2019考研数学二高数线代笔记
考研数学线性代数和概率论的复习重点

考研数学线性代数和概率论的复习重点考研数学线性代数和概率论的复习重点有许多表示刚一开始线性代数和概率论与数理统计有难处,认为看书举步维艰。
店铺为大家精心准备了考研数学线性代数和概率论的复习要点,欢迎大家前来阅读。
考研数学线性代数和概率论的复习难点▶难点事实上线性代数应该是数学三门课中最好拿分的,但是这门课有一个特点,就是入门难,但是一旦入门就一通百通。
这门课由于思维上与高数南辕北辙,所以一上来会很不适应。
总体而言,6章内容环环相扣,所以很多同学一上来看第一章发现内容涉及到第五章,看到第二章发现竟有第4章的知识点,无法形成完整的知识网络,自然无法入门。
▶学习规划总的来说,线性代数这本书6章内容应该分为三个部分逐个攻破:首先行列式和矩阵,第二向量与方程组,第三第5和第六章。
这三个内容联系得相当紧密,必须逐个攻破,这样以两章为单位,每个单位中出现的知识点定理罗列出来,找到他们彼此的关系。
最好是拿一张白纸,像C语言中的指针那样一个一个连起来,形成属于你的知识网络,这一部分有哪些板块,每个板块有哪些定义知识点,比如行列式的定义,矩阵的定义各是,你是怎么理解的,向量与方程组有什么联系与区别,这些最基础的一定要搞清。
对于概率论,第一章是整本书的思维基础,第二章与第三章的逻辑思维就好像一元积分与二元积分一样,难点在于二元积分的计算。
在学习的过程中还是要先思考这一章节有哪些部分,每个部分哪些定义,哪些知识点,自己要找一张大纸,将这些全部像C语言中二叉树一样,罗列成一个树形图,最后根据每一个知识点各个击破。
第5章不用细看,第六章第七章主要是记忆,在记忆的基础上尽可能的理解。
浙大版的书上每章的课后题相当经典,请同学们反复推敲,做过之后,请在总结一遍,比如说这几道题是属于离散型还是连续型,对应了哪些知识点。
▶视频学习法线性代数:不要一上来就看李永乐的视频,因为那个视频是强化阶段看的,建议听一下施光燕的线性代数12讲,这位老师讲的内容很基础,只有十二讲,但是全讲到重点上去了,这样你就会很容易入门了。
研究生考研数学公式(高数线代)

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
考研数学所有知识点合集(概率论,高数,线代)

P ( X = k ) = q k −1 p, k = 1,2,3, Λ ,其中 p≥0,q=1-p。
随机变量 X 服从参数为 p 的几何分布。 ⑥均匀分布 b]内, 其密度函数 f ( x ) 在 设随机变量 X 的值只落在[a, [a,b]上为常数 k,即
2、常见分布
①0-1 分布 P(X=1)=p, P(X=0)=q ②二项分布 在 n 重贝努里试验中, 设事件 A 发生的概率为 p 。 事件 A 发 生的次数是随机变量,设为 X ,则 X 可能取值为
F (−∞) = lim F ( x) = 0
x → −∞ x → +∞
,
F (+∞) = lim F ( x) = 1 ;
4° 5°
F ( x + 0) = F ( x) ,即 F ( x) 是右连续的; P ( X = x) = F ( x) − F ( x − 0) 。
X x1, x 2,Λ , xk , Λ | P ( X = xk ) p1, p 2,Λ , pk ,Λ 。
A ⊂ Υ Bi
i =1
n
, P ( A) > 0 ,
P ( Bi / A) =
P( Bi ) P( A / Bi )
∑ P( B
j =1
n
,i=1,2,…n。
j
) P( A / B j )
m A所包含的基本事件数 = = n 基本事件总数
此公式即为贝叶斯公式。
2、五大公式(加法、减法、乘法、全概、 贝叶斯)
,k = 0.1 , 这就是 (0-1)
分布,所以(0-1)分布是二项分布的特例。 ③泊松分布 设随机变量 X 的分布律为
P ( x < X ≤ x + dx) ≈ f ( x)dx
考研数学所有知识点合集(概率论,高数,线代)

λk
k!
