信号与系统课件 第四章
信号与系统 吴大正 第四章 傅立叶变换和系统的频域分析

4.2 傅里叶级数
3 .f(t)为奇谐函数—f(t) = –f(t±T/2) 此时 其傅里叶级数中只含奇次谐波分量,而不含偶 次谐波分量即 a0=a2=…=b2=b4=…=0
f(t) 0 T/2 T t
4.3 周期信号(Periodic Signal)的频谱
周期信号的频谱 周期矩形脉冲的频谱 从广义上说,信号的某种特征量随信号频率变化的关 系,称为信号的频谱,所画出的图形称为信号的频谱图。 周期信号的频谱是指周期信号中各次谐波幅值、相位 随频率的变化关系,即将An~ω和n~ω的关系分别画在以ω 为横轴的平面上得到的两个图,分别称为振幅频谱图和相 位频谱图。因为n≥0,所以称这种频谱为单边谱。 也可画|Fn|~ω和n~ω的关系,称为双边谱。若Fn为实 数,也可直接画Fn 。
“非周期信号都可用正弦信号的加权积分表示”
——傅里叶的第二个主要论点
4.2 傅里叶级数
周期信号展开的无穷级数成为傅里叶级数,分“三角型傅里 叶级数”和“指数型傅里叶级数”,只有当周期信号满足狄 里赫利条件时,才能展开成傅里叶级数。 狄利赫利条件(Dirichlet condition)
t 0 T
2 T bn 2T f (t )sin(nt ) d t T 2
任意函数f(t)都可分解为奇函数和偶函数两部分, 由于f(-t) = -fod(t) + fev(t) ,所以 f (t ) f (t ) f (t ) f (t ) f e v (t ) f od (t ) 2 2
4.2 傅里叶级数
三角形式 指数形式 奇偶函数的傅里叶级数
e jx e jx 由于 cos x 2
A0 f (t ) An cos( n t n ) 2 n 1
信号与系统郑君里第二版第四章课件

则 d f (t) sF(s) f (0) dt
f (n)(t) snF(s)sn1 f (0) sn2 f '(0) f n1(0)
4.2.5 积分特性
若 f(t)F(s)
则
t f ( )d F(s)
s
4.2.6 时间尺度变换特性
若 f(t)F(s)
则
f(a)t 1 aF(a s) a0
f( )lim f(t)lim s(F s)
t
s 0
4.3 拉普拉斯逆变换
1 查表法
例:已F知 (s)2ss2249ss188,求其拉氏反变换。 解: 将F(s)表示为常用信号变的换拉形氏式,即:
F(s)2(ss2)2222
查表得:22(t)Fra bibliotek所以:
(ss2 )2222 e2tco2tsu(t)
f( t) L 1 [F (s ) ] 2( t) e 2 tc2 o tu ( t s )
即:
u(t) 1 s
2.单位冲激信号
F (s) L(t) (t)e sd t t (t)d t1
0
0
即:
(t) 1
3.指数信号
F (s) Le au t(t) e ae t sd t t1
0
s a
即:
eatu(t) 1 sa
4.正弦信号
F(s)L
si ntu(t)
第4章 连续信号与系统的复频 域分析
➢拉普拉斯变换 ➢拉普拉斯变换的性质 ➢拉普拉斯逆变换 ➢系统的复频域分析 ➢连续系统函数与系统特性 ➢利用MATLAB进行连续系统的 复频域分析
4.1拉普拉斯变换
从第三章可知,傅里叶变换分析法在信 号分析和处理等方面十分有效。但在应用时, 许多信号并不满足绝对可积条件,或者不存 在傅里叶变换,因此,傅里叶变换的运用受 到一定的限制。
信号与系统吴大正第四版第四章完整ppt课件

O
Wal(1,t)
O
1/ 2
Wa(l2,t)
1
t
1
t
O
第1-10页
1/ 4
1/ 2
3/ 4
1
精选编辑ppt ■
t
10
信号与系统 电子课件
