞)二.填空题(每题5分,共20分)13.(5分)已知l,m是两条不同的直线,α,β是两个不同的平面.下列命题:①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l⊥α,m∥l,α∥β,则m⊥β.其中真命题是(写出所有真命题的序号).14.(5分)若实数x,y满足不等式组,则z=2|x|+y的最大植为.15.(5分)已知A,B,C三人中,一个是油漆工,一个是木工,一个是泥瓦工,但不知A,B,C三人具体谁是什么工种,三人合作一件工程,由于其中的某一个人而做糟了,为了弄清楚责任,分别询问三人,得到的回答如下:A说:“C做坏了,B做好了”;B说:“我做坏了,C做好了”;C说:“我做坏了,A做好了”.现在又了解到,油漆工从来不说假话,泥瓦工从来不说真话,而木工说的话总是时真时假,则该负责任的是.16.(5分)定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)=,则称函数y=f(x)是[a,b]上的“平均值函数”,x0是它的一个均值点.例如y=|x|是[﹣2,2]上的平均值函数,0就是它的均值点.若函数f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函数”,则实数m的取值范围是.三、解答题17.(12分)设向量=(sin2ωx,cos2ωx),=(cosφ,sinφ),其中|φ|<,ω>0,函数f(x)=的图象在y轴右侧的第一个最高点(即函数取得最大值的点)为,在原点右侧与x轴的第一个交点为.(Ⅰ)求函数f(x)的表达式;(Ⅱ)在△ABC中,角A′B′C的对边分别是a′b′c′若f(C)=﹣1,,且a+b=2,求边长c.18.(12分)某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温x(°C)与该小卖部的这种饮料销量y(杯),得到如下数据:日期1月11日1月12日1月13日1月14日1月15日平均气温x(°C)91012118销量y(杯)2325302621(Ⅰ)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;(Ⅱ)请根据所给五组数据,求出y关于x的线性回归方程=x+;(Ⅲ)根据(Ⅱ)中所得的线性回归方程,若天气预报1月16日的白天平均气温7(°C),请预测该奶茶店这种饮料的销量.(参考公式:=,=﹣)19.(12分)已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,AA1=4.(Ⅰ)求证:BD⊥A1C;(Ⅱ)求二面角A﹣A1C﹣D1的余弦值;(Ⅲ)在线段CC1上是否存在点P,使得平面A1CD1⊥平面PBD,若存在,求出的值;若不存在,请说明理由.20.(12分)平面直角坐标系xOy中,已知椭圆的左焦点为F,离心率为,过点F且垂直于长轴的弦长为.(I)求椭圆C的标准方程;(Ⅱ)设点A,B分别是椭圆的左、右顶点,若过点P(﹣2,0)的直线与椭圆相交于不同两点M,N.(i)求证:∠AFM=∠BFN;(ii)求△MNF面积的最大值.21.(12分)已知函数f(x)=(x+1)lnx,g(x)=a(x﹣1)(a∈R).(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)≥g(x)对任意的x∈[1,+∞)恒成立,求实数a的取值范围;(Ⅲ)求证:ln2•ln3…lnn>(n≥2,n∈N+).[极坐标方程]22.(10分)在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.[不等式选讲】23.已知函数f(x)=|x﹣1|(Ⅰ)解不等式f(2x)+f(x+4)≥8;(Ⅱ)若|a|<1,|b|<1,a≠0,求证:.2017年内蒙古包头市包钢一中高考数学二模试卷(理科)参考答案与试题解析一、选择题:(每题只有一个正确答案,每题5分,共60分.)1.(5分)若i是虚数单位,复数的虚部为()A.B.C.D.【解答】解:复数===+i,∴复数的虚部为,故选:D.2.(5分)已知全集U={﹣2,0,1,2},集合A={x|x2+x﹣2=0},则∁U A=()A.{﹣2,1}B.{﹣2,0}C.{0,2}D.{0,1}【解答】解:全集U={﹣2,0,1,2},集合A={x|x2+x﹣2=0}={﹣2,1},则∁U A={0,2}故选:C.3.(5分)如图,正方形ABCD中,E为DC的中点,若=λ+μ,则λ+μ的值为()A.B.C.1 D.﹣1【解答】解:由题意正方形ABCD中,E为DC的中点,可知:=.则λ+μ的值为:.故选:A.4.