动物生理学细胞兴奋性和生物电现象
动物生理学复习要点说明

动物生理学复习要点执业兽医资格考试动物生理学第一部分概述一、机体的功能与环境1、动物体所含的液体称为体液,约占体重的60%,细胞外液被称为机体的环境,约占体液的1/3。
2、各种物质在不断转换中达到相对平衡,即动态平衡状态,称为稳态。
二、机体功能的调节1、生理功能的调节方式包括:神经调节、体液调节、自身调节2、神经调节的基本过程是反射(reflex)。
反射:是指在中枢神经系统的参与下,机体对外环境变化产生的有规律的适应性反应,结构基础是反射弧(感受器、传入神经纤维、神经中枢、传出神经纤维、效应器)第二部分细胞的基本功能1、细胞的兴奋性和生物电现象[1] 静息电位:静息电位是指细胞未受刺激时,存在于膜外两侧的电位差。
机制:K+ 在浓度差作用下向细胞外扩散,并滞留在细胞外表面形成向的电场,当达到电-化学平衡时,K+ 净流量为零。
因此,可以说静息电位相当于K+ 外流形成的跨膜平衡电位[2] 动作电位:是细胞受到刺激时静息膜电位发生改变的过程。
机制:当细胞受刺激而兴奋时,膜对Na+ 通透性增大,对K+ 通透性减小,于是细胞外的Na+ 便会顺其波度梯度和电梯度向胞扩散,导致膜负电位减小,直至膜电位比膜外高,形成正外负的反极化状态。
当促使Na+ 流的浓度梯度和阻止Na+ 流的电梯度,这两种拮抗力量相等时,Na+ 的净流停止。
因此,可以说动作电位的去极化过程相当于Na+ 流所形成的电- 化学平衡电位。
[3]细胞受到刺激后能产生动作电位的能力称为兴奋性;在体条件下,产生动作电位的过程称为兴奋。
兴奋性时期①绝对不应期②相对不应期③超常期④低常期[4]阈值:引起细胞兴奋或产生动作电位的最小刺激强度称为阈值,该刺激强度的值则称为刺激的阈值。
阈电位:从静息电位变为动作电位的这一临界值称为阈电位。
2、神经骨骼肌接头也叫运动终板。
第三部分血液一、血液的组成与理化特性1、血量及血液的基本组成成年动物的血量约为体重的5%-9%,一次失血若不超过血量的10%,一般不会影响健康,一次急性失血若达到血量的20%时,生命活动将受到明显影响。
高中生物竞赛辅导讲座 第六讲动物生理

第六讲动物生理一、竞赛中涉及的问题根据国际生物学奥林匹克竞赛(IBO)纲要和全国中学生生物竞赛大纲(试行)要求,有关人体及动物生理的内容,主要包括消化、吸收、呼吸、循环、排泄、免疫、调节(神经和激素)和生殖。
上述内容在中学生物学教学大纲中已有过一些简单的介绍,这里只就竞赛中经常要用到的一些知识作进一步的补充说明。
(一)细胞的生物电现象生物电现象是指生物细胞膜在安静状态和活动时伴有的电现象。
它与细胞兴奋的产生和传导有着密切的关系。
现以神经细胞为例来讨论细胞的生物电现象。
1.静息电位及产生原理(1)静息电位:细胞膜处于安静状态下,存在于膜内外两侧的电位差,称为静息电位。
如下图所示,将两个电极置于安静状态下神经纤维表面任何两点时,示波器屏幕上的光点在等电位线作横向扫描,表示细胞膜表面不存在电位差。
但如将两个电极中的一个微电极(直径不足1μm)的尖端刺入膜内,此时示波器屏幕上光点迅速从等电位下降到一定水平继续作横向扫描,显示膜内电位比膜外电位低,表示细胞膜的内外两侧存在着跨膜电位差。