如果是复函数集,正交是指:
若复函数集 {i(t)}i (1,2,,n)在区间(t1,t2)满足
t1 t2i(t)j(t)d t 0 K ,i 0,当 当 ii jj
信号与系统 电子课件
连续时间信号与系统的频域分析
精选编辑ppt
1
第1-1页
■
信号与系统 电子课件
本章安排
• 信号的正交分解和傅里叶级数 • 周期信号和非周期信号的频谱 • 傅里叶变换的性质 • 周期信号的傅里叶变换 • LTI系统的频域分析和取样定理 • 离散傅里叶变换及其性质
精选编辑ppt
2
第1-2页
j 1
如何选择C j才能得到最佳近似。
2 1
t2t1
t1 t2[f(t)jn 1Cj
j(t)]2dt
精选编辑ppt
12
第1-12页
■
信号与系统 电子课件
多元函数就极值问题
1
C j t2t1
t1 t2[f(t)jn 1C j j(t)]2d t0
Ci
t2 t1
f (t)i(t)dt
则称 1和在2区间(t1,t2)内正交。
若有n个函数 1 (t) ,2 (t)构,, 成n ( 一t) 个函数集,
这些函数在区间(t1,t2)内满足
t1 t2i(t)j(t)d t 0 K ,i 0,
当 ij 当 ij
信号与系统第四章1

0<t<1 1< t < 2
1
2
4.5
思考题4.4 思考题4.4
20
4.5 周期信号的频谱与功率谱
一.频谱 频谱
辐频 Ak ~ kω 0 关系
相频 θ k ~ k ω 0 关系
x ( t ) = c 0 + 2 ∑ Ak cos( k ω 0 t + θ k )
k =1
∞
---三角函数形式 三角函数形式
2 2 Ak = Bk + Dk
tgθ k = Dk / Bk
− Dk = − I m {ck }, k > 0
11
复指数——> 正余弦的转换: 正余弦的转换: 复指数
B k = Re {ck }
4.4 波形对称性与傅里叶系数
1.偶对称:x(t)=x(-t) 偶对称: 偶对称
− 2 Dk = 0
4 2 Bk = T0
8
将这两者相加, 式中基波角频率 ω 0 = 2π / T0 。将这两者相加,即 为所求x(t)的傅里叶级数。所以 的傅里叶级数。 为所求 的傅里叶级数
x( t ) = Ev{ x( t )} + Od { x( t )}
4 8 = sinω0 t − 2 cosω0 t + sin3ω0 t − 2 cos3ω0 t π π 3π 9π
第 四 章
连续时间傅立叶变换 连续时间信号的谱分析和 --频分析 时--频分析
1
4.1引言 引言 4.2复指数函数的正交性 复指数函数的正交性 4.3周期信号的表示:连续时间傅里叶级数 周期信号的表示: 周期信号的表示 4.4波形对称性与傅立叶系数 波形对称性与傅立叶系数 4.5周期信号的频谱与功率谱 周期信号的频谱与功率谱 4.6傅里叶级数的收敛性 吉伯斯现象 傅里叶级数的收敛性 4.7非周期信号的表示:连续时间傅里叶变换 非周期信号的表示: 非周期信号的表示 4.8傅里叶级数与傅里叶变换的关系 傅里叶级数与傅里叶变换的关系 4.9连续时间傅里叶变换的性质与应用 连续时间傅里叶变换的性质与应用 4.10卷积定理及其应用 卷积定理及其应用 4.11相关 相关 4.12能量谱密度与功率谱密度 能量谱密度与功率谱密度 4.13信号的时 频分析和小波分析简介 信号的时---频分析和小波分析简介 信号的时
信号与系统-模拟角度调制系统

瞬时相位: (t) (t)dt ct KFM f (t)dt
sFM t A0 cosct 0 kFM f t dt
kFM ——调频灵敏度,单位为弧度/秒/伏。
调频波的瞬时频率偏移与f(t)成线性关系。
PM 信号和FM 信号波形如图所示:
满足窄带条件时
sNBFM t A cosct
