高一数学具体的不等式试题答案及解析
高一数学具体的不等式试题答案及解析

高一数学具体的不等式试题答案及解析1.记关于x的不等式的解集为P,不等式的解集为Q.(1)若a=3,求P(2)若求正数a的取值范围【答案】(1)(2)【解析】思路分析:(1)解得(2)化简由得得到。
解:(1)由得(2)由得所以,即的取值范围是【考点】集合的概念,集合的运算,简单不等式的解法。
点评:中档题,为进行集合的运算,首先化简集合,明确集合中的元素是什么。
2.不等式的解集是【答案】【解析】等价于,所以,,故不等式的解集是。
【考点】简单分式不等式解法点评:简单题,分式不等式解法,主要是转化成整式不等式求解。
3.不等式的解集是 .【答案】【解析】根据题意,由于不等式,故可知不等式的解集为【考点】一元二次不等式点评:主要是考查了一元二次不等式的求解,属于基础题。
4.若,则下列不等式:①;②;③;④中,正确的有( )A.1个B.2个C.3个D.4个【答案】C【解析】取,可以验证①②③都是正确的,所以正确的有3个.【考点】本小题主要考查不等式的性质的应用.点评:遇到考查不等式性质的题目时,要注意特殊值法的应用,这种方法一般情况下简单有效.5.函数在上满足,则的取值范围是()A.B.C.D.【解析】根据题意,当a=0时,显然成立,故排除答案B,C,对于当时,函数为二次函数,那么使得在实数域上函数值小于零,则判别式小于零,开口向下可知得到,解得,综上可知为,选D.【考点】不等式点评:主要是考查了函数性质的运用,属于基础题。
6.不等式的解集是。
【答案】(-2,-1/3)【解析】根据题意,由于,故可知答案为(-2,-1/3)【考点】分式不等式点评:主要是考查了不等式的求解,移项通分合并是解不等式的常用的变形方法,属于基础题。
7.已知关于的不等式的解集是,则 .【答案】【解析】因为,关于的不等式的解集是,所以,a=。
【考点】一元二次不等式的解集。
点评:简单题,一元二次不等式的解集,可借助于相应二次函数的图象、一元二次方程的根写出。
高一数学不等式试题答案及解析

高一数学不等式试题答案及解析1.定义,设实数满足约束条件则的取值范围是()A.[-5,8]B.[-5,6]C.[-3,6]D.[-8,8]【答案】A【解析】分析:由题意可得约束条件所满足的可行域如图所示的正方形ABCD,由Z=当x+2y<0时的可行域即为图中的四边形MCDN,Z=2x-y在N(-2,1)处取得最小值-5,在B (2,-2)处取得最大值6;当x+2y≥0时的可行域为图中的四边形ABMN,Z=3x+y在C(2,2)处取得最小值8,从而可求Z的取值范围解答:解:由题意可得约束条件所满足的可行域如图所示的正方形ABCD由Z=当x+2y<0时的可行域即为图中的四边形MCDN,Z=2x-y在N(-2,1)处取得最小值-5,在B (2,-2)处取得最大值6当x+2y≥0时的可行域为图中的四边形ABMN,Z=3x+y在C(2,2)处取得最小值8∴-5≤Z≤8故选:A点评:本题主要考查了简单的线性规划,解题的关键是要根据题目中的定义确定目标函数及可行域的条件以及,属于知识的综合应用题.2.下列命题不正确的是A.B.C.D.【答案】D【解析】略3.目标函数,变量满足,则有()A.B.C.无最大值D.既无最大值,也无最小值K^S*5U.C#O【答案】A【解析】略4. 2010年4月14日清晨我国青海省玉树县发生里氏7.1级强震。
国家抗震救灾指挥部迅速成立并调拨一批救灾物资从距离玉树县400千米的某地A运往玉树县,这批救灾物资随17辆车以千米/小时的速度匀速直达灾区,为了安全起见,每两辆车之间的间距不得小于千米。
设这批救灾物资全部运送到灾区(不考虑车辆的长度)所需要的时间为小时。
求这批救灾物资全部运送到灾区所需要的最短时间,并指出此时车辆行驶的速度。
【答案】(千米/小时)时,取得最小值为8(小时)【解析】由题可得关系式为从而当且仅当,即(千米/小时)时,取得最小值为8(小时)5.(1)已知x<,求函数y=4x-2+的最大值;(2)已知x>0,y>0且=1,求x+y的最小值.【答案】(1)1;(2)16【解析】本题主要考察函数万能公式的运用,在第一小问中函数化简须与分式分母相对应,在运用万能公式时,要注意不要将符号弄反,解不等式即可求出最大值。
高一数学不等式解题技巧精析及针对练习题(含答案)

1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”) 若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”)4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注意:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用例:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x 2 ≥23x 2·12x 2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x)≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。
高一数学不等式试题答案及解析

高一数学不等式试题答案及解析1.已知a>b, c>d,则()A.ac>bd B.C.D.【答案】D【解析】略2.设,且,则()A.B.C.D.【答案】D【解析】由题意,,又,则,所以,则,,由且,可得,故3.(1)已知x<,求函数y=4x-2+的最大值;(2)已知x>0,y>0且=1,求x+y的最小值.【答案】(1)1;(2)16【解析】本题主要考察函数万能公式的运用,在第一小问中函数化简须与分式分母相对应,在运用万能公式时,要注意不要将符号弄反,解不等式即可求出最大值。
在第二小问中,将条件乘入到所求结果中去,再将式子进行展开,利用万能公式,解不等式即可求出最小值。