e −λ , λ > 0 , k = 0,1,2Λ ,
E → ω, Ω →
A
→ P( A), (古典概型,五大公式,独立性)
则称随机变量 X 服从参数为
λ 的泊松分布,记为
X (ω ) → X (ω ) ≤ x → F ( x) = P( X ≤ x)
对于连续型随机变量 X ,虽然有 P ( X = x ) = 0 ,但事件
所以这与我们所理解的独立性是一致的。 则可得到 A 与 B 、A 与 B 、 若事件 A 、B 相互独立,
P( AB) 为事件 P( A)
A 与 B 也都相互独立。 (证明)
由定义,我们可知必然事件 Ω 和不可能事件 Ø 与任 何事件都相互独立。 (证明) 同时,Ø 与任何事件都互斥。 (2)多个事件的独立性 设 ABC 是三个事件,如果满足两两独立的条件,
则称随机变量 X 服从参数为 n , p 的二项分布。记为
3
x−a , b−a
a≤x≤b
Edited by 杨凯钧 2005 年 10 月
考研数学知识点-概率统计
F ( x) = ∫ f ( x)dx =
−∞
x
1,
x>b。
1 F ( x) = 2πσ
∫
x
−∞
e
−
(t − µ ) 2 2σ 2
dt
。 。
当 a≤x1<x2≤b 时,X 落在区间( x1 , x2 )内的概率为 P(
x1 < X < x 2 ) = ∫ f ( x ) dx = ∫
x1
x2
x2
x1
x − x1 1 dx = 2 b−a 。 b−a
高数线代

高数(上册)期末复习要点第一章:1、极限,基本上极限用洛必达法则和两个重要极限去求,实在求不出来可以采用夹逼准则,但是要注意用洛必达和两个重要极限时候的形式,不要套错了。
2、连续,一般是考用定义证明一个函数连续,不会太难,基本上就是习题集上的哪几种类型,关于证明的问题,一般不容易去想,所以必要时候,需要背诵下,考原题可能性很大,还有就是判断间断点类型,这个考的可能性不大,但也算考点第二章:1、导数首先考点还是用定义证明一个函数是否可导,连续不一定可导,可导一定连续2、求导法则求导公式微分公式熟练掌握第三章:1、微分中值定理,还是会考到证明题,有时候形式会变,虽然不是证明题,但是需要证明的过程才能求出答案,基本都是考拉格朗日中值定理的形式比如在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,先用拉格朗日中值定理处理一下再说2、洛必达法则3、泰勒公式4、函数凹凸性、极值这是高中的东西,不要怎么复习,5、曲率公式曲率半径这些考个选择填空的很正常,所以需要牢记公式第四章、第五章:积分、不定积分:这个不需要说太多,重点内容,必考大题,所以,这块内容的复习唯一的办法就是把练习册的题都做了,都学会,其实需要花费的时间并不是很长,先把课本上的例题公式看懂,再看练习册就很简单了。
诸如两类换元法(变dx/变前面)、分部积分法(注意加C ),最好都自己推导一遍,好记。
反常积分就是一种极限形式,前面的明白了,这里看下就懂了。
还有事积分中值定理,这个注意下,有时候题解不出来可以从这里入手第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长高数解题技巧。
(高等数学、考研数学通用)第七章:微分方程,各种类型的微分方程求解,基本上前面几节讲的内容,都是根据原理解方程,后面的大多数讲的都是套公式,所以,牢记公式,尤其注意公式的形式,不要套错了去年我们考的是一阶线性非齐次微分方程和二阶常系数非齐次e的x次方型,具体今年考哪个到时候一般老师会告诉重点,根据重点复习,太难的,拿什么去衡量难度,就三方面,问老师、从历年试题里面看、看习题集。
2019考研数学二大纲-5页word资料