此电位差即是静息电位。
一般将细胞膜外电位看作零,细胞膜内电位用负值表示。
静息电位测量示意图A.膜表面无电位差B.膜内外两侧有电位差同类细胞的静息电位较恒定,如哺乳类动物神经细胞的静息电位为-70~-90mV。
安静时,细胞膜两侧这种数值比较稳定的内负外正的状态,称为极化。
极化与静息电位都是细胞处于静息状态的标志。
以静息电位为准,若膜内电位向负值增大的方向变化,称为超极化;若膜内电位向负值减小的方向变化,称为去极化;细胞发生去极化后向原先的极化方向恢复,称为复极化。
从生物电来看,细胞的兴奋和抑制都是以极化为基础,细胞去极化时表现为兴奋,超极化时则表现为抑制。
(2)静息电位的产生原理:“离子流学说”认为,生物电产生的前提是细胞膜内外的离子分布和浓度不同,以及在不同生理状态下,细胞膜对各种离子的通透性有差异。
据测定,在静息状态下细胞膜内外主要离子分布及膜对离子的通透性见下表。
生理学 细胞的生物电现象与兴奋性 ppt课件

+35 0
锋电位
mV
-55
负后电位
刺激伪迹
-70
后电位
时间( ms) ppt课件
正后电位
动 作 电 位 的 波 形 及 组 成
12
ppt课件 神经纤维动作电位示意图
13
动作电位的特点
• “全”或“无”;不减衰;不重叠。
“全”
Ap的幅度不随有效刺激强度的 增强而增大
膜各部分的极化状态一致,则Ap 在传导过程中不衰减
第三节 细胞的生物电现象与 兴奋性
一、 细胞的生物电现象及其产生机制 二 、细胞的兴奋和兴奋性
ppt课件
1
一、细胞的生物电现象及其产生机制
(一)两个重要的细胞生物电现象
• 生物电现象及历史(Galvani)。 • 细胞在安静或活动时,都有生物电现象。 • 采用微电极技术对细胞内电位变化进行研 究。 • 方法:细胞水平研究。 • 材料:微电极、电位仪、枪乌贼大神经。
2. 动作电位在不同细胞之间的传递
(1)动作电位通过缝隙连接的传递
心肌和平滑肌的细胞间存在缝隙连接。 由6个称为连接子的单体蛋白形成同源六聚体。
(2)动作电位通过神经突触或神经-肌接头 的传递(化学性传递) 42 ppt课件
二、细胞的兴奋和兴奋性
(一)细胞的兴奋和可兴奋细胞
传统生理学将细胞或组织对刺激发生的反应 称为兴奋(excitation)。 在现代生理学中,兴奋被看作是动作电位的 同义语或动作电位产生的过程。 凡是受刺激后能产生动作电位的细胞,称为 可兴奋细胞。神经细胞、肌细胞和腺细胞都 属于可兴奋细胞。
Ca2+进入末梢
2
Na+内流*、K+外流 后膜去极化(终板电位,局部兴奋)
动物生理学 第三节 细胞的生物电现象1

可兴奋细胞的兴奋性变化
绝对不应期 在兴奋发生的当时以及兴 奋后最初的一段时间,无论施 加多强的刺激都不能使细胞再 次兴奋,这段时期称为…
相对不应期
在绝对不应期之后,细胞的 兴奋性逐渐恢复,受刺激后可发 生兴奋,但刺激强度必须大于原 来的阈强度,这段时期称为…
可兴奋细胞的兴奋性变化
超常期 相对不应期过后,有的细胞 还会出现一个兴奋性轻度高于正 常水平的时期,这段时期称为…
4. 可兴奋细胞及其兴奋性
受刺激后能产生动作电位的细胞,称为可兴奋细胞(excitable cell),