试题解析:(1)x<,∴4x-5<0.∴y=4x-5++3=-[(5-4x)+]+3=1.≤-2+3=1,ymax(2)∵x>0,y>0且=1,∴x+y=(x+y)=10+≥10+2=16,即x+y的最小值为16【考点】函数万能关系不等式4.(12分)已知函数y=的定义域为R.(1)求a的取值范围.(2)若函数的最小值为,解关于x的不等式x2﹣x﹣a2﹣a<0.【答案】(1);(2)【解析】(1)定义域为,指被开方数恒大于等于0,讨论两种情况当或是两种情况;(2)函数的最小值,指被开方数为抛物线时的顶点函数值是,所以先根据顶点坐标求参数,然后将参数代入二次不等式,解不等式.试题解析:(1)∵函数y=的定义域为R,∴a=0时,满足题意;a>0时,△=4a2﹣4a≤0,解得0<a≤1;∴a的取值范围是{a|0≤a≤1};(2)∵函数y的最小值为,∴≥, a∈[0,1];∴ax2+2ax+1≥;当a=0时,不满足条件;当1≥a>0时,ax2+2ax+1的最小值是=,∴a=;∴不等式x2﹣x﹣a2﹣a<0可化为x2﹣x﹣<0,解得﹣<x<;∴不等式的解集是{x|﹣<x<}.【考点】1.二次函数;2.二次函数的性质;3.解二次不等式.5.已知实数满足约束条件则的最大值是.【答案】9【解析】作出可行域及目标函数线如图,平移目标函数线使之经过可行域,当目标函数线过点时目标函数线的纵截距最大此时也最大.,所以.【考点】线性规划.6.下列结论正确的是A.若,则B.若,则C.若则D.若,则【答案】D【解析】对于A若c<0则错,对于B,若A,B都是负数则错,对于C,只有两个同向且全正的不等式才恒成立,故只有D正确.【考点】不等式的基本性质.7.(本小题满分8分)已知函数.(Ⅰ)当时,解关于的不等式;(Ⅱ)当时,解关于的不等式.【答案】(Ⅰ)(Ⅱ)当时,,则不等式的解集为,或;当时,不等式化为,此时不等式解集为;当时,,则不等式的解集为,或【解析】第一问考查了一元二次不等式的解法,第二问首先对二次三项式因式分解得到,再分类讨论两根的大小得到不等式的解集.试题解析:(Ⅰ)当时,不等式可化为,即,解得,所以不等式的解集为.(Ⅱ)当时,不等式可化为,即,则,当时,,则不等式的解集为,或;当时,不等式化为,此时不等式解集为;当时,,则不等式的解集为,或.【考点】一元二次不等式的解法,分类讨论的思想.8.已知变量,满足则的最小值为__________.【答案】【解析】如图,当目标函数过点时,函数取得最小值,,目标函数的最小值是.【考点】线性规划9.已知,,,则的最小值是_________.【答案】【解析】∵,,,∴由基本不等式可得≥2=2当且仅当时,取最小值2.故答案为:2【考点】基本不等式10.若实数x,y,且x+y=5,则的最小值是()A.10B.C.D.【答案】D【解析】,,当且仅当即时取得.故D正确.【考点】基本不等式.11.若关于的不等式在区间上有解,则实数的取值范围为()A.B.C.(1,+∞)D.【答案】A【解析】因为,则不等式可化为:,设,由题意得只需,因为函数为区间上的减函数,所以,所以选A【考点】1.分离参数;2.存在性问题;12.若,且,则的最小值是()A.B.C.2D.3【答案】B【解析】由已知条件可得(b=c时等号成立),所以,故选B【考点】不等式和最值计算综合问题13.若,则()A.B.C.D.【答案】C【解析】不等式的两边同时乘以负数,不等号方向改变,故A错,B错,C错,只有B对,故选B.【考点】不等式的基本性质.14.下列函数的最小值为2的是()A.B.C.D.【答案】D【解析】,在其定义域上没有最小值,因为自变量的区间右端点是开的而导致取不到最小值,利用均值不等式取不到最小值,故只能选D.【考点】对勾函数与均值不等式.15.已知,则的最大值是.【答案】3【解析】求解该不等式组在第一象限及与坐标轴的交点坐标是(0,2),(1,4),(5,0),(0,0),分别代入目标函数z=-x+y,得2,3,-5,0比较得最大值是3,当且仅当x=1,y=4时取得最大.【考点】线性规划的应用.16.(12分)已知函数,(1)当时,解不等式;(2)比较的大小;(3)解关于x的不等式.【答案】(1);(2)详见解析;(3)详见解析【解析】(1)当时,将不等式分解因式,得到解集;(2)比较大小,可以做差,然后通分,分解因式,然后讨论的范围,比较两数的大小;(3)第一步,先分解因式,第二步,根据上一问的结果得到与的大小关系,得到解集.试题解析:解:(1)当时,有不等式,∴,∴不等式的解集为:;(2)∵且∴当时,有当时,有当时,;(3)∵不等式当时,有,∴不等式的解集为;当时,有,∴不等式的解集为;当时,不等式的解集为.【考点】1.解二次不等式;2.比较大小.17.(本题满分12分)已知函数,的解集为(1)求,的值;(2)为何值时,的解集为R.【答案】(1);(2)【解析】(1)不等式的解集的端点就是其对应方程的实根,所以代入,解,然后根据韦达定理求;(2)代入上一问的结果,问题转化为解集为,所以讨论两种情况,和.试题解析:解(1)由已知得是方程的两根,的解集为(2)由(1)得解集为,当时,不等式解集为成立,当时,由(1)(2)可得.【考点】1.二次不等式的解法;2.二次不等式恒成立;3.韦达定理.18.不等式的解集是.【答案】【解析】根据解一元二次不等式得口诀“大于取两边,小于取中间”可得不等式的解集是【考点】解一元二次不等式19.关于不等式的解集为,则等于()A.B.11C.D.【答案】C【解析】二次不等式的解集的端点值就是二次方程的实根,所以根据韦达定理,,解得,,所以【考点】1.一元二次不等式的解法;2.韦达定理.20.(共10分)(1)解不等式:;(2)解关于的不等式:【答案】(1);(2)详见解析.【解析】(1)将此分式不等式转化为相乘形式,即,即,然后按二次不等式求解;(2)解此类型的含参二次不等式,第一步,先分解因式,第二步,讨论两根的大小关系,根据根的大小关系,写出不等式的解集.试题解析:解:(1)原不等式等价于故原不等式的解集为(2)原不等式可化为综上:不等式的解集为:【考点】1.解分式不等式;2.