A FM 1
2
cosc
m1t
A FM 1
2
c
m1t
AFM 2
2
cosc
m2 t
AFM 2
2
cosc
m2 t
有效频带宽度:若m2 m1 BNBFM 2m1
不满足窄带条件时:
sFM t A e j t
取其实部
A
J J e n FM1
f t Am1 cosm1t Am2 cosm2t
t c kFM Am1 cosm1t kFM Am2 cosm2t
t ct FM1 sin m1t FM 2 sin m2t
FM 1
kFM Am1
m1
FM 2
kFM Am 2 m 2
sFM t A cos ct FM1 sin m1t FM 2 sinm2t
有效带宽:(以单音调制为例)
调相波的有效带宽: BPM 2 PM 1 fm
窄带调相波的有效带宽: BPM 2 fm
调相波的的有效带宽与调制频率有关;而调频 波在调制频率变化时,有效带宽基本保持不变;
对于多音调制,调相波的有效带宽取决于最高调 制频率分量,而调频制不存在这个问题;在实际 应用中,调频制比调相制要广泛的多。
调频波的有效带宽:
理论上调频信号的带宽为无限宽。然而实际上各次边频
信号与系统张晔版第四章ppt

L[u(t)] est dt est 1
0
s
s
0
u(t) 1 s
(2) 单边指数信号 f (t) eatu(t)
延时信号
→ 对比傅里叶变换? 双边
L[eat ] eat est dt e(as)t 1
0
as
as
0
eat u(t) 1 sa
( a)
哈尔滨工业大学图象与信息技术研究所
L f (t t0 )u(t t0 ) F (s)est0
→
L
f
(at
t0 )u(at
t0 )
1 a
F
s a
e
s a
t0
(2) 先尺度、后平移
L
f
(at)u(at)
1 a
F
s a
→
L
f
(at
t0 )u(at
t0 )
1 a
F
s a
e
s a
t0
哈尔滨工业大学图象与信息技术研究所
4.2.6 时域微分特性
推而广之:
L
d n f (t)
dt n
sn F (s)
n 1 r 0
snr 1
f
(r) (0)
式中
f
(r)
(0)是r阶导数
d
r f (t) dt r
在0-时刻的取值。特别是,如果它们都为0,则
L
df (t dt
)
sF
(s)
L
d
2f dt
(t
2
)
s2F(s)
i 1
i 1
在应用中,可实现复杂信号的分解。
4.2.2 时域平移特性
信号与系统4教学ppt
上两式称为双边拉普拉斯变换对,可以表示为
f (t) F (s)
拉氏变换扩大了信号的变换范围。
变换域的内在联系
时域函数 f (t)傅氏变换 频域函数 F ()
时域函数 f (t)拉氏变换 复频域函数 F (s)
4.1.2 单边拉普拉斯变换
考虑到:1. 实际信号都是有始信号,即 t 0时,f (t) 0
作业
连续信号与系统的复频域分析概述
傅里叶变换(频域)分析法
– 在信号分析和处理方面十分有效:分析谐波成分、系统的频 率响应、波形失真、取样、滤波等
– 要求信号满足狄里赫勒条件 – 只能求零状态响应 – 反变换有时不太容易
拉普拉斯变换(复频域)分析法
– 在连续、线性、时不变系统的分析方面十分有效 – 可以看作广义的傅里叶变换 – 变换式简单 – 扩大了变换的范围 – 为分析系统响应提供了规范的方法
但反变换的积分限并不改变。
以后只讨论单边拉氏变换:
(1)f (t) 和 f (t) (t) 的拉氏正变换 F(s) 是一样的。
(2)反之,当已知 F(s) ,求原函数时,也无法得 到 t < 0 时的 f (t) 表达式。
例如,常数 1 和 (t) 的(单边)拉普拉斯变换是一
样的。
单边拉氏变换的优点:
0
可见: L[tn (t)] n L[tn1 (t)]