(5分)函数y=2x﹣x2的图象大致是()A.B.C.D.【解答】解:分别画出函数f(x)=2x(红色曲线)和g(x)=x2(蓝色曲线)的图象,如图所示,由图可知,f(x)与g(x)有3个交点,所以y=2x﹣x2=0,有3个解,即函数y=2x﹣x2的图象与x轴由三个交点,故排除B,C,当x=﹣3时,y=2﹣3﹣(﹣3)2<0,故排除D故选:A.5.(5分)已知(x2+)n的展开式的各项系数和为32,则展开式中x4的系数为( ) A .5B .40C .20D .10【解答】解:由题意,在(x 2+)n 的展开式中, 令x=1,可得各项系数和为2n =32,n=5. 故展开式的通项公式为 T r +1=•x 10﹣2r •x ﹣r =•x 10﹣3r ,令10﹣3r=4,求得r=2, ∴展开式中x 4的系数为 =10,故选:D .6.(5分)某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为( )A .B .C .D .3【解答】解:由三视图可知,几何体的直观图如图所示,平面AED ⊥平面BCDE ,四棱锥A ﹣BCDE 的高为1,四边形BCDE 是边长为1的正方形, 则S △AED ==,S △ABC =S △ABE ==,S △ACD ==,故选:B .7.(5分)已知函数f (x )=cos 2x ﹣sin 2x ,下列说法错误的是( ) A .f (x )的最小正周期为π B .x=是f (x )的一条对称轴C.f(x)在(﹣,)上单调递增D.|f(x)|的值域是[0,1]【解答】解:∵f(x)=cos2x﹣sin2x=cos2x,∴f(x)的最小正周期T==π,选项A正确;由2x=kπ可得x=,k∈Z,∴x=是f(x)的一条对称轴,选项B正确;由2kπ+π≤2x≤2kπ+2π可得kπ+≤x≤kπ+π,∴函数的单调递增区间为[kπ+,kπ+π],k∈Z,C错误;|f(x)|=|cos2x|,故值域为[0,1],D正确.故选:C.8.(5分)阅读如图所示的程序框图,则该算法的功能是()A.计算数列{2n﹣1}前5项的和B.计算数列{2n﹣1}前6项的和C.计算数列{2n﹣1}前5项的和D.计算数列{2n﹣1}前6项的和【解答】解:由算法的流程知,第一次运行,A=2×0+1=1,i=1+1=2;第二次运行,A=2×1+1=3,i=2+1=3;第三次运行,A=2×3+1=7,i=3+1=4;第四次运行,A=2×7+1=15,i=5;第五次运行,A=2×15+1=31,i=6;第六次运行,A=2×31+1=63,i=7;满足条件i>6,终止运行,输出A=63,∴A=1+2+22+…+25==26﹣1=64﹣1=63.故选:D.9.(5分)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A.a1d>0,dS4>0 B.a1d<0,dS4<0 C.a1d>0,dS4<0 D.a1d<0,dS4>0【解答】解:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.10.(5分)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在(3,6)内的概率为()附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=0.6826,P (μ﹣2σ<ξ<μ+2σ)=0.9544.A.0.2718 B.0.0456 C.0.3174 D.0.1359【解答】解:∵设零件误差为ξ,则ξ~N(0,32),∴P(﹣6<ξ<6)=0.9544,P(﹣3<ξ<3)=0.6826,∴P(3<ξ<6)=(0.9544﹣0.6826)=0.1359.故选:D.11.(5分)过曲线C1:﹣=1(a>0,b>0)的左焦点F1作曲线C2:x2+y2=a2的切线,设切点为M,延长F1M交曲线C3:y2=2px(p>0)于点N,其中曲线C1与C3有一个共同的焦点,若|MF1|=|MN|,则曲线C1的离心率为()A.B.﹣1 C.+1 D.【解答】解:设双曲线的右焦点为F2,则F2的坐标为(c,0)因为曲线C1与C3有一个共同的焦点,所以y2=4cx因为O为F1F2的中点,M为F1N的中点,所以OM为△NF1F2的中位线,所以OM∥NF2,因为|OM|=a,所以|NF2|=2a又NF2⊥NF1,|FF2|=2c 所以|NF1|=2b设N(x,y),则由抛物线的定义可得x+c=2a,∴x=2a﹣c过点F1作x轴的垂线,点N到该垂线的距离为2a由勾股定理y2+4a2=4b2,即4c(2a﹣c)+4a2=4(c2﹣a2)得e2﹣e﹣1=0,∴e=.故选:D.12.