直角三角形的性质与判定I
浙教版数学八年级上册2.8《直角三角形的判定》说课稿

浙教版数学八年级上册2.8《直角三角形的判定》说课稿一. 教材分析《直角三角形的判定》是浙教版数学八年级上册第2.8节的内容。
这一节主要让学生掌握直角三角形的判定方法,理解直角三角形的性质,并能运用这些性质解决实际问题。
在本节课中,学生将学习到三种判定直角三角形的方法:一是利用直角三角形的定义,即有一个角是直角的三角形是直角三角形;二是利用勾股定理的逆定理,即如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形;三是利用直角三角形的性质,即直角三角形的两个锐角的互余关系。
二. 学情分析八年级的学生已经学习了三角形的性质,角的分类,勾股定理等知识,对于本节课的内容,学生需要将这些知识进行综合运用。
在学生的认知水平上,他们已经能够理解和运用基本的三角函数,对于直角三角形的判定,他们需要进一步的理解和运用。
同时,学生对于实际问题的解决能力也需要进一步的提高。
三. 说教学目标1.知识与技能目标:学生能够理解直角三角形的判定方法,并能够运用这些方法解决实际问题。
2.过程与方法目标:通过学生的自主学习,合作交流,培养学生解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的探究精神。
四. 说教学重难点1.教学重点:直角三角形的判定方法。
2.教学难点:勾股定理的逆定理的应用,直角三角形的性质的应用。
五. 说教学方法与手段在本节课中,我将采用自主学习,合作交流的教学方法。
通过学生的自主学习,让学生理解直角三角形的判定方法,通过合作交流,让学生能够运用这些方法解决实际问题。
同时,我将运用多媒体教学手段,通过动画,图片等形式,让学生更直观的理解直角三角形的性质。
六. 说教学过程1.导入:通过一个实际问题,引入直角三角形的判定。
2.自主学习:学生通过自主学习,理解直角三角形的判定方法。
3.合作交流:学生通过合作交流,运用直角三角形的判定方法解决实际问题。
4.总结:教师引导学生总结直角三角形的判定方法,并强调其在实际问题中的应用。
2.5第3课时直角三角形的性质教学设计2024—2025学年苏科版数学八年级上册

b.在物理学中,直角三角形用于计算速度、时间和距离的关系,例如在匀速直线运动中。
c.在数学问题解决中,直角三角形常常作为几何图形出现,用于解决各种数学问题。
5.直角三角形的符号表示:直角三角形通常用符号"Rt triangle"或"right triangle"来表示。
课后拓展
1.拓展内容:与本节课内容相关的阅读材料或视频资源。
-阅读材料:推荐学生阅读有关直角三角形的历史和应用的书籍,如《直角三角形的故事》等。
-视频资源:鼓励学生观看有关直角三角形性质的科普视频,如“直角三角形奥秘”等。
2.拓展要求:鼓励学生利用课后时间进行自主学习和拓展。教师可提供必要的指导和帮助,如推荐阅读材料、解答疑问等。
过程:
选择几个典型的直角三角形案例进行分析。
详细介绍每个案例的背景、特点和意义,让学生全面了解直角三角形的多样性或复杂性。
引导学生思考这些案例对实际生活或学习的影响,以及如何应用直角三角形的性质解决实际问题。
4.学生小组讨论(10分钟)
目标:培养学生的合作能力和解决问题的能力。
过程:
将学生分成若干小组,每组选择一个与直角三角形相关的主题进行深入讨论。
然而,我也发现了一些需要改进的地方。在讲解直角三角形的性质时,我发现有些学生对于一些概念的理解还不是很清晰。这说明我在课堂上的讲解可能还不够透彻,或者学生们在课前的预习上还存在一些问题。因此,我需要在今后的教学中,更加注重讲解的深度和广度,尽量让每一个学生都能理解并掌握直角三角形的性质。
此外,我在课堂上的提问和互动环节也有些不足。虽然我试图通过提问来激发学生的思考,但有些问题的设置可能还不够恰当,没有达到预期的效果。在今后的教学中,我需要根据学生的实际情况,设计更有针对性和启发性的问题,以提高他们的思维能力和解决问题的能力。
中考复习——直角三角形

6、满足下列条件的ΔABC,不是直角三角形的是 ( ) C A、b2=a2-c2 B、∠C=∠A-∠B C、∠A:∠B:∠C=3:4:5 D、a:b:c=5:12:13
直角三角形的判定:
1.有两个角互余的三角形直角三角形。
2.勾股定理定理及逆定理
桐庐县三合初级中学
回答下列问题,并指出用了什么知识点。
直角三角形斜边上的中线等于斜边的一半。
桐庐县三合初级中学
3、(2011.黄石)将一个有45°角的三角形的直角顶点放在一 张宽为3cm的纸带边沿上,另一个顶点在纸带的另一边沿上, 测得三角形的一边与纸带的一边所在的直线成30°角,如图, 则三角形的最大边的长为( ) D A.3 cm B.6 cm C.3 cm D.6 2 cm.