s
依次类推:
L[tn (t)]
n s
n
1 s
n
s
22 s
1 s
1 s
n! sn1
特别是 n=1 时,有
L[t (t)]
1 s2
拉普拉斯变换与傅里叶变换的关系
1. 0 0 :只有拉氏变换而无傅氏变换
《信号与系统第四章》PPT课件
1 ) 系 统 函 数 的 零 、 极 点 分 布 确 定 系 统 冲 激 响 应 的 模 式
①
h t
单阶减 ea极t幅 sin 点振 荡 0tth a t 0 L 1 H js L h s1 tin i 0 n t1 s t k ,ip 正i弦 振荡i n 1 等k i 幅e e p a i t ts i n t0 tta 0
系 统 函 数 的 零 、 极 点 分 布 图
系 统 函 数 必 定 是 复 变 量 s 的 实 有 理 函 数 , 零 、 极 点 一 定 是 实 数 或 成 对 共 轭 复 数 。
极 点 是 对 应 系 统 输 入 输 出 微 分 方 程 的
特 征 根 自 然 频 率 、 固 有 频 率 。
1
2 、 系 统 零 、 极 点 分 布 对 系 统 时 域 响 应 特 性 的 影 响
14
课堂小结
拉氏变换及其性质 S域分析法 系统函数H(s)〔零、极点〕 系统稳定性的判断
15
作业
4.5(2) 4.11(1) 4.16 4.22
16
m
jzr
F ht HHssjH 0rn 1jpi
k1
H()一般为复数,可表示为:
H H ej
m
j z r
m
n
H H 0 r n 1
幅 频 特 性 , a r g j z r a r g j p i相 频 特 性 。
j p i
r 1
i 1
i 1 结 论 : 零 极 点 分 布 决 定 了 H 的 大 小 !
yzs
t
h
f
t
d
因为|f(t)| Me,所以
yzs t
Me
信号与系统第四章概论
学习重点:
• 单边拉氏变换及其重要性质; • 拉氏反变换的方法(部分分式展开); • 微分方程的S域求解; • 电路的S域模型及分析方法。
本章目录
4.1 拉普拉斯变换 4.2 拉氏变换的性质 4.3 拉氏反变换 4.4 系统的S域分析
4.1 拉普拉斯变换
➢ 信号f( t )的单边拉氏变换定义:
(有理真分式)
可以分解为许多简单分式之和的形式。
1. D( s ) = 0的根均为单实根
式中
F (s) K1 K2 Kn
s s1 s s2
s sn
ki (s si )F (s) ssi
( i = 1,2,n )
则
f (t) K1es1t K2es2t Knesnt
例
设
F
(s)
(s
s 1)( s
2)
,求f
(
t
)。
解 其中
F(s)
s
K1 K2
(s 1)(s 2) s 1 s 1
所以 则
K1 (s 1)F(s) s1 1 K2 (s 2)F(s) s2 2
F(s) 1 2 s 1 s 1
f (t) et 2e2t
2. D( s ) = 0有共轭复根
0
0
s
(t) 1
s
➢正弦信号:
s in t
s2
2
➢余弦信号:
cost
s2
s
2
➢斜坡信号:
f (t) t (t)
F (s)
1 s2
end
4.2 拉氏变换的性质
线性性质
若 f1(t) F1(s), f2 (t) F2 (s) 则 a1 f1(t) a2 f2 (t) a1F1(s) a2F2 (s)
《信号与系统教案》课件