解含参二次不等式.21.已知,则的最小值是()A.10B.C.12D.20【答案】C【解析】,,当且仅当时取得等号.【考点】基本不等式.22.若,则下列正确的是()A.B.C.D.【答案】D【解析】A.若,则不成立,所以错误;B.若,则不成立,所以错误;C.若,则不成立,所以错误;D因为,不等式两边同时减去同一个数,不等号方向不变,所以正确,故选择D【考点】不等式性质23.不等式的解集是____________________.【答案】【解析】不等式变形为:,分解因式可得:,所以解集为【考点】解一元二次不等式24.函数f(x)=,若f(x0)=3,则x的值是()A.1B.C.D.【答案】D【解析】f(x)=3,所以,舍去,或,其中舍去,或,舍去,综上,故选D【考点】分段函数求值25.三个数,,的大小关系为()A.B.C.D.【答案】C【解析】,所以有,故选C.【考点】指数的大小比较.26.若,,且恒成立,则的最小值是()A.B.C.D.【答案】B【解析】分离参数得恒成立,两边平方得,而,当且仅当时等号成立,所以,故选B.【考点】1、不等式性质;2、均值不等式;3、不等式的恒成立.【方法点晴】本题主要考查的是含参不等式的恒成立问题,属于中档题题.首先利用不等式的性质将不等式变形分离出常数,转化为求的最大值问题,再平方后运用基本不等式求其最大值,注意分析等号能否取得.27.若0<a<1,且logba<1,则()A.0<b<a B.0<a<b C.0<a<b<1D.0<b<a或b>1【答案】D【解析】利用对数函数的单调性和特殊点,分b>1和0<b<1两种情况,分别求得a、b的关系,从而得出结论.解:当b>1时,∵logb a<1=logbb,∴a<b,即b>1成立.当0<b<1时,∵logb a<1=logbb,∴0<b<a<1,即0<b<a,故选D.【考点】对数函数的单调性与特殊点.28.设,则的大小关系A.B.C.D.【答案】B【解析】在同一直角坐标系中画出函数:的图像(略),由图像可知.故选B.【考点】指数函数和对数函数的图像和性质.29.若关于x的不等式(2x-1)2<ax2的解集中整数恰好有3个,则实数a的取值范围是__________.【答案】【解析】关于x的不等式(2x-1)2<ax2等价于,其中且有,故有,不等式的解集为,所以解集中一定含有1,2,3,可得,所以,解得.【考点】含参数的一元二次方程的解法.30.下列不等式中,解集为的是()A.B.C.D.【答案】D【解析】A.,解集为;B.解集为;C.解集为;解集为,选D【考点】不等式的解集31.下列不等式中,解集为的是()A.B.C.D.【答案】D【解析】A.,解集为;B.解集为;C.解集为;解集为,选D【考点】不等式的解集32.已知实数满足,设,则的取值范围是()A.B.C.D.【答案】D【解析】设且,则,令,所以,当时上述不等式中的等号成立,所以.【考点】基本不等式的应用.【方法点晴】本题主要考查了基本不等式的应用,其中正确构造基本不等式的应用条件是使用基本不等式的基础和关键,试题思维量大,运算繁琐,属于难题,着重考查了构造思想和转化与化归思想的应用,本题的解答中,设且,得,即可利用基本不等式,可求得的值,即可求解取值范围.33.下列关于的不等式解集是实数集R的为()A.B.C.D.【答案】C【解析】A中的解集是,B中的解集是,C中的解集是R,D中的解集是,故答案为C.【考点】不等式的解法.34.已知,那么下列不等式中正确的是()A.B.C.D.【答案】D【解析】由题根据不等式的性质,A,B,C选项,数的正负不明,错误;而选项D,无论取任何数都成立。
高一数学基本不等式试题答案及解析

高一数学基本不等式试题答案及解析1.下列各函数中,最小值为的是()A.B.,C.D.【答案】D【解析】A.可取时,的最小值不可能是2;B.,,当时,的最小值不可能是2;C.由,的最小值大于2;D.由,当且仅当即时等号成立,的最小值为2.故选D.【考点】均值不等式的应用.2.设且,则的最小值为________.【答案】4【解析】由,当且仅当时等号成立.故答案为4.【考点】均值不等式的应用.3.已知都是正实数,函数的图象过(0,1)点,则的最小值是()A.B.C.D.【答案】【解析】由于函数的图象过(0,1)点,,代入得.【考点】基本不等式的应用.4.当时,函数的最小值为 .【答案】6【解析】由于,所以函数【考点】基本不等式的应用.5.若直线始终平分圆的周长,则的最小值为 .【答案】【解析】由得,则圆心坐标为,∵直线平分圆的周长,即直线过圆心,∴,∴,当且仅当,即时取等号,∴的最小值为.【考点】1、直线与圆的位置关系;2、基本不等式.6.△ABC满足,∠BAC=30°,设M是△ABC内的一点(不在边界上),定义f(M)=(x,y,z),其中分别表示△MBC,△MCA,△MAB的面积,若,则的最小值为__________________【答案】18【解析】∵,∠BAC=30°,∴,∴=4,∴==1,由知,=,∴=1-=,∴= =≥=18.【考点】平面向量数量积;三角形面积公式;新概念理解;基本不等式7.若正数,满足,则的最小值是()A.B.C.5D.6【答案】C【解析】由已知得,所以时等号成立)。
【考点】基本不等式在求最值中的应用,注意一正二定三相等8.对任意正数x,y不等式恒成立,则实数的最小值是 ()A.1B.2C.3D.4【答案】A【解析】∵,两边同除,得,要使不等式恒成立,则,,∴,∴k的最小值是1.【考点】基本不等式.9.设实数满足:,则取得最小值时,.【答案】121【解析】∵,∴,上述等号成立的条件依次为:,∴a=1,b=c=10,d=100,a+b+c+d=121.【考点】1、基本不等式;2、不等式的放缩.10.若两个正实数x,y满足+=1,并且2x+y>m恒成立,则实数m的取值范围是.【答案】【解析】因为且,所以,当且仅当即时取。
高一数学不等式的性质试题答案及解析