7、如图,∠A=∠D=90°,请添加一个 条件 使Rt△ABC≌Rt△DCB。
直角三角形全等的判定:
HL(斜边和一条直角边对应相等的 两直角三角形全等)
B
A
D
C
SSS SAS ASA AAS
桐庐县三合初级中学
图形
文字语言
从角看: (1)直角三角形的两个锐角互余
几何语言(如图)
∵∠ACB=Rt∠ ∴∠A+∠B=90°
(1)在Rt△ABC中,两条边的长分别是 6cm和8cm ,则第三边长为10或 28 .
40°或90° (2)在△ABC中,若∠A=50°,则∠B = __________ 时,△ABC是直角三角形。
(3)Rt△ABC的两条直角边长分别是3cm 和4cm,则斜边上的高为 2.4
桐庐县三合初级中学
(4) 如图, Rt△ABC中,∠C=90°, AC=4 , BC=3 , 几 在AC上取一点D ,连结BD,将△BCD沿BD所在的直线 何 对折,点C 恰好落在斜边AB上的点E处. 求出DE的长.
【解直角三角形】专题复习(知识点+考点+测试)

《解直角三角形》专题复习一、直角三角形的性质 1、直角三角形的两个锐角互余 几何表示:【∵∠C=90°∴∠A+∠B=90°】2、在直角三角形中,30°角所对的直角边等于斜边的一半。
几何表示:【∵∠C=90°∠A=30°∴BC=21AB 】 3、直角三角形斜边上的中线等于斜边的一半。
几何表示:【∵∠ACB=90° D 为AB 的中点 ∴ CD=21AB=BD=AD 】4、勾股定理:直角三角形两直角边的平方和等于斜边的平方 几何表示:【在Rt △ABC 中∵∠ACB=90° ∴222c b a =+】5、射影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项,每条直角边是它们在斜边上的射影和斜边的比例中项。
即:【∵∠ACB=90°CD ⊥AB ∴ BD AD CD •=2AB AD AC •=2 AB BD BC •=2】6、等积法:直角三角形中,两直角边之积等于斜边乘以斜边上的高。
(a b c h •=•)由上图可得:AB •CD=AC •BC二、锐角三角函数的概念 如图,在△ABC 中,∠C=90°c asin =∠=斜边的对边A Ac bcos =∠=斜边的邻边A Ab atan =∠∠=的邻边的对边A A Aab cot =∠∠=的对边的邻边A A A锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数锐角三角函数的取值范围:0≤sin α≤1,0≤cos α≤1,tan α≥0,cot α≥0.三、锐角三角函数之间的关系(1)平方关系(同一锐角的正弦和余弦值的平方和等于1) 1cos sin 22=+A A(2)倒数关系(互为余角的两个角,它们的切函数互为倒数) tanA •tan(90°—A)=1; cotA •cot(90°—A)=1; (3)弦切关系tanA=A Acos sin cotA=AA sin cos(4)互余关系(互为余角的两个角,它们相反函数名的值相等) sinA=cos(90°—A),cosA=sin(90°—A) tanA=cot(90°—A),cotA=tan(90°—A)AC BDsin A sin c A ,cos b c A 12S ab =)结论:直角三角形斜边上的高)测底部不可到达物体的高度BP=xcot α 东 西 2八、基本图形(组合型)翻折平移九、解直角三角形的知识的应用问题:(1)测量物体高度.(2)有关航行问题.(3)计算坝体或边路的坡度等问题十、解题思路与数学思想方法图形、条件单个直角三角形直接求解实际问题数学问题辅助线构造抽象转化不是直角三角形直角三角形方程求解常用数学思想方法:转化、方程、数形结合、分类、应用【聚焦中考考点】1、锐角三角函数的定义2、特殊角三角函数值3、解直角三角形的应用【解直角三角形】经典测试题(1——10题每题5分,11——12每题10分,13——16每题20分,共150分) 1、在△ABC 中,若22cos =A ,3tan =B ,则这个三角形一定是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形 2、sin65°与cos26°之间的关系为( )A. sin65°< cos26°B. sin65°> cos26°C. sin65°= cos26°D. sin65°+ cos26°=1 3、如图1所示,铁路路基横断面为一个等腰梯形,若腰的坡度为i=2∶3,顶宽是3米,路基高是4米,则路基的下底宽是( )A. 7米B. 9米C. 12米D. 15米4、如图2,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为( )A. αsin 1B. αcos 1C. αsinD. 1图15、把直角三角形中缩小5倍,那么锐角∠A 的正弦值 ( ) A. 扩大5倍 B. 缩小5倍 C. 没有变化 D. 不能确定6、如图3,在Rt △ABC 中,∠C=90°,D 为BC 上的一点,AD=BD=2,AB=23,则: AC 的长为( ).A .3B .22C .3D .3227、如果∠A 是锐角,且3sin 4B =,那么( ). A .030A ︒<∠<︒ B .3045A ︒<∠<︒C .4560A ︒<∠<︒D .6090A ︒<∠<︒8、已知1cos 3α=,则3sin tan 4sin 2tan αααα-+的值等于( )A.47B.12C .13D .09、 若一个等腰三角形的两边长分别为2cm 和6cm ,则底边上的高为__________cm ,底角的余弦值为______。