《信号与系统教案》PPT课件第一章:信号与系统概述1.1 信号的概念与分类信号的定义信号的分类:连续信号、离散信号、随机信号等1.2 系统的概念与分类系统的定义系统的分类:线性系统、非线性系统、时不变系统、时变系统等1.3 信号与系统的研究方法解析法数值法图形法第二章:连续信号及其运算2.1 连续信号的基本性质连续信号的定义与图形连续信号的周期性、奇偶性、能量与功率等性质2.2 连续信号的运算叠加运算卷积运算2.3 连续信号的变换傅里叶变换拉普拉斯变换Z变换第三章:离散信号及其运算3.1 离散信号的基本性质离散信号的定义与图形离散信号的周期性、奇偶性、能量与功率等性质3.2 离散信号的运算叠加运算卷积运算3.3 离散信号的变换离散时间傅里叶变换离散时间拉普拉斯变换离散时间Z变换第四章:线性时不变系统的特性4.1 线性时不变系统的定义与性质线性时不变系统的定义线性时不变系统的性质:叠加原理、时不变性等4.2 线性时不变系统的转移函数转移函数的定义与性质转移函数的绘制方法4.3 线性时不变系统的响应输入信号与系统响应的关系系统的稳态响应与瞬态响应第五章:信号与系统的应用5.1 信号处理的应用信号滤波信号采样与恢复5.2 系统控制的应用线性系统的控制原理PID控制器的设计与应用5.3 通信系统的应用模拟通信系统数字通信系统第六章:傅里叶级数6.1 傅里叶级数的概念傅里叶级数的定义傅里叶级数的使用条件6.2 傅里叶级数的展开周期信号的傅里叶级数展开非周期信号的傅里叶级数展开6.3 傅里叶级数的应用周期信号分析信号的频谱分析第七章:傅里叶变换7.1 傅里叶变换的概念傅里叶变换的定义傅里叶变换的性质7.2 傅里叶变换的运算傅里叶变换的计算方法傅里叶变换的逆变换7.3 傅里叶变换的应用信号分析与处理图像处理第八章:拉普拉斯变换8.1 拉普拉斯变换的概念拉普拉斯变换的定义拉普拉斯变换的性质8.2 拉普拉斯变换的运算拉普拉斯变换的计算方法拉普拉斯变换的逆变换8.3 拉普拉斯变换的应用控制系统分析信号的滤波与去噪第九章:Z变换9.1 Z变换的概念Z变换的定义Z变换的性质9.2 Z变换的运算Z变换的计算方法Z变换的逆变换9.3 Z变换的应用数字信号处理通信系统分析第十章:现代信号处理技术10.1 数字信号处理的概念数字信号处理的定义数字信号处理的特点10.2 现代信号处理技术快速傅里叶变换(FFT)数字滤波器设计数字信号处理的应用第十一章:随机信号与噪声11.1 随机信号的概念随机信号的定义随机信号的分类:窄带信号、宽带信号等11.2 随机信号的统计特性均值、方差、相关函数等随机信号的功率谱11.3 噪声的概念与分类噪声的定义噪声的分类:白噪声、带噪声等第十二章:线性系统理论12.1 线性系统的状态空间描述状态空间模型的定义与组成线性系统的性质与方程12.2 线性系统的传递函数传递函数的定义与性质传递函数的绘制方法12.3 线性系统的稳定性分析系统稳定性的定义与条件劳斯-赫尔维茨准则第十三章:非线性系统13.1 非线性系统的基本概念非线性系统的定义与特点非线性系统的分类13.2 非线性系统的数学模型非线性微分方程与差分方程非线性系统的相平面分析13.3 非线性系统的分析方法描述法映射法相平面法第十四章:现代控制系统14.1 现代控制系统的基本概念现代控制系统的定义与特点现代控制系统的设计方法14.2 模糊控制系统模糊控制系统的定义与原理模糊控制系统的结构与设计14.3 神经网络控制系统神经网络控制系统的定义与原理神经网络控制系统的结构与设计第十五章:信号与系统的实验与实践15.1 信号与系统的实验设备与原理信号发生器与接收器信号处理实验装置15.2 信号与系统的实验项目信号的采样与恢复实验信号滤波实验信号分析与处理实验15.3 信号与系统的实践应用通信系统的设计与实现控制系统的设计与实现重点和难点解析信号与系统的基本概念:理解信号与系统的定义、分类及其研究方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则
H ( j )
j j 6.28 0.53e j 57.9 10 j 10 j 6.28
H ( j 3)