2019考研数学二大纲考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学78%线性代数22%四、试卷题型结构试卷题型结构为:单项选择题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数平均值.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:和.4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合和线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的的正交规范化方法考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解非齐次线性方程组的通解考试要求1.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组.五、矩阵的特征值及特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法。
数学二线代公式

数学二线代公式
以下是部分数学二线性代数公式:
行列式展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和。
克莱姆法则:线性方程组如果有唯一解,则该解可以通过系数行列式除以系数行列式的各元素与其对应的代数余子式的乘积之和得出。
矩阵的秩:矩阵的秩等于它的行向量组的秩和列向量组的秩,即矩阵的秩等于它的行(列)向量的极大无关组中的向量个数。
线性方程组解的结构:如果线性方程组有解,则其解向量可以通过系数矩阵的行(列)向量组和常数向量的线性组合得到。
特征值和特征向量:如果一个矩阵A有n个线性无关的特征向量,则A有n个特征值,这些特征值可以通过行列式公式求得。
二次型:二次型可以通过矩阵表示,其标准形式可以通过正交变换得到。
以上公式仅供参考,建议查阅数学书籍或咨询专业人士获取更多信息。
2019版2019考研数二大纲 高数-5页word资料

考研的可以留着(数二大纲)考研数学二大纲编辑词条考研数学二大纲根据工学、经济学、管理学各学科、专业对硕士研究生入学所应具备数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种,其中针对工学门类的为数学一、数学二,针对经济学和管理学门类的为数学三。
目录1 考试内容2 考试信息展开1 考试内容1.1 函数、极限、连续1.2 一元函数微分学1.3 一元函数积分学1.4 多元函数微积分学1.5 常微分方程1.6 考试内容之线性代数1.7 二次型2 考试信息2.1 考试科目2.2 考试形式和试卷结构1 考试内容编辑本段1.1 函数、极限、连续考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2. 了解函数的有界性、单调性、周期性和奇偶性.3. 理解复合函数及分段函数的概念了解反函数及隐函数的概念4. 掌握基本初等函数的性质及其图形,了解初等函数的概念.5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6. 掌握极限的性质及四则运算法则7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10. 了解连续函数的性质和初等函数一的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.1.2 一元函数微分学考试要求1. 理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3. 了解高阶导数的概念,会求简单函数的高阶导数.4. 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5. 理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6. 掌握用洛必达法则求未定式极限的方法.7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8. 会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如例3:设f(x)在x=x0处可导,g(x)在x=x0处连续但不可导,证明 在x=x0处可导的充要条件是f(x0)=0.
注:例3子题:
例3子题: 。2个
2.微分
设函数y = f(x)在x的邻域内有定义,x及x + Δx在此区间内。