1.1直角三角形的性质和判定(I)

1.1 直角三角形的性质和判定(Ⅰ)
第2课时 含30°角的直角三角形的性质及其应用
目标导学
新知探究
巩固提升
学后反思
学习目标
1.理解和掌握有关30°角的直角三角形的性质和应用; (重点)
2.通过定理的证明和应用,初步了解转化思想,并培 养学生逻辑思维能力、分析问题和解决问题的能力.
(难点)
新知探究
含30°角的直角三角形的性质
活动探究 动手:用刻度尺测量含30°角的直角三角形的斜 边和短直角边,比较它们之间的数量关系.
结论:短直角边=斜边 1 2
合作探究
如图,△ADC是△ABC的轴对称图形,
因此AB=AD, ∠BAD=2×30°=60°,
A
从而△ABD是一个等边三角形.
再由AC⊥BD,
可得BC=CD=
1 2
AB.
B
C
D
证法1
证明:取线段AB的中点D,连接CD.
∵CD为Rt△ABC斜边AB上的中线,
CD
1 2
AB
=
BD
C
∵∠BCA =90°,且∠A=30°,
∴∠B=60°,
B
∴△CBD为等边三角形,
BC
=
BD
1 2
AB.
证明方法: 中线法
30° A D
知识要点 含30°角的直角三角形的性质
(4)直角三角形的斜边是30°角所对直角边的2倍.√
思考:如图,在Rt△ABC中,如果BC= 1 AB,那么
2
∠A等于多少?
解:如图,取线段AB的中点D,连接CD.
∵CD是Rt△ABC斜边AB上的中线,
C
∴CD= 1AB=BD=AD,
浙教版初中数学八年级上册直角三角形全等判定(提高)知识讲解

直角三角形全等判定(提高)【学习目标】1.理解和掌握判定直角三角形全等的一种特殊方法——“斜边,直角边”(即“HL ”).2.能熟练地用判定一般三角形全等的方法及判定直角三角形的特殊方法判定两个直角三角形全等.3. 了解角平分线的性质:角的内部,到角两边距离相等的点,在角平分线上,及其简单应用.【要点梳理】【:379111 直角三角形全等的判定,知识点讲解】要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS ”,“ASA ”或“SAS ”判定定理. 要点二、判定直角三角形全等的特殊方法——斜边,直角边定理斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL ”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS 、ASA 、AAS 、SSS 、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“HL ”时,虽只有两个条件,但必须先有两个Rt △的条件.要点三、角平分线的第二个性质定理角的内部,到角两边距离相等的点,在这个角的平分线上.要点诠释:这个性质定理和“角平分线上的点到角两边的距离相等”是互逆定理.它们的题设和结论交换了位置,运用的时候,一定要分清题设是什么,求证的结论又是什么.切不可发生混淆.【典型例题】类型一、直角三角形全等的判定——“HL”1、(2016春•苏仙区期末)如图,∠A=∠B=90°,E 是AB 上的一点,且AE=BC ,∠1=∠2.(1)Rt △ADE 与Rt △BEC 全等吗?并说明理由;(2)△CDE 是不是直角三角形?并说明理由.A B CE【思路点拨】(1)根据∠1=∠2,得DE=CE ,利用“HL ”可证明Rt △ADE ≌Rt △BEC ;(2)是直角三角形,由Rt △ADE ≌Rt △BEC 得,∠3=∠4,从而得出∠4+∠5=90°,则△CDE 是直角三角形.【答案与解析】 解:(1)全等,理由是: ∵∠1=∠2,∴DE=CE , ∵∠A=∠B=90°,AE=BC , ∴Rt △ADE ≌Rt △BEC(HL); (2)是直角三角形,理由是: ∵Rt △ADE ≌Rt △BEC ,∴∠3=∠4,∵∠3+∠5=90°,∴∠4+∠5=90°,∴∠DEC=90°,∴△CDE 是直角三角形.【总结升华】考查了直角三角形的判定,全等三角形的性质,做题时要结合图形,在图形上找条件.【:379111 直角三角形全等的判定,巩固练习3】2、已知:如图,DE ⊥AC ,BF ⊥AC ,AD =BC ,DE =BF.求证:AB ∥DC.【思路点拨】从已知条件只能先证出Rt △ADE ≌Rt △CBF ,从结论又需证Rt △CDE ≌Rt △ABF.