主要包括神经细胞、肌细胞和腺细胞。神经细胞产生的动作电位能沿着细 胞膜传播,从而实现神经冲动的传导;肌细胞兴奋后,可以通过兴奋-收 缩偶联(excitation-contraction coupling)而发生收缩;腺细胞兴奋后,可以 通过兴奋-分泌偶联(excitation-secretion动作电位的传播
无 髓和 神肌 经细 纤胞 维
(4)动作电位的传播
有髓神经纤维
3.电紧张电位和局部反应
电紧张电位(自学) 局部反应 local response
当给予细胞一个阈下刺激时,可能在受刺激的局部细胞膜产 生一个幅度较小的去极化,但尚不能达到阈电位,因而不能触发 动作电位。这种产生于膜的局部、较小的去极化反应称为… 局部反应没有不应期,虽然一次阈下刺激引起的一个局部反 应不能引发动作电位,但如果在同一部位连续给予多个刺激,形 成的多个局部反应会在时间上相叠加,即发生时间总和,或者如 果在相邻部位同时给予多个刺激,形成的多个局部反应会在空间 上相叠加,即发生空间总和,都有可能导致膜去极化到阈电位, 从而爆发动作电位。
细胞的兴奋性和生物电现象

第三节细胞的兴奋性和生物电现象恩格斯在100多年前总结自然科学成就时指出:“地球几乎没有一种变化发生而不同时显示出电的现象”;生物体当然也不例外。
事实上,在埃及残存史前古文字中,已有电鱼击人的记载;但对于生物电现象的研究,只能是在人类对于电现象一般规律和本质有所认识以后,并随着电测量仪器的精密化而日趋深入。
目前,对健康人和患者进行心电图、脑电图、肌电图,甚至视网膜电图、胃肠电图的检查,已经成为发现、诊断和估量疾病进程的重要手段;但人体和各器官的电现象的产生,是以细胞水平的生物电现象为基础的,并且在生理学的发展历史上,生物电现象的研究是同生物组织或细胞的另一重要特性--兴奋性--的研究相伴随进行。
一、兴奋性和刺激引起兴奋的条件(一)兴奋性和兴奋含义及其变迁上世纪中后期的生理学家用两栖类动物做实验时,发现青蛙或蟾蜍的某些组织在离体的情况下,也能在一定的时间内维持和表现出某些生命现象。
这些生命现象的表现之一是:当这些组织受到一些外加的刺激因素(如机械的、化学的、温热的或适当的电刺激)作用时,可以应答性出现一些特定的反应或暂时性的功能改变。
这些活组织或细胞对外界刺激发生反应的能力,就是生理学最早对于兴奋性(excitability)的定义。
例如,把蟾蜍的腓肠肌和支配它的神经由体内剥离出来,制成神经-肌肉标本,这时如果在神经游离端一侧轻轻地触动神经,或通以适当的电流,那么在经过一个极短的潜伏期后,可以看到肌肉出现一次快速的缩短和舒张;如把刺激直接施加于肌肉,也会引起类似的收缩反应;而且只要刺激不造成组织的损伤,上述反应可以重复出现。
这就是神经和肌肉组织具有兴奋性能证明。
实际上,几乎所有活组织或细胞都具有某种程度的对外界刺激发生反应的能力,只是反应的灵敏度和反应的表现形式有所不同。
在各种动物组织中,一般以神经和肌细胞,以及某些腺细胞表现出较高的兴奋性;这就是说它们只需接受较小的程度的刺激,就能表现出某种形式的反应,因此称为可兴奋细胞或可兴奋组织。
第三节 生物电现象和兴奋性

五、兴奋在同一细胞上的传导
(一)传导机制:局部电流