如果函数的增量Δy = f(x + Δx) - f(x)可表示为 Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx)是比Δx高阶的无穷小,那么称函数f(x)在点x是可微的,且AΔx称作函数在点x相应于因变量增量Δy的微分,记作dy,即dy = AΔx。
五大方面的应用
1、涉及f(x)的定理的使用(有最介零)
2、罗尔定理的使用
3、拉格朗日定理的使用
(一般为等式证明)
2)给高阶条件推出低阶不等式
3)给低阶条件推出高阶不等式
4)具体化f,由a<ξ<b推出不等式
4、柯西中值定理的使用
可能是一个具体函数,一个抽象函数,在添加拉格朗日定理。
5、高阶导数的证明问题——
2)代数余子式:(-1)i+jMij=Aij、(-1)i+jAij=Mij、Aij为代数余子式
3)展开公式:
2、行列式的计算
1)具体型
(行和或列和相等)
注意:
如例题:
②消零降价法()
如例题:
③加边法
如例题:
注:爪型行列式用斜爪消平爪
④递推法(高阶推低阶)
如例题:
⑤数学归纳法(低阶推高阶)
注意:第一数归法和第二数归法的区别,先找出关系,再确定用哪种方法
如例3:当 >0,证明
注:该结论证明x的正次幂趋向0比lnx趋向 的速度快,x的正次幂趋向+∞比e-δx趋向0的速度慢
4)当计算函数极限时,若出现 ,则有分母就通分,无分母则倒代换在通分。
如例4:
如例5:
5)当计算函数极限时,综合题型为①未知参数→要分类讨论;②变限积分定义f(x),涉及泰勒公式;
如例:7:
2.计算——微分法
3.应用——极值与最值
1.概念
概念1:极限的存在性
注:除洛必达法则、单调有界准则,穷举法不可用。其它可以照搬一元函数极限的
方法。如无穷小替换、无穷小*有界=无穷小、夹逼准则
概念2:极限的连续性
注:与一元函数相同,但间断时不讨论其类型。
概念3:偏导数的存在性
概念4:多元函数的可微性
5
② 存在;
③ 存在;
则可以证明f(x)在区间(a,b)上有界。
(3)四则运算法:若 不存在,则拆分f(x),使得满足以下公式:
有限个有界函数的加减乘仍为有界函数。
即有界±有界=有界;有界 有界=有界。
注:实际上常用方法(2),方法(2)内包含方法(1)和(3)。
如例2:讨论函数 在其定义域内的有界性。
微分概念是在解决直与曲的矛盾中产生的,在微小局部可以用直线去近似替代曲线,它的直接应用就是函数的线性化。微分具有双重意义:它表示一个微小的量,因此就可以把线性函数的数值计算结果作为本来函数的数值近似值,这就是运用微分方法进行近似计算的基本思想。
考法:
函数的微分与函数的增量之间的关系
若设在含有 的某区间内存在二阶导数,则由拉格朗日余项泰勒公式,有
注:与通常的奇偶函数在对称区间上的定积分相比,这里多了一个要求“收敛”的条件,如果不满足这个条件,结论是不成立的。
如例题:
解析:
注:大的函数收敛,小的函数必收敛;小的函数发散,大的函数必发散。
2、计算
1. 基本公式
2.求导
重要公式
①参数式所确定的函数的导数公式
②反函数的一阶及二阶导数公式
注:对于多项相乘,相除,开方,乘方的式子,先取对数在求导,即对数求导法
如例1:
如例6:
2)当计算函数极限时,出现分子次数低于分母次数而导致洛必达法则无法使用时,可使用换元法,利用倒代换 来消除此影响。
3)如例2:
3)当计算函数极限时,若出现 ,则化为 还是 ,是看哪个化成分母后的式子较为简单,即设置分母有原则。简单因式才下放,简单因式有 、 等;复杂因式有linx、arcsinx、arctanx、 等。
3)左行右列定理
初等阵P左乘(右乘)A得PA(AP),就是对A作了一次与P相同的初等行(列)变换
如例题:
5、求A的逆
6、矩阵方程
如例题:
如例8:
注:泰勒展开时需要遵循以下两点要求:
①对于 型,上下同阶;即将分子(分母)展开至与分母(分子)同阶。
②对于 型,幂次最低;即将A、B展开至系数不相等的最低次幂。
3、数列极限的计算
1)通项已知且易于连续化,用简单归结原则。
如例1:
2)通项已知但不易于连续化,用夹逼准则。
如例2:
3)通项由递推式给出,用单调有界准则(需要证明单调性和有界性)。