【答案与解析】证明:∵DE ⊥AC ,BF ⊥AC ,∴在Rt △ADE 与Rt △CBF 中.AD BC DE BF ⎧⎨⎩=,= ∴Rt △ADE ≌Rt △CBF (HL )∴AE =CF ,DE =BF∴AE +EF =CF +EF ,即AF =CE在Rt △CDE 与Rt △ABF 中,DE BF DEC BFA EC FA =⎧⎪∠=∠⎨⎪=⎩∴Rt △CDE ≌Rt △ABF (SAS )∴∠DCE =∠BAF∴AB ∥DC.A BC E【总结升华】我们分析已知能推证出什么,再看要证到这个结论,我们还需要哪些条件,这样从已知和结论向中间推进,从而证出题目.3、如图 AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.【思路点拨】若能证得AD=AE,由于∠ADB、∠AEC都是直角,可证得Rt△ADF≌Rt△AEF,而要证AD=AE,就应先考虑Rt△ABD与Rt△AEC,由题意已知AB=AC,∠BAC是公共角,可证得Rt△ABD≌Rt△ACE.【答案与解析】证明:在Rt△ABD与Rt△ACE中∴Rt△ABD≌Rt△ACE(AAS)∴AD=AE(全等三角形对应边相等)在Rt△ADF与Rt△AEF中∴Rt△ADF≌Rt△AEF(HL)∴∠DAF=∠EAF(全等三角形对应角相等)∴AF平分∠BAC(角平分线的定义)【总结升华】条件和结论相互转化,有时需要通过多次三角形全等得出待求的结论.举一反三:【变式】如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O.(1)求证:△ABC≌△DCB;(2)△OBC是何种三角形?证明你的结论.【答案】证明:(1)在△ABC和△DCB中,∠A=∠D=90°AC=BD,BC=BC,∴Rt△ABC≌Rt△DCB(HL);(2)△OBC是等腰三角形,∵Rt△ABC≌Rt△DCB,∴∠ACB=∠DCB,∴OB=OC,∴△OBC是等腰三角形.4、如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.【答案与解析】(1)证明:∵DB⊥BC,CF⊥AE,∴∠DCB+∠D=∠DCB+∠AEC=90°.∴∠D=∠AEC.又∵∠DBC=∠ECA=90°,且BC=CA,∴△DBC≌△ECA(AAS).∴AE=CD.(2)解:由(1)得AE=CD,AC=BC,∴△CDB≌△AEC(HL)∴BD=EC=12BC=12AC,且AC=12.∴BD=6(cm).【总结升华】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件类型二、角平分线的第二个性质定理5、如图,已知BE平分∠ABC,CE平分∠ACD,且交BE于E.求证:AE平分∠FAC.【思路点拨】如图过点E分别作EG⊥BD、EH⊥BA、EI⊥AC,垂足分别为G、H、I,根据角平分线的性质可得EH=EG,EI=EG,再根据角平分线的第二性质定理可证AE平分∠FAC.【答案与解析】证明:过点E分别作EG⊥BD、EH⊥BA、EI⊥AC,垂足分别为G、H、I,∵BE平分∠ABC,EG⊥BD,EH⊥BA,∴EH=EG.∵CE平分∠ACD,EG⊥BD,EI⊥AC,∴EI=EG,∴EI=EH(等量代换),∴AE平分∠FAC(角的内部,到角两边距离相等的点,在这个角的平分线上).【总结升华】本题主要考查角平分线的性质及其第二性质定理;准确作出辅助线是解答本题的关键.举一反三:【变式】如图,点C为线段AB上任意一点(不与A、B重合),分别以AC、BC为一腰在AB 的同侧作等腰△ACD和等腰△BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接PC.(1)求证:△ACE≌△DCB;(2)求证:∠APC=∠BPC.【答案】(1)证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,又∵CA=CD,CE=CB,∴△ACE≌△DCB.(2)证明:分别过C作CH⊥AE垂足为H,C作CG⊥BD垂足为G,∵△ACE≌△DCB.∴AE=BD,∵S△ACE=S△DCB(全等三角形的面积相等),∴CH=CG,∴∠APC=∠BPC(角的内部,到角两边距离相等的点,在这个角的平分线上).。
(完整)【解直角三角形】专题复习(知识点+考点+测试)(2),推荐文档
一、直角三角形的性质《解直角三角形》专题复习1、直角三角形的两个锐角互余A几何表示:【∵∠C=90°∴∠A+∠B=90°】2、在直角三角形中,30°角所对的直角边等于斜边的一半。
1D几何表示:【∵∠C=90°∠A=30°∴BC= AB 】23、直角三角形斜边上的中线等于斜边的一半。
几何表示:【∵∠ACB=90° D 为 AB 的中点 ∴ CD= 1 AB=BD=AD 】2C B4、勾股定理:直角三角形两直角边的平方和等于斜边的平方 几何表示:【在 Rt△ABC 中∵∠ACB=90° ∴ a 2 + b 2 = c 2 】5、射影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项, 每条直角边是它们在斜边上的射影和斜边的比例中项。