(5分)已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<e x的解集为()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,e4) D.(e4,+∞)【解答】解:设,∵f′(x)<f(x),∴h′(x)<0.所以函数h(x)是R上的减函数,∵函数f(x+2)是偶函数,∴函数f(﹣x+2)=f(x+2),∴函数关于x=2对称,∴f(0)=f(4)=1,原不等式等价为h(x)<1,∴不等式f(x)<e x等价h(x)<1⇔h(x)<h(0),.∵h(x)在R上单调递减,∴x>0.故选:B.二.填空题(每题5分,共20分)13.(5分)已知l,m是两条不同的直线,α,β是两个不同的平面.下列命题:①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l⊥α,m∥l,α∥β,则m⊥β.其中真命题是②④(写出所有真命题的序号).【解答】解:对于①,没有限制是两条相交直线,故①为假命题;对于②,利用线面平行的性质定理可得其为真命题;对于③,l也可以在平面β内,故其为假命题;对于④,由l⊥α,m∥l可得m⊥α,再由α∥β可得m⊥β,即④为真命题.故真命题有②④.故答案为:②④.14.(5分)若实数x,y满足不等式组,则z=2|x|+y的最大植为11.【解答】解:作出不等式组对应的平面区域如图:由,解得B(6,﹣1),由解得C(﹣2,﹣1),当x≥0时,z=2x+y,即y=﹣2x+z,x≥0,当x<0时,z=﹣2x+y,即y=2x+z,x<0,当x≥0时,平移直线y=﹣2x+z,(红线),当直线y=﹣2x+z经过点A(0,﹣1)时,直线y=﹣2x+z的截距最小为z=﹣1,当y=﹣2x+z经过点B(6,﹣1)时,直线y=﹣2x+z的截距最大为z=11,此时﹣1≤z≤11.当x<0时,平移直线y=2x+z,(蓝线),当直线y=2x+z经过点A(0,﹣1)时,直线y=2x+z的截距最小为z=﹣1,当y=2x+z经过点C(﹣2,﹣1)时,直线y=2x+z的截距最大为z=4﹣1=3,此时﹣1≤z≤3,综上﹣1≤z≤11,故z=2|x|+y的取值范围是[﹣1,11],故z的最大值为11,故答案为:11.15.(5分)已知A,B,C三人中,一个是油漆工,一个是木工,一个是泥瓦工,但不知A,B,C三人具体谁是什么工种,三人合作一件工程,由于其中的某一个人而做糟了,为了弄清楚责任,分别询问三人,得到的回答如下:A说:“C做坏了,B做好了”;B说:“我做坏了,C做好了”;C说:“我做坏了,A做好了”.现在又了解到,油漆工从来不说假话,泥瓦工从来不说真话,而木工说的话总是时真时假,则该负责任的是C.【解答】解:将甲、乙、丙三人所述命题依次记为P A,P B,P C,则由这3个命题的逻辑关系知:P A与P C同真同假,P A与P B一真一假,∵油漆工从来不说假话,泥瓦工从来不说真话,而木工说的话总是时真时假,∴C是本工,如下表所示,若P C是假命题,则P A必为假命题,∴P B必为真命题,而由P B内容知A,B两人都做坏了,与题意不符,P A P B P C011∴P C是真命题,即C做对了,∴A是油漆工,B是泥瓦工,C是木工,是木工做了.故答案为:C.16.(5分)定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)=,则称函数y=f(x)是[a,b]上的“平均值函数”,x0是它的一个均值点.例如y=|x|是[﹣2,2]上的平均值函数,0就是它的均值点.若函数f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函数”,则实数m的取值范围是(0,2).【解答】解:∵函数f(x)=x2﹣mx﹣1是区间[﹣1,1]上的平均值函数,∴关于x的方程x2﹣mx﹣1=在(﹣1,1)内有实数根.即x2﹣mx﹣1=﹣m在(﹣1,1)内有实数根.即x2﹣mx+m﹣1=0,解得x=m﹣1,x=1.又1∉(﹣1,1)∴x=m﹣1必为均值点,即﹣1<m﹣1<1⇒0<m<2.∴所求实数m的取值范围是(0,2).故答案为:(0,2)三、解答题17.(12分)设向量=(sin2ωx,cos2ωx),=(cosφ,sinφ),其中|φ|<,ω>0,函数f(x)=的图象在y轴右侧的第一个最高点(即函数取得最大值的点)为,在原点右侧与x轴的第一个交点为.(Ⅰ)求函数f(x)的表达式;(Ⅱ)在△ABC中,角A′B′C的对边分别是a′b′c′若f(C)=﹣1,,且a+b=2,求边长c.