静息部位:内负,外正 兴奋部位:内正,外负
---++++++++++++ +++------------
兴奋部位和静息部位存在电位差 膜外正电荷由静息部位向兴奋部位移动 膜内负电荷由兴奋部位向静息部位移动 形成局部电流
+++---+++------ ---+++---------
重症肌无力(ACh受体少) 肌无力综合征(神经末梢Ca2+通道被破坏)
4、接头前膜Ach释放↓:肉毒杆菌中毒
1、阻断ACh受体 2、抑制胆碱酯酶 3、抗体破坏ACh受体 或N末梢Ca2+通道 4、接头前膜Ach释放↓ 3
2
13
4
神经-肌接头的兴奋传递及影响因素
二、骨骼肌细胞的结构
1.肌管系统: 横管系统:T管(肌膜
② 调节和影响因素: 神经递质、体液物质、病理因素和药物
①肌膜电兴奋的传导 •②三联管处的信息传递 ③肌浆网(纵管系统)中Ca2+的释放
(二)肌丝滑行
终池膜上的钙通道开放 终池内的Ca2+进入肌浆 Ca2+与肌钙蛋白结合 原肌球蛋白位移, 暴露细肌丝上的结合位点 横桥与结合位点结合, 分解ATP释放能量
横桥摆动
牵拉细肌丝朝肌节中央滑行 肌节缩短=肌细胞收缩 按任意键 飞入横桥摆动动画
阈刺激 阈强度 阈上刺激 阈下刺激
2. 特点:• ①反应幅度随 刺激强度增加而 增大。 • ②电紧张方式 扩布。 • ③具有总和效 应:时间性和空 间性总和。。
四、细胞兴奋后 兴奋性的变化
分 期 兴奋性 与AP对应关系 机 制 绝对不应期 零 锋电位 钠通道失活 相对不应期 渐恢复 负后电位前期 钠通道部分恢复 超常期 >正常 负后电位后期 钠通道大部恢复; 离阈电位近 低常期 <正常 正后电位 膜内电位呈超极化
生物电现象和兴奋性
具有阈强度的刺激称为阈刺激。
5
2.反应
①兴奋 excitation 兴奋是指细胞在刺激下产生可传播的电变化
的现象。这种电变化称动作电位,是一种去极化 现象。
②抑制 inhibition 细胞膜电位在刺激下产生超极化现象。
升支
局部 电位 ↓ Na+通道 激活 ↓ Na+通道 失活 ↓ 升支
Na+通道激活开放,Na+内流形成AP上升支
20
动作电位的降支
降支
Na+通道
失活,同时
K+通道
激活
↓ 降支
K+通道激活开放,K+外流形成AP下降支
21
小结——动作电位形成的离子基础:
①升支:Na+内流; ②降支:K+外流; ③静息水平: Na+- K+ 泵活动,离子恢复 静息时的分布状态;
兴奋 是指细胞在刺激下产生可传播的
电变化的现象。
2
(一)刺激和反应 1.刺激 stimulation: 细胞所处的内外环境的变化。
2.反应 response: 可兴奋细胞对刺激所发生的应答。
3
1.刺激 ①刺激的形式: 化学;物理;机械等 ②刺激的三要素: 强度;持续时间;强度-时间变化率
4
③阈强度(阈值) threshold intensity 刺激的持续时间固定,引起细胞发生
或叠加
24
4.细胞一次兴奋后兴奋性的周期性变化
(即细胞的兴奋性在动作电位时段内的变化)
1)绝对不应期(相当于锋电位)
细胞在发生兴奋(峰电位)的一段短暂的时间, 兴奋部位对后面的、无论多强的刺激都不再发生兴 奋。
第二节生物电现象和兴奋性
勇敢地提出自己的观点并证明之!