即:【∵∠ACB=90°CD⊥AB∴ CD 2 = AD • BDAC 2 = AD • AB BC 2 = BD • AB 】6、等积法:直角三角形中,两直角边之积等于斜边乘以斜边上的高。
( a • b = c • h )由上图可得:AB • CD=AC • BC二、锐角三角函数的概念如图,在△ABC 中,∠C=90°sin A = ∠A 的对边 =a斜边 c cos A = ∠A 的邻边 =b斜边 c tan A = ∠A 的对边 =a∠A 的邻边 b cot A = ∠A 的邻边 =b ∠A 的对边 a锐角 A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数锐角三角函数的取值范围:0≤sinα≤1,0≤cosα≤1,tanα≥0,cotα≥0.三、锐角三角函数之间的关系(1) 平方关系(同一锐角的正弦和余弦值的平方和等于 1) sin 2 A + cos 2 A = 1 (2) 倒数关系(互为余角的两个角,它们的切函数互为倒数) tanA • tan(90°—A)=1; cotA • cot(90°—A)=1; (3) 弦切关系tanA= sin A cos A cotA= cos Asin A (4) 互余关系(互为余角的两个角,它们相反函数名的值相等) sinA=cos(90°—A),cosA=sin(90°—A)30°23 60°C仰角俯角北东南iα1tanA=cot(90°—A),cotA=tan(90°—A)四、特殊角的三角函数值A说明:锐角三角函数的增减性,当角度在 0°~90°之间变化时. (1) 正弦值随着角度的增大(或减小)而增大(或减小) B(2)余弦值随着角度的增大(或减小)而减小(或增大) A(3) 正切值随着角度的增大(或减小)而增大(或减小) (4) 余切值随着角度的增大(或减小)而减小(或增大)2五、 解直角三角形2 在 Rt△中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三 角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
初三数学解直角三角形的应用题
解直角三角形应用题考点一、直角三角形的性质1、直角三角形的两个锐角互余可表示如下:∠C=90°⇒∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°可表示如下: ⇒BC=21AB ∠C=90°3、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90° 可表示如下: ⇒CD=21AB=BD=AD D 为AB 的中点 4、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD ∙=2⇒ AB AD AC ∙=2 CD ⊥AB AB BD BC ∙=2 6、常用关系式由三角形面积公式可得: AB ∙CD=AC ∙BC考点二、直角三角形的判定 (3~5分)1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
考点三、锐角三角函数的概念 (3~8分) 1、如图,在△ABC 中,∠C=90°①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA ,即cas in =∠=斜边的对边A A②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA ,即cbcos =∠=斜边的邻边A A③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA ,即batan =∠∠=的邻边的对边A A A④锐角A 的邻边与对边的比叫做∠A 的余切,记为cotA ,即abcot =∠∠=的对边的邻边A A A2、锐角三角函数的概念锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数 3、一些特殊角的三角函数值4、各锐角三角函数之间的关系 (1)互余关系 sinA=cos(90°—A),cosA=sin(90°—A) tanA=cot(90°—A),cotA=tan(90°—A) (2)平方关系1cos sin 22=+A A5、锐角三角函数的增减性 当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小) (2)余弦值随着角度的增大(或减小)而减小(或增大) (3)正切值随着角度的增大(或减小)而增大(或减小) (4)余切值随着角度的增大(或减小)而减小(或增大) 考点四、解直角三角形 (3~5) 1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