高一数学不等式的性质试题答案及解析1.若则下列不等式成立的是()A.B.C.D.【答案】D【解析】由题意可得又有基本不等式可得,且,对不四个选项可得.【考点】基本不等式;不等关系与不等式.2.如果,则下列各式正确的是()A.B.C.D.【答案】D【解析】由于,不等式两边同时乘以,得,其他三项不一定正确,符号不确定,,.【考点】不等式的大小判定.3.,,则与的大小关系为.【答案】【解析】作差法比较大小,,,,所以p-q,【考点】利用不等式比较大小4.下列结论正确的是()A.若ac>bc,则a>b B.若a2>b2,则a>bC.若a>b,c<0,则 a+c<b+c D.若<,则a<b【答案】D【解析】的正负不定,故A错;的正负不定,故B错;不等式两边加上同一个数,不等号方向不变,故C错。
【考点】不等式基本性质的应用。
5.已知不等式的解集是.(1)若,求的取值范围;(2)若,求不等式的解集.【答案】(1)(2)【解析】(1)由,说明元素2满足不等式,代入即可求出的取值范围;(2)由,是方程的两个根,由韦达定理即可求出,代入原不等式解一元二次不等式即可;(1)∵,∴,∴(2)∵,∴是方程的两个根,∴由韦达定理得解得∴不等式即为:其解集为.【考点】一元二次不等式的解法6.设,则不等式的解集为()A.B.C.D.【答案】A【解析】当时,(舍去);当时,;综上所述,不等式的解集为.【考点】不等式的解法、等价转换思想.7.如果, 设, 那么()A.B.C.D.M与N的大小关系随t的变化而变化【答案】A【解析】,已知,所以,.【考点】比较大小.8.如果且,那么下列不等式中不一定成立的是( )A.B.C.D.【答案】D【解析】A是不等式两边同乘-1,正确;B,,C,由,得所以正确,D,不等式两边同乘,但不知道的符号,不一定成立.【考点】不等式的基本性质.9.若为实数,则下列命题正确的是()A.若,则B.若,则C.若,则D.若,则【答案】B【解析】试题分析. A 若,则不成立;C 对两边都除以,可得,C不成立;D令则有所以D不成立,故选B.【考点】不等式的基本性质.10.函数,的值域为_________.【答案】【解析】,又,则,,可知.所以.【考点】本题主要考查分离变量法求函数的值域,不等式的性质.11.若,则下列不等式一定不成立的是()A.B.C.D.【答案】C【解析】根据题意,由于,则根据倒数性质可知成立,对于对数函数性质,底数大于1是递增函数,故成立,对于D, 根据作差法可知成立,而对于C,应该是大于等于号,即左边大于等于右边,故选C。
高一数学具体的不等式试题答案及解析
高一数学具体的不等式试题答案及解析1.不等式的解集是A.B.C.D.【答案】D【解析】:因为方程的两个根为,所以不等式的解集是。
故选D。
【考点】一元二次不等式的解法.点评:熟练掌握一元二次不等式的解法和实数的性质是解题的关键.2.不等式的解集是【答案】【解析】等价于,所以,,故不等式的解集是。
【考点】简单分式不等式解法点评:简单题,分式不等式解法,主要是转化成整式不等式求解。
3.不等式≥0的解集 .【答案】R【解析】根据题意,不等式≥0等价于,那么根据绝对值的几何意义可知,任意实数的绝对值都大于等于零,故可知解集为R.【考点】一元二次不等式的解集点评:主要是考查了一元二次不等式的解法的运用,属于基础题。
4.函数在上满足,则的取值范围是()A.B.C.D.【答案】D【解析】根据题意,当a=0时,显然成立,故排除答案B,C,对于当时,函数为二次函数,那么使得在实数域上函数值小于零,则判别式小于零,开口向下可知得到,解得,综上可知为,选D.【考点】不等式点评:主要是考查了函数性质的运用,属于基础题。
5.已知存在实数使得不等式成立,则实数的取值范围是 .【答案】【解析】解:由题意借助数轴,|x-3|-|x+2|∈[-5,5],∵存在实数x使得不等式|x-3|-|x+2|≥|3a-1|成立,∴5≥|3a-1|,解得-5≤3a-1≤5,即-≤a≤2,故答案为[-,2]【考点】绝对值不等式点评:本题考查绝对值不等式,求解本题的关键是正确理解题意,区分存在问题与恒成立问题的区别,本题是一个存在问题,解决的是有的问题,故取|3a-1|≤5,即小于等于左边的最大值即满足题意,本题是一个易错题,主要错误就是出在把存在问题当成恒成立问题求解,因思维错误导致错误6.若不等式kx2-2x+6k<0(k≠0)。
(1)若不等式解集是{x|x<-3或x>-2},求k的值;(2)若不等式解集是R,求k的取值。
【答案】(1);(2)【解析】解:∵不等式kx2-2x+6k<0(k≠0),不等式的解集是{x|x<-3或x>-2},∴根据二次函数与方程的关系,得:k<0,且-3,-2为关于x的方程kx2-2x+6k=0的两个实数根,据韦达定理有-3+(-2)=,(2)根据题意,由于k=0,不符合题意舍去,当k不为零时,则根据开口向下,判别式小于零可知,4-24k<0,k<0得到取值范围是【考点】二次函数与不等式点评:本题考查了函数恒成立问题,着重考查二次函数的图象与性质,同时考查了分类讨论思想的运用和转化思想,易错点在于忽略当k=0的情形,属于中档题7.已知关于的不等式的解集是,则 .【答案】【解析】因为,关于的不等式的解集是,所以,a=。
高一数学不等式试题
高一数学不等式试题1.记不等式组所表示的平面区域为若直线与有公共点,则的取值范围是 .【答案】【解析】满足约束条件的平面区域如图所示, 过定点,故当过点时,得到,当过点时,得到.又因为直线与平面区域有公共点,故.【考点】线性规划.【易错点睛】本题主要考查了线性规划,直线的方程等知识点.线性规划求解中注意的事项:(1)线性规划问题中,正确画出不等式组表示的平面区域是解题的基础.(2)目标函数的意义,有的可以用直线在y轴上的截距来表示,还有的可以用两点连线的斜率、两点间的距离或点到直线的距离来表示.(3)线性目标函数的最值一般在可行域的顶点或边界上取得,特别地对最优整数解可视情况而定.2.设变量x,y满足约束条件则目标函数z=2x+3y的最小值为( )A.6B.7C.8D.23【答案】B【解析】作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=2x+3y 对应的直线进行平移,可得当x=2,y=1时,z=2x+3y取得最小值为7.