一、生物电现象及其产生机制
Bioelectric events and their mechanisms (一)静息电位 Resting potential
1902年Bernstein提出静息电位的膜学说:K+平衡电位
1939年英国生理学家Hodgkin和Huxley验证了此理论
才能引起新的AP
AP的传导速度与直径和有无髓鞘有关
三、跨膜电流的研究方法
1. 电压钳制 负反馈放大器 离子流性质的确定 离子替代 阻断剂使用
电压钳实验结果
动作电位过程中Na +、 K+通透性的变化
2. 膜片与K+平衡电位
当扩散的力量与电场 的力量达到平衡时, K+的静跨膜移动为零 ——达到K+的平衡电位
Nernst公式:
[ K ]o EK 61* lg [ K ]i
K+和Na+共同参与静息电位的形成
Na+-K+泵在维持RP中的特殊作用
Na—K泵利用ATP分解提 供的能量逆浓度梯度将 3个Na+搬出细胞外将2个 K+搬入细胞内
动作电位过程中Na +、 K+通透性的变化(膜电导)
Na+-K+泵:
恢复细胞膜内外Na+和K+的浓度差
阈电位 (threshold potential)
阈下刺激只能产生局部兴奋
局部兴奋及其特性
• 局部兴奋特性: 1.不是“全或无”的, 而是随着阈下刺激的 增大而增大 2.不能在膜上作远距离 的传播,只能以电紧 张扩部的形式传播 3. 可以叠加: 时间性总和 空间性总和
细胞的兴奋性和生物电现象
细胞的兴奋性和⽣物电现象 ⼀、兴奋性和阈值 兴奋性是指机体对刺激发⽣反应(或产⽣动作电位)的能⼒或特性。
⽣理学上把能够引起机体或组织发⽣兴奋反应的最⼩刺激强度,称为阈值。
刺激强度等于阈值的刺激,称为阈刺激。
组织的兴奋性与阈值成反⽐关系,即阈值越⼩,说明组织的兴奋性越⾼。
故阈值⼤⼩可以反映兴奋性的⾼低。
⼆、静息电位和动作电位及其产⽣原理 ⽣物电现象是指⽣物细胞在⽣命活动过程中所伴随的电现象。
它与细胞兴奋的产⽣和传导有着密切关系。
细胞的⽣物电现象主要出现在细胞膜两侧,故把这种电位称为跨膜电位,主要表现为细胞在安静时所具有的静息电位和细胞在受到刺激时产⽣的动作电位。
⼼电图、脑电图等均是由⽣物电引导出来的。
(⼀)静息电位及其产⽣原理 静息电位是指细胞在安静时,存在于膜内外的电位差。
⽣物电产⽣的原理可⽤“离⼦学说”解释。
该学说认为:膜电位的产⽣是由于膜内外各种离⼦的分布不均衡,以及膜在不同情况下,对各种离⼦的通透性不同所造成的。
在静息状态下,细胞膜对K+有较⾼的通透性,⽽膜内K+⼜⾼于膜外,K+顺浓度差向膜外扩散;细胞膜对蛋⽩质负离⼦(A-)⽆通透性,膜内⼤分⼦A-被考试,⼤站收集阻⽌在膜的内侧,从⽽形成膜内为负、膜外为正的电位差。
这种电位差产⽣后,可阻⽌K+的进⼀步向外扩散,使膜内外电位差达到⼀个稳定的数值,即静息电位。
因此,静息电位主要是K+外流所形成的电-化学平衡电位。
(⼆)动作电位及其产⽣原理 细胞膜受刺激⽽兴奋时,在静息电位的基础上,发⽣⼀次扩布性的电位变化,称为动作电位。
动作电位是⼀个连续的膜电位变化过程,波形分为上升相和下降相。
细胞膜受刺激⽽兴奋时,膜上Na+通道迅速开放,由于膜外Na+浓度⾼于膜内,电位⽐膜内正,所以,Na+顺浓度差和电位差内流,使膜内的负电位迅速消失,并进⽽转为正电位。