【解答】解:(I)因为向量=(sin2ωx,cos2ωx),=(cosφ,sinφ),所以=sin2ωxcosφ+cos2ωxsinφ=sin(2ωx+φ),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣1分由题意,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣3分将点代入y=sin(2x+φ),得,所以,又因为,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣5分即函数的表达式为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣6分(II)由f(C)=﹣1,即又∵0<C<π,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣8分由,知,所以ab=3﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣10分由余弦定理知c2=a2+b2﹣2abcosC=(a+b)2﹣2ab﹣2abcosC=所以c=3﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣12分.18.(12分)某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温x(°C)与该小卖部的这种饮料销量y(杯),得到如下数据:日期1月11日1月12日1月13日1月14日1月15日平均气温x(°C)91012118销量y(杯)2325302621(Ⅰ)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;(Ⅱ)请根据所给五组数据,求出y关于x的线性回归方程=x+;(Ⅲ)根据(Ⅱ)中所得的线性回归方程,若天气预报1月16日的白天平均气温7(°C),请预测该奶茶店这种饮料的销量.(参考公式:=,=﹣)【解答】解:(Ⅰ)设“选取的2组数据恰好是相邻2天数据”为事件A,所有基本事件(m,n)(其中m,n为1月份的日期数)有:(11,12),(11,13),(11,14),(11,15),(12,13),(12,14),(12,15),(13,14),(13,15),(14,15),共有10种.事件A包括的基本事件有(11,12),(12,13),(13,14),(14,15)共4种.所以为所求.…6分(Ⅱ)由数据,求得,.由公式,求得,,所以y关于x的线性回归方程为.…10分(Ⅲ)当x=7时,.所以该奶茶店这种饮料的销量大约为19杯.…12分.19.(12分)已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,AA1=4.(Ⅰ)求证:BD⊥A1C;(Ⅱ)求二面角A﹣A1C﹣D1的余弦值;(Ⅲ)在线段CC1上是否存在点P,使得平面A1CD1⊥平面PBD,若存在,求出的值;若不存在,请说明理由.【解答】(本小题满分14分)(Ⅰ)证明:∵ABCD﹣A1B1C1D1为正四棱柱,∴AA1⊥平面ABCD,且ABCD为正方形.…(1分)∵BD⊂平面ABCD,∴BD⊥AA1,BD⊥AC.…(2分)∵AA1∩AC=A,∴BD⊥平面A1AC.…(3分)∵A1C⊂平面A1AC,∴BD⊥A1C.…(4分)(Ⅱ)解:如图,以D为原点建立空间直角坐标系D﹣xyz.则D(0,0,0),A(2,0,0),C(0,2,0),A1(2,0,4),B1(2,2,4),C1(0,2,4),D1(0,0,4),…(5分)∵=(2,0,0),=(0,2,﹣4).设平面A1D1C的法向量=(x1,y1,z1).∴.即,…(6分)令z1=1,则y1=2.∴=(0,2,1).由(Ⅰ)知平面AA1C的法向量为=(2,2,0).…(7分)∴cos<>==.…(8分)∵二面角A﹣A1C﹣D1为钝二面角,∴二面角A﹣A1C﹣D1的余弦值为﹣.…(9分)(Ⅲ)解:设P(x2,y2,z2)为线段CC1上一点,且=.∵=(x2,y2﹣2,z2),=(﹣x2,2﹣y2,4﹣z2).∴(x2,y2﹣2,z2)=λ(﹣x2,2﹣y2,4﹣z2).…(10分)即.∴P(0,2,).…(11分)设平面PBD的法向量.∵,,∴.即.…(12分)令y3=1,得=(﹣1,1,﹣).…(13分)若平面A1CD1⊥平面PBD,则=0.即2﹣=0,解得.所以当=时,平面A1CD1⊥平面PBD.…(14分)20.(12分)平面直角坐标系xOy中,已知椭圆的左焦点为F,离心率为,过点F且垂直于长轴的弦长为.(I)求椭圆C的标准方程;(Ⅱ)设点A,B分别是椭圆的左、右顶点,若过点P(﹣2,0)的直线与椭圆相交于不同两点M,N.(i)求证:∠AFM=∠BFN;(ii)求△MNF面积的最大值.