解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(2,1),B(1,2),C(4,5)设z=F(x,y)=2x+3y,将直线l:z=2x+3y进行平移,当l经过点A时,目标函数z达到最小值∴z=F(2,1)=7最小值故选:B【考点】简单线性规划.3.若变量x,y满足约束条件且z=2x+y的最大值和最小值分别为m和n,则m-n=A.5B.6C.7D.8【答案】B【解析】作出不等式组对应的平面区域,利用z的几何意义,进行平移即可得到结论.解:作出不等式组对应的平面区域如图:由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A,直线y=﹣2x+z的截距最小,此时z最小,由,解得,即A(﹣1,﹣1),此时z=﹣2﹣1=﹣3,此时n=﹣3,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B,直线y=﹣2x+z的截距最大,此时z最大,由,解得,即B(2,﹣1),此时z=2×2﹣1=3,即m=3,则m﹣n=3﹣(﹣3)=6,故选:B.【考点】简单线性规划.4.设,若,则的最小值为__________.【答案】4【解析】,当且仅当时取等号,所以的最小值为4.【考点】均值定理.5.设满足约束条件,若目标函数的最大值为6,则的最小值为()A.B.C.D.【答案】D【解析】由题设可作出可行域图形,如图所示,因为,易知在点处,目标函数有最大值,即,因此,当且仅当时等号成立.故正确答案为D.【考点】1.简单线性规划;2.基本不等式.6.设函数,已知不等式的解集为.(1)若不等式的解集为,求实数的取值范围;(2)若对任意的实数都成立,求实数的取值范围.【答案】(1);(2).【解析】(1)首先根据不等式的解集求得的值,然后求出函数的最小值,从而求的取值范围得;(2)首先将问题转化为,然后根据函数的单调性求得的取值范围.试题解析:已知,解为1,3,则(1),所以,(2)恒成立,因为在单调递增,最小值在时取到,最小值为,故.【考点】1、不等式恒成立问题;2、函数的单调性.【方法点睛】在给定自变量的取值范围时,解有关不等式问题时,往往采用分离变量或适当变形,或变换主元,或构造函数,再利用函数的单调或基本不等式进行求解,在解答时,一定要注意观察所给不等式的形式和结构,选取合适的方法去解答.7.如果实数满足条件,那么的最大值为()A.B.C.D.【答案】B【解析】如图,建立可行域:目标函数,当过点时,函数取得最大值,最大值是,故选B.【考点】线性规划8.若实数满足,则的最小值为__________.【答案】1【解析】不等式对应的可行域为直线围成的三角形及其内部,顶点为,当过点时取得最小值1【考点】线性规划问题9.关于的不等式的解集为,且,则()A.B.C.D.【答案】A【解析】原不等式等价于,,所以不等式的解集为:,所以,解得,故选A.【考点】一元二次不等式10.咖啡馆配制两种饮料,甲种饮料每杯分别用奶粉、咖啡、糖9g、4g、3g;乙种饮料每杯分别用奶粉、咖啡、糖4g、5g、10g,已知每天使用原料限额为奶粉3600g,咖啡2000g,糖3000g,如果甲种饮料每杯能获利0.7元,乙种饮料每杯能获利1.2元,每天在原料使用的限额内,饮料能全部售完,问咖啡馆每天怎样安排配制饮料获利最大?【答案】咖啡馆每天配制甲种饮料200杯,乙种饮料240杯,能使咖啡馆获利最大【解析】本题属于线性规则的题目.首先设咖啡馆每天配制甲种饮料杯,乙种饮料杯,获利元.建立目标函数,求出x,y的线性约束条件,作出可行域,找到最优解.按照这样的步骤求解即可设咖啡馆每天配制甲种饮料杯,乙种饮料杯,获利元.则…………(6分)如图所示,在点处,即时(元)…………………(12分)答:咖啡馆每天配制甲种饮料200杯,乙种饮料240杯,能使咖啡馆获利最大。
高一数学用数学归纳法证明不等式举例试题
高一数学用数学归纳法证明不等式举例试题1.用数学归纳法证明“1+++…+<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是()A.2k﹣1B.2k﹣1C.2k D.2k+1【答案】C【解析】考查不等式左侧的特点,分母数字逐渐增加1,末项为,然后判断n=k+1时增加的项数即可.解:左边的特点:分母逐渐增加1,末项为;由n=k,末项为到n=k+1,末项为=,∴应增加的项数为2k.故选C.点评:本题是基础题,考查数学归纳法证明问题的第二步,项数增加多少问题,注意表达式的形式特点,找出规律是关键.2.用数学归纳法证明不等式成立,起始值至少应取为()A.7B.8C.9D.10【答案】B【解析】先求左边的和,再进行验证,从而可解.解:左边的和为,当n=8时,和为,故选B.点评:本题主要考查数学归纳法,起始值的验证,求解轭关键是发现左边的规律,从而解决问题.3.用数学归纳法证明2n≥n2(n∈N,n≥1),则第一步应验证.【答案】n=1时,2≥1成立.【解析】根据数学归纳法的步骤,结合本题的题意,是要验证n=1时,命题成立;将n=1代入不等式,可得答案.解:根据数学归纳法的步骤,首先要验证当n取第一个值时命题成立;结合本题,要验证n=1时,左=21=2,右=12=1,因为2>1成立,所以2n≥n2成立.故答案为:n=1时,2≥1成立.点评:本题考查数学归纳法的运用,解此类问题时,注意n的取值范围.4.用数学归纳法证明等式时,第一步验证n=1时,左边应取的项是【答案】1+2+3+4【解析】本题考查的知识点是数学归纳法的步骤,由等式,当n=1时,n+3=4,而等式左边起始为1的连续的正整数的和,由此易得答案.解:在等式中,当n=1时,n+3=4,而等式左边起始为1的连续的正整数的和,故n=1时,等式左边的项为:1+2+3+4故答案为:1+2+3+4点评:在数学归纳法中,第一步是论证n=1时结论是否成立,此时一定要分析等式两边的项,不能多写也不能少写,否则会引起答案的错误.5.