这种膜内为正、膜外为负的电位梯度,阻⽌Na+继续内流。
当促使Na+内流的浓度梯度与阻⽌Na+内流的电位梯度相等时,Na+内流停⽌。
(整理)兽医生理学总结
一概述1、机体功能与环境(1)体液与内环境的概念动物体内所含的液体统称为体液,约占体重的60%,大部分体液约2/3存在于细胞内,称为细胞内液,还有1/3存在于细胞外称为细胞外液。
由于体内几乎所有细胞都生活在细胞外液这样一个稳定而特殊的环境中,将细胞外液称为机体的内环境。
(2)稳态的概念内环境化学成分和生理特性保持相对稳定的生理学现象称之为稳态。
2、机体功能的调节(1)机体功能调节的基本方式神经调节是最主要的一种调节形式,它的基本过程是反射,反射活动的结构基础是反射弧。
体液调节机体内某种特定的细胞,能合成并分泌某些具有信息传递功能的化学物质,经体液途径运送到特殊的靶组织、细胞,作用于相应的受体,对把组织细胞活动进行的调节。
自身调节当内外环境发生变化时,机体器官、细胞的功能自动发生的适应性反应。
(2)反射与反射弧的概念反射(Reflex)是指在中枢神经系统参与下,机体对内外环境变化所做出的规律性应答。
反射有非条件反射和条件反射反射弧是反射的结构基础和基本单位,也叫反射通路,由5部分组成,感受器、传入神经纤维、反射中枢、传出神经纤维、效应器。
二细胞的基本功能1、细胞的兴奋性和生物电现象(1)静息电位和动作电位的概念及其产生机制静息电位是指细胞未受到刺激时存在于细胞膜两侧的电位差,有时也称膜电位,表现为外正内负。
产生机制:细胞内外K+的不均衡分布和静息状态下细胞膜对K+的通透性是细胞在静息状态下保持极化状态的基础。
静息状态下,膜内的K+浓度远高于膜外,且此时膜对的K+通透性高,结果以易化扩散的形式移向膜外,但带负电荷的大分子蛋白不能通过膜而留在膜内。
故随着K+的移出,膜内电位变负而膜外变正,当K+外移造成的电场力足以对抗K+继续外移时,膜内外不再有的K+净移动,此时存在于膜内外两侧的电位即为静息电位。
因此,静息电位是的K+平衡电位,静息电位主要是K+外流所致。
动作电位是细胞受到刺激时膜电位的变化过程。
动作电位的产生是细胞兴奋的标志。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.1.3细胞兴奋时的兴奋性变化
绝对不应期(absolute refractory period):在神经接受前一个 刺激而兴奋时的一个短暂时期内, 神经的兴奋性下 降至零。此时任何刺激均归于“无效”。
相对不应期(relative refractory period):在绝对不应期之后, 神经的兴奋性有所恢复,但要引起组织的再次兴奋, 所用的刺激强度必须大于该神经的阈强度。
阈强度(threshold intensity ):一定的刺激作用时间,刺激强度低时不能引起 肌肉收缩, 达到一定水平刚刚可以引起肌肉收缩时, 这个最低限度可以引起 反应的刺激强度叫阈强度。
时间阈值:刺激强度不变,引起组织兴奋的最短作用时间
组织兴奋性高低与阈值的关系?
顶强度(maximal intensity) :对骨骼肌那样的多细胞组织,进一步提高强 度,可以看到肌肉收缩的增强,但收缩强度达到一定水平后,刺激强度再增加, 肌肉收缩也不会再加大,这个强度叫做顶强度.