湘教版数学八年级下册《1.1 直角三角形的性质和判定(I)》教学设计
湘教版数学八年级下册《1.1 直角三角形的性质和判定(I)》教学设计一. 教材分析湘教版数学八年级下册第1.1节直角三角形的性质和判定(I)是初中数学的重要内容,主要介绍了直角三角形的性质和判定方法。
本节课的内容是学生学习几何学的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
教材从直角三角形的定义入手,介绍了直角三角形的性质,如直角三角形的两个锐角互余,直角三角形的斜边最长等。
接着,教材介绍了直角三角形的判定方法,如HL判定法、ASA判定法、AAS判定法等。
这些性质和判定方法在实际应用中具有广泛的应用价值。
二. 学情分析学生在学习本节课之前,已经学习了三角形的基本概念和性质,对于三角形的分类和特点有一定的了解。
但是,对于直角三角形的特殊性质和判定方法,学生可能还没有完全掌握。
因此,在教学过程中,需要注重引导学生理解和掌握直角三角形的性质和判定方法。
三. 教学目标1.知识与技能:使学生理解和掌握直角三角形的性质和判定方法,能够运用这些性质和判定方法解决实际问题。
2.过程与方法:通过观察、操作、推理等数学活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣和好奇心,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:直角三角形的性质和判定方法。
2.难点:直角三角形的判定方法的灵活运用。
五. 教学方法1.引导发现法:通过提问、引导,让学生发现直角三角形的性质和判定方法。
2.实践操作法:让学生通过实际操作,加深对直角三角形性质和判定方法的理解。
3.合作交流法:鼓励学生分组讨论,培养学生的团队合作意识和沟通能力。
六. 教学准备1.教具准备:直角三角形模型、多媒体课件等。
2.学具准备:直角三角形模型、剪刀、胶水等。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的基本概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过多媒体课件展示直角三角形的性质和判定方法,让学生初步了解这些知识。
专题10 勾股定理-恩施州中考数学高频考点、重点专题突破精练精解(解析版)
专题10 勾股定理【达标要求】1. 理解并掌握直角三角形的概念、性质及判定.2. 掌握并运用特殊直角三角形的性质:030角所对的直角边等于斜边的一半.3. 理解并会运用勾股定理.4. 能用勾股定理与逆定理解直角三角形,能用相关知识解决一些简单问题.【知识梳理】知识点一 直角三角形的性质 1.两锐角 互余 .2.直角三角形斜边上的中线等于 斜边的一半 .3.030角所对的直角边等于 斜边的一半 .4.勾股定理:两直角边的 平方和 等于斜边的平方. 知识点二 直角三角形的判定1.定义法:有一个角是 直角 的三角形是直角三角形.2.如果一个三角形的两个角互余,那么这个三角形是直角三角形.3.勾股定理的逆定理:在一个三角形中,如果 其中两边的平方和 等于第三边的平方,那么这个三角形是直角三角形。
知识点三 勾股定理1.直角三角形中,三边(a b c c 、、是斜边)的关系满足222a b c +=.已知任意两边可求第三边. 知识点四 知识拓展1.直角三角形中两锐角∠A 、∠B 满足∠A+∠B=90°. 2.直角三角形中边和锐角通过锐角三角函数联系起来.3.仰角和俯角:视线和水平线形成的夹角.:i h l=hlα4.坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。
用字母i 表示,即i =h l,把坡面与水平面的夹角记作a (叫做坡角),那么i =h l=tan a .5.指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角.【精练精解】1.如图,在△ABC 中,∠B =50°,CD ⊥AB 于点D ,∠BCD 和∠BDC 的角平分线相交于点E ,F 为边AC 的中点,CD =CF ,则∠ACD +∠CED =( )A .125°B .145°C .175°D .190°【答案】C .【分析】根据直角三角形的斜边上的中线的性质,即可得到△CDF 是等边三角形,进而得到∠ACD =60°,根据∠BCD 和∠BDC 的角平分线相交于点E ,即可得出∠CED =115°,即可得到∠ACD +∠CED =60°+115°=175°.【解答】解:∵CD ⊥AB ,F 为边AC 的中点, ∴DF =AC =CF ,又∵CD =CF , ∴CD =DF =CF , ∴△CDF 是等边三角形, ∴∠ACD =60°, ∵∠B =50°,∴∠BCD +∠BDC =130°,∵∠BCD 和∠BDC 的角平分线相交于点E , ∴∠DCE +∠CDE =65°, ∴∠CED =115°,∴∠ACD+∠CED=60°+115°=175°,故选:C.2.