设,则f(k+1)﹣f(k)= .【答案】.【解析】把函数中的n换成k+1,k,再作差后即得所求.解:当n=k+1时,,当n=k时,,则f(k+1)﹣f(k)=﹣()=,故答案为:.点评:本题考查函数的值、数学归纳法,体现了换元的数学思想,注意式子的结构特征,特别是首项和末项.6.(2011•河池模拟)已知正项数列{an }满足:a1=1,且(n+1)an+12=nan2﹣an+1an,n∈N*(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数列{}的前n项积为Tn ,求证:当x>0时,对任意的正整数n都有Tn>.【答案】(Ⅰ)(Ⅱ)见解析【解析】(I)先对(n+1)an+12﹣nan2+an+1an=0进行化简得到,再由累乘法可得到数列的通项公式是an.(II)根据(I)求出Tn,利用数学归纳法证明即可,证明过程中注意数学归纳法的步骤和导数的灵活应用.解:(I)∵(n+1)an+12﹣nan2+an+1an=0∴(另解﹣an不合题意舍去),∴,即,(II)由(I)得:Tn=n!,当x>0时,Tn>等价于x n<n!e x①以下用数学归纳法证明:①当n=1时,要证x<e x,令g(x)=e x﹣x,则g′(x)=e x﹣1>0,∴g(x)>g(0)=1>0,即x<e x成立;②假设当n=k时,①式成立,即x k<k!e x,那么当n=k+1时,要证x k+1<(k+1)!e x也成立,令h(x)=(k+1)!e x﹣x k+1,则h′(x)=(k+1)!e x﹣((k+1)x k=(k+1)(k!e x﹣x k),由归纳假设得:h′(x)>0,∴h(x)>h(0)=(k+1)!>0,即x k+1<(k+1)!e x也成立,由①②即数学归纳法原理得原命题成立.点评:本题主要考查数列递推关系式的应用和累乘法.求数列通项公式的一般方法﹣﹣公式法、累加法、累乘法、构造法等要熟练掌握,属中档题.7.(2008•武汉模拟)在数列|an |中,a1=t﹣1,其中t>0且t≠1,且满足关系式:an+1(an+t n﹣1)=an(t n+1﹣1),(n∈N+)(1)猜想出数列|an|的通项公式并用数学归纳法证明之;(2)求证:an+1>an,(n∈N+).【答案】见解析【解析】(1)由原递推式得到,再写出前几项,从而猜想数列|an|的通项公式,进而利用数学归纳法证明.(2)利用(1)的结论,作差进行比较,故可得证.解:(1)由原递推式得到,,=猜想得到…(3分)下面用数学归纳法证明10当n=1时 a1=t﹣1 满足条件20假设当n=k时,则,∴,∴即当n=k+1时,原命题也成立.由10、20知…(7分)(2)==而nt n﹣(t n﹣1+t n﹣2+…+t+1)=(t n﹣t n﹣1)+(t n﹣t n﹣2)+…+(t n﹣t)+(t n﹣1)=t n﹣1(t﹣1)+t n﹣2(t2﹣1)+t n﹣3(t3﹣1)+…+t(t n﹣1﹣1)+(t n﹣1)=故t>0,且t≠1时有an+1﹣an>0,即an+1>an…(13分)点评:本题考查数列的递推公式,用数学归纳法证明等式成立.证明当n=k+1时命题也成立,是解题的难点.8.(2005•辽宁)已知函数f(x)=(x≠﹣1).设数列{an }满足a1=1,an+1=f(an),数列{bn}满足bn =|an﹣|,Sn=b1+b2+…+bn(n∈N*).(Ⅰ)用数学归纳法证明bn≤;(Ⅱ)证明Sn<.【答案】见解析【解析】(Ⅰ)我们用数学归纳法进行证明,先证明不等式bn≤当n=1时成立,再假设不等式bn ≤当n=k(k≥1)时成立,进而证明当n=k+1时,不等式bn≤也成立,最后得到不等式bn≤对于所有的正整数n成立;(Ⅱ)根据(Ⅰ)的结论,我们可以利用放缩法证明Sn<,放缩后可以得到一个等比数列,然后根据等比数列前n项公式,即可得到答案.证明:(Ⅰ)当x≥0时,f(x)=1+≥1.因为a1=1,所以an≥1(n∈N*).下面用数学归纳法证明不等式bn≤.(1)当n=1时,b1=﹣1,不等式成立,(2)假设当n=k时,不等式成立,即bk≤.那么bk+1=|ak+1﹣|=≤.所以,当n=k+1时,不等式也成立.根据(1)和(2),可知不等式对任意n∈N*都成立.(Ⅱ)由(Ⅰ)知,bn≤.所以Sn =b1+b2+…+bn≤(﹣1)++…+=(﹣1)•<(﹣1)•=.故对任意n∈N*,Sn<.点评:数学归纳法常常用来证明一个与自然数集N相关的性质,其步骤为:设P(n)是关于自然数n的命题,若1)(奠基) P(n)在n=1时成立;2)(归纳)在P(k)(k为任意自然数)成立的假设下可以推出P(k+1)成立,则P(n)对一切自然数n都成立.9.证明不等式(n∈N*)【答案】见解析【解析】证法一:利用数学归纳法证明(1)当n=1时,验证不等式成立;(2)假设n=k(k≥1)时,不等式成立,然后证明当n=k+1时,不等式也成立.即可.证法二:构造函数f(n)=,通过函数单调性定义证明f(k+1)>f(k)然后推出结论.证法一:(1)当n=1时,不等式左端=1,右端=2,所以不等式成立;(2)假设n=k(k≥1)时,不等式成立,即1+<2,则∴当n=k+1时,不等式也成立.综合(1)、(2)得:当n∈N*时,都有1+<2.证法二:设f(n)=,那么对任意k∈N*都有:∴f(k+1)>f(k)因此,对任意n∈N*都有f(n)>f(n﹣1)>…>f(1)=1>0,∴.点评:本题考查数学归纳法证明不等式的应用,构造法与函数的单调性的应用,考查逻辑推理能力,计算能力以及转化思想.10.试比较n n+1与(n+1)n(n∈N*)的大小.当n=1时,有n n+1(n+1)n(填>、=或<);当n=2时,有n n+1(n+1)n(填>、=或<);当n=3时,有n n+1(n+1)n(填>、=或<);当n=4时,有n n+1(n+1)n(填>、=或<);猜想一个一般性的结论,并加以证明.