1.3.1 细胞的兴奋性和刺激引起兴奋的条件
1.3.1.1 兴奋性、兴奋、可兴奋细胞
反应:当机体的周围环境或组织器官的内环境发生变化常引 起机体内部代谢过程的改变和外表活动的改变
兴奋:由安静变为活动,或由活动弱变为活动强 抑制:由活动变为相对静止,或活动强变为活动弱
刺激:能被机体感受而引起机体发生一定反应的环境变化
超常期(supernormal period):经过绝对不应期、相对不应 期,神经的兴奋性继续上升,可超过正常水平。用 低于正常阈强度的检测刺激就可引起神经第二次兴 奋的时期。
低常期(subnormal period):继超常期之后神经的兴奋性又 下降到低于正常水平的期。
1.3.2.细胞的生物电现象及其产生机制
将动作电位的进程与细胞进入兴奋后的兴奋性变化相对照:
锋电位的时间相当于细 胞的绝对不应期;
后去极化(负后电位) 期细胞大约处于相对不 应期和超常期,
后超极化(正后电位) 期则相当于低常期。
1.3.3 生物电现象产生的机制
膜-离子学说
★细胞内液和细胞外液中各种带电离子的浓度显著不同 ★ 细胞膜不同功能状态对物质(离子)通透性不同 ★这种离子分布的不均匀的维持靠Na+泵的活动。
(a)
Open (activated)
From threshold to peak potential (–50 mV to +30 mV) (b)
激活门
Intracellular
fluid (ICF)
细胞内液
Rapid opening triggered at threshold
Slow closing triggered at threshold
Closed but capable of opening
At resting potential (–70 mV)
生物电的发现 细胞水平生物电现象的两种表现形式:
静息电位 动作电位
静息电位 resting membrane potential
细胞在安静状态时,存在于细胞膜内、外两侧的电位差,也 称休止电位or膜电位
静息时,细胞膜内带负电荷 膜外带正电荷,这种内负外 正的现象叫极化现象
枪乌贼大神经纤维 蟹轴突 哺乳动物神经和肌肉细胞
1.3.1.2 刺激引起兴奋的条件
(实验课讲)
➢组织细胞要兴奋,决定于两个方面: 1、机能状态:机能状态好的,才能引起兴奋 2、刺激的条件
1 ) 刺激的强度 2)刺激作用时间 3)强度时间变化率
以一肌肉组织为例(腓肠肌)
阈刺激:引起组织兴奋的最小强度的刺激 阈上刺激:大于阈值的刺激 阈下刺激:小于阈值的刺激
某些组织细胞内外离子分布
(1)静息电位和K+平衡电位 (K+ equilibrium potential)
静息电位主要是由细胞膜内外K+的分布和膜对K+的通透性所决定的。 静息时细胞膜对K+的通透性很高,对Na+和Cl-的通透性极低,可视为0 静息电位的值取决于K+内外浓度差,相当于K+的平衡电位。 根据Nernst方程,K+的平衡电位(Ek)在27oC时,以膜外电位为0,膜内电 位应为:
ቤተ መጻሕፍቲ ባይዱ 后电位
在锋电位之后还会出现一个较长的、微弱的电位 变化时期叫后电位(after potential)。后电位是由缓 慢的复极化过程和低幅的超极化过程组成,分别称为 后去极化(after depolarization)或负后电位 (negative afterpotential)后超极化(after hypolarization)或正后电位(positive afterpotential)。
细胞外[K+] Ek(mv)=59.5log ——————
细胞内[K+]
膜安静时K+的外流是由许多通道实现的-----非门控K+通道
(2)动作电位和电压依赖式离子通道
电压门控Na+通道
细胞外液
Na +
Extracellular
Na +
Na +
fluid (ECF)
Plasma membrane
失活门
-50-----70mv -82mv -70---- -90mv
复极化
超极化
去极化
Fig. 4-1, p.104
动作电位 action potential
当可兴奋细胞受到刺激引起兴奋时,细胞膜在 原来静息电位基础上发生一次迅速而短暂的电位波 动,这种电位波动可沿着膜向周围扩布,称为~
Fig. 4-6, p.108
兴奋性:活组织或细胞对刺激发生反应的特性,又称 应激性(早期生理学概念) 区别:兴奋与兴奋性
神经、肌肉、腺体三种组织的细胞的兴奋性比较 高, 被称为可兴奋组织或可兴奋细胞。
近代生理学中, 更准确地定义: 兴奋性为细胞受刺激时产生动作电位的能力。 兴奋则指产生动作电位的过程或是动作电位的同意语。 组织产生了动作电位就是产生了兴奋(简称兴奋)。 在受到刺激时能产生动作电位的组织才称为可兴奋组织。
变化过程
去极化:组织受刺激后, 受刺激部位原有的休止 电位消失
反极化:继去极化之 后,转为膜内为正, 膜外为负的现象
复极化:恢复膜内负 外正的过程,兴奋消 失,恢复至静息状态
锋电位 动作电位中,快速去极和复极化的部分,其变化
幅度很大,称为锋电位(spike或脉冲impulse),是 动作电位的主要部分。