j 3 j 3 6.28 0.88e j 27.9 10 j 3 10 j 3 6.28
H ( j 5)
j 5 j 5 6.28 j17.6 0.96e 10 j 5 10 j 5 6.28
4E 4E sin 5t H ( j 5) sin[ 5t (5)] 2.43sin(5t 17.6 ) 5 5
最后系统的响应信号为:
u R (t ) 6.78 sin( t 57.9 ) 3.75 sin( t 27.9 ) 3 2.43sin( t 17.6 ) 5
H ( j ) 的求法:
1. H ( jω)
h(t )e jω t dt
2. 从网络结构上直接利用欧姆定律求解。
例:
e(t )
uc (t )
已知 e(t ) E[ (t ) (t )] 求:uc (t ) 。
2 )e
j 2
解:(1) E( j ) ESa( (2) H ( j )
E ( j ) H ( j )e jt d
即 R( j ) E ( j ) H ( j )
由此得到系统频域分析法的步骤为:
1. 求 E( j ) F{e(t )}
2. 求 H ( j )
3. 求 R( j ) E( j ) H ( j )
4. 求 r (t ) F 1{R( j )}
第四章
§4.1 引言
连续时间系统的频域分析
激励分解成单元信号和的形式,单元信号的选 择应具有以下两个性质: 1. 由这些基本信号能够构成相当广泛的一类有 用信号; 2. LTI系统对每个单元信号响应的求解应十分 简单。 频域分析所采用的单元信号是等幅的正弦信号。
设:激励 e(t ) e
j 0t
(4)求 uc (t ) ,为便于求解,将Uc ( j ) 写成另一种形式
1 1 j E ( j ) E[ ( ) ( ( ) )e ] j j E (1 e j ) j
E U c ( j ) (1 e j ) j j
T
0
2 u R (t ) dt
33 .0W
§4.4 调幅信号通过谐振电路的稳态分析
C
e(t )
i (t )
L
激励是调幅电压信号,响应信号 为回路电流,假设调幅电压是正 弦调制的,则其数学表达式为:
R
e(t ) Em[1 me1 cos(1t e1 )]cos(ct 0 )
2 1
cos[( c 1 )t 0 e1 1 ]
Em me1 [1 cos(1t e1 1 )]cos(ct 0 ) 2 R 1 1
I m[1 mi1 cos(1t i1 )]cos(ct 0 )
其中
Em Im R
计算时,可采用复数符号法。
例:
C
R
e(t )
E
0
T 2
e(t )
u R (t )
E
T
t
激励信号如上图所示,电路参数为:
E 10V , T 1s, R 1, C 0.1F
求: 1、电阻电压 u R (t ); 2、信号源输出功率及电阻消耗的功率。 解:由图知激励
E e(t ) E 0t T 2
§4.2 有始信号作用线性电路的瞬态分析
由傅立叶反变换式知:
1 e(t ) 2
E ( j ) e j t d
1 E ( j ) d e jt 2
则
r (t )
1 E ( j ) H ( j ) de jt 2
1 2
任意激励信号首先分解为不同频率的正弦信 号和的形式,然后分别讨论每个正弦信号单独作 用到系统的响应,再将各响应叠加,就可求出任 意信号作用到系统中的响应,这种分析系统的方 法叫频域分析法。 优点:1、物理概念清晰; 2、是拉氏变换法的基础,拉氏变换法可 以看做是频域分析法的推广。 缺点: 需要正反两次傅立叶变换,较困难。
Em cos( c t 0 ) me1 Em cos[( c 1 )t 0 e1 ] 2 m e1 Em cos[( c 1 )t 0 e1 ] 2
系统的频率响应特性就是回路的输入导纳,即