【答案】<,<,>,>【解析】本题考查的知识点是归纳推理与数学归纳法,我们可以列出n n+1与(n+1)n(n∈N*)的前若干项,然后分别比较其大小,然后由归纳推理猜想出一个一般性的结论,然后利用数学归纳法进行证明.解:当n=1时,n n+1=1,(n+1)n=2,此时,n n+1<(n+1)n,当n=2时,n n+1=8,(n+1)n=9,此时,n n+1<(n+1)n,当n=3时,n n+1=81,(n+1)n=64,此时,n n+1>(n+1)n,当n=4时,n n+1=1024,(n+1)n=625,此时,n n+1>(n+1)n,根据上述结论,我们猜想:当n≥3时,n n+1>(n+1)n(n∈N*)恒成立.①当n=3时,n n+1=34=81>(n+1)n=43=64即n n+1>(n+1)n成立.②假设当n=k时,k k+1>(k+1)k成立,即:>1则当n=k+1时,=>=>1即(k+1)k+2>(k+2)k+1成立,即当n=k+1时也成立,∴当n≥3时,n n+1>(n+1)n(n∈N*)恒成立.点评:数学归纳法常常用来证明一个与自然数集N相关的性质,其步骤为:设P(n)是关于自然数n的命题,若1)(奠基) P(n)在n=1时成立;2)(归纳)在P(k)(k为任意自然数)成立的假设下可以推出P(k+1)成立,则P(n)对一切自然数n都成立.。
高一数学不等式试题
高一数学不等式试题1.设则xy的最大值为 ( )A.2B.4C.D.【答案】A【解析】略2.设,且,则()A.B.C.D.【答案】D【解析】由题意,,又,则,所以,则,,由且,可得,故3.已知变量,满足则的最小值为__________.【答案】【解析】如图,当目标函数过点时,函数取得最小值,,目标函数的最小值是.【考点】线性规划4.设满足约束条件,则的最大值为()A.-8B.3C.5D.7【答案】D【解析】不等式表示的可行域为直线围成的三角形及其内部,三个顶点为,当过点时取得最大值7【考点】线性规划5.已知实数x、y满足(0<a<1),则下列关系式恒成立的是()A.B.>C.D.【答案】D【解析】,是减函数,所以当时,,所以当时,只有成立,而当时,不能确定与的大小,以及与的大小.【考点】不等式的性质6.若不等式对一切恒成立,则实数取值的集合为()A.B.C.D.【答案】D【解析】当时,恒成立,当,解得,所以【考点】含参不等式恒成立问题7.若实数,满足,则的取值范围是(用区间表示)【答案】【解析】且,设,,则,所以且,所以且.所以的取值范围是.【考点】1.基本不等式;2.三角换元求取值范围.8.设的最小值为_________.【答案】【解析】正数满足,,当且仅当时取等号,所以所求的最小值为。
【考点】基本不等式9.下列选项中,使不等式成立的x的取值范围是A.(1,+∞)B.(0,1)C.(-1,0)D.(-∞,-1)【答案】D【解析】当时,不等式为显然无解,当时,不等式为,即,所以不等式解集为(-∞,-1),故选择D【考点】解不等式10.解关于的不等式:【答案】详见解析【解析】解含参的一元二次不等式,第一步先讨论二次项前的系数,此题为,所以先不讨论,第一步,先将式子分解因式,整理为,第二步,,,讨论两根的大小关系,从而写出解集的形式.试题解析:原不等式可化为:,(1)当-1<a<0时,,所以x>-或x<1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学具体的不等式试题答案及解析1.已知关于的不等式的解集是,则 .【答案】2【解析】化分式不等式为整式不等式,根据解集是得,,方程的两实根分别为,,所以=,a=2【考点】解分式不等式,二次方程与二次不等式之间的关系.2.不等式的解集是A.B.C.D.【答案】D【解析】:因为方程的两个根为,所以不等式的解集是。
故选D。
【考点】一元二次不等式的解法.点评:熟练掌握一元二次不等式的解法和实数的性质是解题的关键.3.不等式的解集是 .【答案】【解析】根据题意,由于不等式,故可知不等式的解集为【考点】一元二次不等式点评:主要是考查了一元二次不等式的求解,属于基础题。
4.不等式的解集为【答案】【解析】根据题意,由于不等式等价于(x+2)(x-1)<0,解得-2<x<1,因此可知不等式的解集为。
【考点】一元二次不等式的解集点评:主要是考查了一元二次不等式的求解,属于基础题。
5. a∈R,且a2+a<0,那么-a,-a3,a2的大小关系是()A.a2>-a3>-a B.-a>a2>-a3C.-a3>a2>-a D.a2>-a>-a3【答案】B【解析】由已知中a2+a<0,解不等式可能求出参数a的范围,进而根据实数的性质确定出a3,a2,-a,-的大小关系.解:因为a2+a<0,即a(a+1)<0,所以-1<a<0,根据不等式的性质可知-a>a2>-a3,故选B.【考点】不等式比较大小点评:本题考查的知识点是不等式比较大小,其中解不等式求出参数a的范围是解答的关键6.不等式ax2+bx+2>0的解集是,则a+b的值是()A.10B.-10C.-14D.14【答案】C【解析】根据题意,由于不等式ax2+bx+2>0的解集是,那么说明了是ax2+bx+2=0的两个根,然后利用韦达定理可知则a+b的值是-14,故选C.【考点】一元二次不等式的解集点评:主要是考查了二次不等式的解集的运用,属于基础题。
7.关于x的不等式:的解集为 .【答案】【解析】根据题意,由于等价于,故可知不等式的解集为。
【考点】不等式的求解点评:主要是考查了不等式的求解,属于基础题。
8.若,则下列不等式:①;②;③;④中,正确的有( )A.1个B.2个C.3个D.4个【答案】C【解析】取,可以验证①②③都是正确的,所以正确的有3个.【考点】本小题主要考查不等式的性质的应用.点评:遇到考查不等式性质的题目时,要注意特殊值法的应用,这种方法一般情况下简单有效.9.不等式的解集是。
【答案】(-2,-1/3)【解析】根据题意,由于,故可知答案为(-2,-1/3)【考点】分式不等式点评:主要是考查了不等式的求解,移项通分合并是解不等式的常用的变形方法,属于基础题。