【解答】解:(1)由题意可得,令x=﹣c,可得y=±b=±,即有,又a2﹣b2=c2,所以.所以椭圆的标准方程为;(II)方法一、(i)当AB的斜率为0时,显然∠AFM=∠BFN=0,满足题意;当AB的斜率不为0时,设A(x1,y1),B(x2,y2),AB方程为x=my﹣2,代入椭圆方程,整理得(m2+2)y2﹣4my+2=0,则△=16m2﹣8(m2+2)=8m2﹣16>0,所以m2>2.,可得==.则k MF+k NF=0,即∠AFM=∠BFN;(ii)当且仅当,即m2=6.(此时适合△>0的条件)取得等号.则三角形MNF面积的最大值是.方法二(i)由题知,直线AB的斜率存在,设直线AB的方程为:y=k(x+2),设A(x1,y1),B(x2,y2),联立,整理得(1+2k2)x2+8k2x+8k2﹣2=0,则△=64k4﹣4(1+2k2)(8k2﹣2)=8﹣16k2>0,所以.,可得=∴k MF+k NF=0,即∠AFM=∠BFN;(ii),点F(﹣1,0)到直线MN的距离为,即有==.令t=1+2k2,则t∈[1,2),u(t)=,当且仅当,即(此时适合△>0的条件)时,,即,则三角形MNF面积的最大值是.21.(12分)已知函数f(x)=(x+1)lnx,g(x)=a(x﹣1)(a∈R).(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)≥g(x)对任意的x∈[1,+∞)恒成立,求实数a的取值范围;(Ⅲ)求证:ln2•ln3…lnn>(n≥2,n∈N+).【解答】解:(Ⅰ)f(x)的定义域为(0,+∞),f′(x)=lnx++1,设g(x)=f′(x),g′(x)=,令g′(x)>0,得x>1,g′(x)<0,得0<x<1,∴g(x)在(0,1)递减,在(1,+∞)递增,g(x)min=g(1)=2,∴f′(x)>0在(0,+∞)上恒成立,∴f(x)的递增区间为(0,+∞),无递减区间.(Ⅱ)设h(x)=(x﹣1)lnx﹣ax+a,由(Ⅰ)知:h′(x)=lnx+=1﹣a=g(x)﹣a,g(x)在(1,+∞)递增,∴g(x)≥g(1)=2,(1)当a≤2时,h′(x)≥0,h(x)在[1,+∞)递增,∴h(x)≥h(1)=0,满足题意.(2)当a>2时,设ω(x)=h′(x),ω′(x)=,当x≥1时,ω′(x)≥0,∴ω(x)在[1,+∞)递增,ω(1)=2﹣a<0,ω(e a)=1+e﹣a>0,∴∃x0∈(1,e a),使ω(x0)=0,∵ω(x)在[1,+∞)递增,∴x∈(1,x0),ω(x)<0,即h′(x)<0,∴当x∈(1,x0时,h(x)<h(1)=0,不满足题意.综上,a的取值范围为(﹣∞,2].(Ⅲ)由(Ⅱ)知,令a=2,(x+1)lnx≥2(x﹣1),∴x≥1,lnx≥(当且仅当x=1取“=”),令x=n(n≥2,n∈N*)得lnn>,即ln2>,ln3>,ln4>,…,ln(n﹣2)>,ln(n﹣1)>,lnn>,将上述n﹣1个式子相乘得:ln2•ln3…lnn>=,∴原命题得证.[极坐标方程]22.(10分)在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.【解答】解:(Ⅰ)曲线C:ρ=2acosθ(a>0),变形ρ2=2ρacosθ,化为x2+y2=2ax,即(x﹣a)2+y2=a2.∴曲线C是以(a,0)为圆心,以a为半径的圆;由l:ρcos(θ﹣)=,展开为,∴l的直角坐标方程为x+y﹣3=0.由直线l与圆C相切可得=a,解得a=1.(Ⅱ)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=3cosθ﹣sinθ=2cos(θ+),当θ=﹣时,|OA|+|OB|取得最大值2.[不等式选讲】23.已知函数f(x)=|x﹣1|(Ⅰ)解不等式f(2x)+f(x+4)≥8;(Ⅱ)若|a|<1,|b|<1,a≠0,求证:.【解答】(Ⅰ)解:f(2x)+f(x+4)=|2x﹣1|+|x+3|=,当x<﹣3时,由﹣3x﹣2≥8,解得x≤﹣;当﹣3时,由﹣x+4≥8,解得x∈∅;当x≥时,由3x+2≥8,解得x≥2…4分所以,不等式f(2x)+f(x+4)≥8的解集为{x|x≤﹣或x≥2}…5分;(Ⅱ)证明:等价于f(ab)>|a|f(),即|ab﹣1|>|a﹣b|,因为|a|<1,|b|<1,所以|ab﹣1|2﹣|a﹣b|2=(a2b2﹣2ab+1)﹣(a2﹣2ab+b2)=(a2﹣1)(b2﹣1)>0,所以,|ab﹣1|>|a﹣b|,故所证不等式成立…10分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档