H ( j ) 1 R j (L 1 ) C
1 1 L 0 0 R[1 j 0 ( )] R[1 jQ( )] R 0 0
1 1 e j ( ) R(1 j ) R 1 2
其中
0
Q
1 LC
串联谐振回路的谐振频率 串联谐振回路的品质因数 串联谐振回路的失谐
H ( j ) 的相角
系统的单位冲激响应为h(t )
则响应为 y(t ) e(t ) h(t ) e(t )h( )d
h( )e j 0 ( t ) d
h( )e j 0 d e j 0t
H ( j0 )e j0t
偶
奇
其中 H ( j ) h(t )e jt dt
E( 1 1 )(1 e j ) j j
E E (1 e j ) (1 e j ) j j
uc (t ) E[ (t ) (t )] E[e t (t ) e (t ) (t )]
e(t ) E 0 E1 cos(t 1 ) E 2 cos(2t 2 ) E n cos(nt n )
r (t ) E 0 H ( j 0) E1 H ( j) cos[t 1 ()] E n H ( jn) cos[nt n (n)]
则电源输出的瞬时功率为:
p e(t ) i (t )
平均功率为:(仅取到5次谐波)
1 P T
T
0
pdt P P P 33 .0W 1 3 5
电阻中消耗的平均功率为:
1 PR T
T
0
1 u R (t ) i(t )dt T
T
0
2 1 u R (t ) dt T R
0 L
R
Q(
0 ) 0
( ) arctg
1、回路调谐于载频,即 c 0
通常 1 c ,则失谐可用下面的公式计算
( 0 )( 0 ) 2( 0 ) 0 Q( ) Q Q 0 0 0
T t T 2
C
其傅立叶级数展开式为:
e(t ) 4E
R
e(t )
u R (t )
sin t
4E 4E sin 3t sin5t 3 5
由电路图知,系统的频率响应特性为:
H ( j ) R R 1 jC
jRC j 0.1 j jRC 1 j 0.1 1 10 j
H ( j ) e j ( )
1 e(t ) A cos 0t A(e j0 t e j0t ) 若激励 2
则
r (t )
A [ H ( j 0 ) e j 0 t H ( j 0 ) e j 0 t ] 2
A [ H ( j 0 ) e j ( 0 ) e j 0 t H ( j 0 ) e j ( 0 ) e j 0 t ] 2
则激励信号各频率分量单独作用到系统中的响 应为:
4E
sin t H ( j)
4E
sin[ t ()] 6.78sin(t 57.9 )
4E 4E sin 3t H ( j 3) sin[ 3t (3)] 3.75sin(3t 27.9 ) 3 3
mi1
me1 1 12
i1 e1 1
滞后相位角
或延时了 t1
e1 i1 1
,说明比输入滞后了 1
1
1
。
e(t )
从频谱图上看
t
i (t )
0
其中
U c ( j )
2E sin( ) 2
( 2 2 )1 / 2
arctg , 2 c ( ) arctg , 2
4n
2(2n 1)
2(2n 2)
2(2n 1)
A H ( j 0) {e j[ 0t ( 0 )] e j[ 0t ( 0 )] } 2
A H ( j 0) cos[0t (0 )]
系统对正弦信号的作用是在幅度上乘一系数, 在相位产生一相移,当正弦信号的频率发生变化 时,这些系数和相移也将发生变化,因此 H ( j ) 反映了系统对不同频率的正弦信号在幅度和相位 上的作用的大小,称其为系统的频率响应特性。 从另一个角度定义系统的频率响应特性: 系统对正弦信号的稳态响应随频率的变化 规律叫系统的频率响应特性(或系统的传递函 数),记为 H ( j ) 。