10.不等式ax2+bx+c>0的解集是(-∞,-2)∪(-1,+∞),则a∶b∶c=__________.【答案】1:3:2【解析】根据题意,由于不等式ax2+bx+c>0的解集是(-∞,-2)∪(-1,+∞),结合二次哈数图像可知,开口向上,方程ax2+bx+c=0的两个根为-1,-2,那么根据韦达定理可知,,故可知a∶b∶c=1:3:2,故答案为1:3:2。
【考点】一元二次不等式的方法点评:考查学生综合运用函数与不等式的能力,以及解一元二次不等式的方法11.不等式的解为【答案】【解析】不等式化为,方程的根为,所以不等式的解集为【考点】解不等式点评:解分式不等式首先化为整式不等式,解一元二次不等式结合二次方程二次函数12.不等式的解集为()A.(-5,1)B.(-1,5)C.(-∞,-5)∪(1,+∞)D.(-∞,-1)∪(5,+∞)【答案】A【解析】,所以原不等式的解集为(-5,1).【考点】本小题主要考查一元二次不等式的解法.点评:求解一元二次不等式,首先要将二次项系数化为正数,否则容易出错.13.(1)已知当时,不等式恒成立,求实数的取值范围(2)解关于的不等式.【答案】(1)x=3(2)当时,解集为:,当时,解集为:当时,解集为:当时,解集为:当时,解集为:【解析】解:(1)原式可化为: 1分设则为关于的一次函数,由题意:3分解得: 6分8分(2)原不等式可化为: 10分那么由于a=0表示的为一次函数,a为二次函数,那么分为两大类,结合开口方向和根的大小,和二次函数图形可知,需要整体分为a>0,a=0,a<0来求解,那么对于的大小将会影响到根的大小,所以要将a分为和,以及来得到结论,那么可知有当时,原不等式的解集为: 12分当时,原不等式的解集为: 13分当时,原不等式的解集为: 14分当时,原不等式的解集为: 15分当时,原不等式的解集为: 16分【考点】二次不等式的解集点评:主要是考查了含有参数的一元二次不等式的求解运用,属于中档题。
体现了分类讨论思想的运用。
14.当时,不等式恒成立,则m的取值范围是__ __.【答案】【解析】,设,当时,当时【考点】不等式恒成立点评:不等式恒成立求参数范围的题目常采用分离参数法,转化为求函数最值15.若不等式的解集为,则实数的取值范围是.【答案】[-4,0]【解析】由已知中关于x不等式的解集为R,由于对应函数的开口方向朝上,故等式的解集为R,可以转化为方程=0至多有一个实根,根据方程根的个数与△的关系,构造关于a的不等式,即可得到答案。
解:∵关于x 不等式的解集为R,∴方程=0至多有一个实根即△=4a2-4≤0,解得:-4≤a≤0,,故答案为:[-4,0]【考点】二次函数的性质点评:本题考查的知识点是二次函数的性质,其中熟练掌握二次函数的性质及二次函数、二次方程与二次不等式是解答本题的关键16.不等式对于恒成立,则实数的取值范围为()A.B.C.D.【答案】A【解析】当时,不等式为恒成立,当时,不等式为二次不等式,需满足条件,综上实数的取值范围为【考点】不等式恒成立点评:将不等式恒成立转化为求函数最值,求解本题时需注意对分两种情况讨论,即分是否为二次不等式17.解关于的不等式,【答案】①当a=0时,解集为{x|x>1};②当a>0时,(x-1)(x+1+)>0,解集为;③当a=-时,(x-1)2<0,解集为;④当-<a<0时,(x-1)(x+1+)<0,解集为⑤当a<-时,(x-1)(x+1+)<0,解集为【解析】∵,∴(x-1)(ax+a+1)>0, 3分①当a=0时,解集为{x|x>1};②当a>0时,(x-1)(x+1+)>0,解集为;③当a=-时,(x-1)2<0,解集为;④当-<a<0时,(x-1)(x+1+)<0,解集为⑤当a<-时,(x-1)(x+1+)<0,解集为 10分【考点】本题主要考查含参数一元二次不等式的解法,分类讨论思想。
点评:易错题,含参数一元二次不等式的求解问题,一定要注意分类讨论。
讨论的原因一般应考虑:二次项系数的正、负、零,相应方程根的大小等等。
18.关于x的不等式(m+1)x2+(m2-2m-3)x-m+3>0恒成立,则m的取值范围是。
【答案】[-1,1)(1,3)【解析】解:因为关于x的不等式(m+1)x2+(m2-2m-3)x-m+3>0恒成立,当m+1=0时,符合题意,当m+1不为零时,则m的取值范围是,开口向上,判别式小于零,则可知为(-1,1)(1,3)。
综上所述可知则m的取值范围是[-1,1)(1,3)19.在区间上,不等式有解,则的取值范围为()A.B.C.D.【答案】C【解析】解:因为在区间上,不等式有解,只要m>的最小值即可,即当x=1时,最小值为-5,选C20.一元二次不等式的解集为.【答案】(-4,-2)【解析】略21.已知不等式的解集为(1)求(2)解不等式【答案】解:(1)由已知是方程的两根,解得-----------------------------------------------6分原不等式为时解集为时解集为时解集为---------------------------------12分【解析】略22.不等式组的解集是 .【答案】【解析】略23.不等式组的解集为()A.B.C.D.【答案】B【解析】略24.如图,某药店有一架不准确的天平(其两臂长不相等)和一个10克的砝码.一个患者想要买20克的中药,售货员先将砝码放在左盘上,放置药品于右盘上,待平衡后交给患者;然后又将砝码放在右盘中,放置药品于左盘上,待平衡后再交给患者.设患者一次实际购买的药量为m(克),则m____________20克.(请选择填“>”“=”或“<”)【答案】>【解析】略25.解不等式>1的解集。
【答案】解:原不等式故原不等式的解集为。
【解析】略26.若不等式的解集是,则=▲.【答案】5【解析】略27.若不等式≥,对任意的正实数总成立,则正实数的取值范围为:▲.【答案】【解析】略28.不等式的解集是()A.B.C.D.【答案】B【解析】略29.不等式的解集为▲.【答案】(-1,1)【解析】略30.使不等式对一切正整数都成立的最小正整数的值为.【答案】【解析】设.显然单调递减,则由的最大值,可得.。