列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,10【答案】D.【分析】根据三角形两边之和大于第三边可以判断各个选项中的三天线段是否能组成三角形,本题得以解决.【解答】解:∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,∵6+8>10,∴6,8,10能组成三角形,故选项D正确,故选:D.3.如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为()A.B.C.D.【答案】A.【分析】证明△BCE≌△CDF(SAS),得∠CBE=∠DCF,所以∠CGE=90°,根据等角的余弦可得CG的长,可得结论.【解答】解:正方形ABCD中,∵BC=4,∴BC=CD=AD=4,∠BCE=∠CDF=90°,∵AF=DE=1,∴DF=CE=3,∴BE=CF=5,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴∠CBE=∠DCF,∵∠CBE+∠CEB=∠ECG+∠CEB=90°=∠CGE,cos∠CBE=cos∠ECG=,∴,CG=,∴GF=CF﹣CG=5﹣=,故选:A.4.如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是()A.30nmile B.60nmileC.120nmile D.(30+30)nmile【答案】D【解析】此题主要考查了解直角三角形的应用﹣方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.过点C作CD⊥AB,则在Rt△ACD中易得AD的长,再在直角△BCD中求出BD,相加可得AB的长.过C作CD⊥AB于D点,∴∠ACD=30°,∠BCD=45°,AC=60.在Rt△ACD中,cos∠ACD=,∴CD=AC•cos∠ACD=60×=30.在Rt△DCB中,∵∠BCD=∠B=45°,∴CD=BD=30,∴AB=AD+BD=30+30.答:此时轮船所在的B处与灯塔P的距离是(30+30)nmile.5.如图,已知线段AB=4,O是AB的中点,直线l经过点O,∠1=60°,P点是直线l上一点,当△APB为直角三角形时,则BP=.【答案】2或2或2.【解析】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.分∠APB=90°、∠PAB=90°、∠PBA=90°三种情况,根据直角三角形的性质、勾股定理计算即可.∵AO=OB=2,∴当BP=2时,∠APB=90°,当∠PAB=90°时,∵∠AOP=60°,∴AP=OA•tan∠AOP=2,∴BP==2,当∠PBA=90°时,∵∠AOP=60°,∴BP=OB•tan∠1=2,故答案为:2或2或2.6.如图,已知△ABC,通过测量、计算得△ABC的面积约为cm2.(结果保留一位小数)【答案】1.9.【分析】过点C作CD⊥AB的延长线于点D,测量出AB,CD的长,再利用三角形的面积公式即可求出△ABC 的面积.【解答】解:过点C作CD⊥AB的延长线于点D,如图所示.经过测量,AB=2.2cm,CD=1.7cm,∴S△ABC=AB•CD=×2.2×1.7≈1.9(cm2).故答案为:1.9.7.如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC的长为.【答案】16.【分析】根据中位线的性质求出BO长度,再依据矩形的性质AC=BD=2BO进行求解问题.【解答】解:∵M、N分别为BC、OC的中点,∴BO =2MN =8. ∵四边形ABCD 是矩形, ∴AC =BD =2BO =16. 故答案为16.8. 三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C 在FD 的延长线上,点B 在ED 上,AB ∥CF ,∠F =∠ACB =90°,∠E =45°,∠A =60°,AC =10,则CD 的长度是 .【答案】15﹣.【解析】考查含30度角的直角三角形;勾股定理.过点B 作BM ⊥FD 于点M ,在△ACB 中,∠ACB =90°,∠A =60°,AC =10,∴∠ABC =30°,BC =10×tan60°= ∵AB ∥CF ,∴BM =BC ×sin30°=×12=, CM =BC ×cos30°=15,在△EFD 中,∠F =90°,∠E =45°, ∴∠EDF =45°,∴MD =BM =,∴CD =CM ﹣MD =15﹣.故答案是:15﹣9.如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连接EF,若AB=3,AC=2,且α+β=∠B,则EF=________.【解析】∵α+β=∠B,∴∠EAF=∠BAC+∠B=90°,∴△AEF是直角三角形,且AE=AB=3,AF=AC=2,∴EF10.