如例1:对于数列Xn,有X1=a,Xn≠0,n=1,2,3........,若 ,则 (A)。
A.无穷大 B.0 C.非0常数 D.无穷大或常数
2)讨论f(x)在区间I上的有界性三种方法:(1)理论法:闭区间连续函数的有界性定理:设f(x)在闭区间[a,b]上连续,则f(x)在[a,b]上有界。
(2)计算法:若条件给出开区间(a.b),则只需:①f(x)在区间(a,b)上连续;
例3:
2、函数极限的运算
计算遵循的步骤:(1) 化简先行(等价替换、恒等变形、抓大头)
(2)判别类型( )
(3)使用工具(洛必达法则、泰勒公式、夹逼准则)
(4)注意事项(总结错题)
常见的等价替换:当 时,
X: sinx~x、arcsinx~x、tanx~x、arctanx~x、ex-1~x、ax-1~xlna、ln(1+x)~x、(1+x)α-1~αx
证明有界时又可采用夹逼准则和数学归纳法;
如例3:
4、极限的应用——连续与间断
1.讨论连续与间断时,只讨论无定义点和分段点。
2.连续定义。
3.间断定义。
注:讨论连续与间断时,前提必须保证f(x)在该点的去心领域即 内有定义
1)无定义点讨论
如例1:
2)分段点和无定义点讨论
如例2:
第2讲一元函数微积分
1、定义
1)
如例题(研究对象复杂化):
如例题(区间复杂化):
2)方程的根f(x)=0(有且仅有)
10存在性(有—至少有):
20唯一性(仅有—至多有):
如例题:
3)不等式(核心是求导,研究性态)
将常数不等式化为变量函数,证明其单调性,后带其值,可得证。——常数变量化
如例题:
第三讲 多元函数微分学
综述:1.概念——5个
有理函数积分法
华里士公式(点火公式)
如例题:
分析:
其中换元时用到了区间再现公式
如例题:
3、应用
1.几何应用
①导数(极值点、最值点、拐点、单调性、凹凸性、渐近线——统称为性态)
1)极值与单调性
10判别法一:若f(x)在x0处连续
(1)
(2)
20判别法二:若f(x)在x0处二阶可导
证明:
2)拐点与凹凸性
Xn: 1-cosx~ x2、x-sinx~ 、x2-sin2x~
常见的泰勒展开式:当 时,
sinx= 、arcsinx= 、cosx=
tanx= 、arctanx= 、ln(1+x)=
ex= 、(1+x)α=
1)当计算函数极限时,化成等价替换的形式,出现幂次未定式 、 、 时,将其uv化为evlinu的形式;出现多项式时,抓带头大哥。
当自变量X改变为X+△X时,相应地函数值由f(X)改变为f(X+△X),如果存在一个与△X无关的常数A,使f(X+△X)-f(X)和A·△X之差是△X→0关于△X的高阶无穷小量,则称A·△X是f(X)在X的微分,记为dy,并称f(X)在X可微。一元微积分中,可微可导等价。记A·△X=dy,则dy=f′(X)dX。例如:d(sinX)=cosXdX。
如例1:设f(u)可导,y=f(x2),当x在x=-1处取∆x=-0.1时,∆y的线性主部为0.1,则f’(1)为?
3.不定积分
①原函数存在定理
1)连续函数必有原函数
例如证明题:
分析:
导数求一点定义;
积分四则运算;
积分中值定理,将积分形式划分函数形式;
连续定义;
以上例题可得:
2)含跳跃、可去、无穷间断点的函数在此区间上无原函数——反证法
综述:按类求解,对号入座;
1.一阶方程(可分离变量,齐次型,一阶线性型,可降阶)
2.高阶方程(齐次型,非齐次型)
3.应用题
基本概念:
一、一阶方程
1.可分离变量型
如例题:
注:
2.齐次型
如例题:
3.一阶线性型
如例题:
4.可降阶
如例题:
5.二阶(高阶)方程的求解
高阶常系数线性齐次方程求解
如例题:
高阶常系数线性非齐次方程求解
例题:
概念5:偏导数的连续性
注:5大概念的逻辑关系
2.计算(多元微分法)
①链式求导法则
如例题:
②高阶偏导数
无论z对谁求导,也无论z已经求了n阶导。求导之后的新函数仍具有与原来函数完全相同的复合结构。
③注意书写规范
如例题:
如例题:
3、应用——极值与最值
无条件极值
①理论依据
如例题:
条件极值与拉格朗日乘数法
5.变限积分
①
②变限积分属于定积分范畴,即区间需有限,函数需有界;
③
注:上述求导公式使用的前提是被积函数f(t)只含t,不含x,可用替换法替换积分变量去除x.