如图将△ABC绕点C逆时针旋转得到△A′B′C,其中点A′与A是对应点,点B′与B是对应点,点B′落在边AC上,连接A′B,若∠ACB=45°,AC=3,BC=2,则A′B的长为.【答案】【解析】∵将△ABC绕点C逆时针旋转得到△A′B′C,∴AC=A'C=3,∠ACB=∠ACA'=45°∴∠A'CB=90°∴A'B11.如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连结EF.若AB=3,AC=2,且α+β=∠B,则EF=.【答案】【解析】由旋转的性质可得AE=AB=3,AC=AF=2,由勾股定理可求EF的长.由旋转的性质可得AE=AB=3,AC=AF=2,∵∠B+∠BAC=90°,且α+β=∠B,∴∠BAC+α+β=90°∴∠EAF=90°∴EF==12.如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC的面积是.【答案】8.【解析】根据垂直的定义得到∠BCD=90°,得到长CD到H使DH=CD,由线段中点的定义得到AD=BD,根据全等三角形的性质得到AH=BC=4,∠H=∠BCD=90°,求得CD=2,于是得到结论.∵DC⊥BC,∴∠BCD=90°,∵∠ACB=120°,∴∠ACD=30°,延长CD到H使DH=CD,∵D为AB的中点,∴AD=BD,在△ADH与△BCD中,,∴△ADH≌△BCD(SAS),∴AH=BC=4,∠H=∠BCD=90°,∵∠ACH=30°,∴CH =AH =4,∴CD =2, ∴△ABC 的面积=2S △BCD =2××4×2=8,故答案为:8.13.如图,在△ABC 中,AB =BC ,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AD 与BE 交于点F ,BH ⊥AB 于点B ,点M 是BC 的中点,连接FM 并延长交BH 于点H .(1)如图①所示,若∠ABC =30°,求证:DF +BH BD ; (2)如图②所示,若∠ABC =45°,如图③所示,若∠ABC=60°(点M 与点D 重合),猜想线段DF ,BH,BD 之间又有怎样的数量关系?请直接写出你的猜想,不需证明.图①图②图③【答案】见解析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直角三角形的性质与判定I
班级:_______________ 姓名:_______________
一、选择题
1. 如图,在中,,,为的中点,
则等于
2. 如图,小雅家(图中点处)门前有一条东西走向的公路,经测得有一水
塔(图中点处)在她家北偏东度处,那么水塔所在的位置到公
路的距离是
A. B. C. D.
3. 如图,在中,是斜边上的中线,则图中与相等的
线段有
A. 与
B. 与
C. 与
D. ,与
4. 如图,在中,,,,过点作
,垂足为,则的长为
C. D.
5. 在中,,,,则
A. B. C. D.
6. 如图,在三角形纸片中,,,,将
沿折叠,使点与点重合,则折痕的长为
A. B.
C. D.
7. 如图,中,,点为斜边的中点,,则
的长为
A. B.
C. D.
8. 如图,在中,,于点,如果,
,那么的值为
A. B.
C. D.
9. 如图,在中,交于点,交于点
,为的中点,,,则的周长是
A. B.
C. D.
10. 如图,已知 ,,垂足分别是 ,,那么以下线段
大小的比较必定成立的是
A. B.
C. D.
二、填空题 11. 如图,在 中,
,点 是边 的中点.若 ,则
.
第11题图 第12题图 第14题图 第15题图 第16题图
12. 如图,将一副直角三角板如图放置,若 ,则 的度数为 . 13. 中,,,,则 . 14. 如图,在 中, 的度数是 . 15. 如图: 中,, 是 的高,,,则
. 16. 如图,已知 中,, 是 的中点,,则
. 17. 如图,在 中,,, 平分 ,交 于点 ,若 ,则 .
第17题图 第18题图 第19题图 第20题图
18. 如图,在 中,,, 于点 , 于点 ,且点 是 的中点, 的周长是 ,则 . 19. 如图所示,在 中,,.以 边上的中线 为折痕将 折叠,使点 落在点 处.如果 恰好与 垂直,则 的度数是 . 20. 如图所示,其中 ,,,,
,垂足分别是 ,,那么
.
三、解答题
21. 如图,一艘轮船从点向正北方向航行,每小时航行海里,小岛在轮船的北偏西方向,小时后轮船航行到点,小岛此时在轮船的北偏西方向,在小岛的周围海里范围内有暗礁,如果轮船不改变方向继续向前航行,是否会有触礁危险?请说明理由.
22. 如图,,平分,,,,
求:
(1)求的长;
(2)求四边形的周长.
23. 如图所示,在等腰中,,.求腰上的高.
24. 如图,正方形中,点,分别是,的中点.与相交于点.
(1)求证:;
(2)判断与的数量关系,并说明理由.
25. 如图,在中,,是上一点,且.
求证:.
26. 如图,在中,,,是的平分线.求证:.。