【知识】线性代数第3章知识梳理

合集下载

线性代数第三章总结

线性代数第三章总结

第三章 几何空间一、 向量的运算1. 向量的数量积(1) 在仿射坐标系123{;,,}O e e e 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,则112323(,,)y x x x A y y αβ⎛⎫ ⎪⋅= ⎪ ⎪⎝⎭,其中111213212223313233e e e e e e A e e e e e e e e e e e e ⋅⋅⋅⎛⎫ ⎪=⋅⋅⋅ ⎪ ⎪⋅⋅⋅⎝⎭. (2) 在直角坐标系{;,,}O i j k 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,则131233213(,,)i i i y x x x I y x y y αβ=⎛⎫ ⎪⋅== ⎪ ⎪⎝⎭∑ ∙ =0αβαβ⊥⇔⋅2. 向量的向量积在直角坐标系{;,,}O i j k 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,则123123i jk x x x y y y αβ⨯=. ∙ //=0αβαβ⇔⨯3. 向量的混合积在直角坐标系{;,,}O i j k 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,123(,,)z z z γ=则123123123(,,)x x x y y y z z z αβγ=. ∙ (,,)0αβγαβγ⇔=,,共面例:(1)设=αβγδ⨯⨯, =αγβδ⨯⨯,证明αδ-,βγ-共线.(2)设0αββγγα⨯+⨯+⨯=,证明αβγ,,共面.(3)证明()()βγααγβγ⋅-⋅⊥.证明:(1)因为()()αδβγ-⨯-=αβαγδβδγ⨯-⨯-⨯+⨯=αβγδαγ⨯-⨯-⨯+0βδ⨯=,所以αδ-,βγ-共线.(2)因为()αβγ=,,()αβγ⨯⋅=()βγγ-⨯⋅()γαγ-⨯⋅=()βγγ-,,()γαγ-,,0=,所以αβγ,,共面.(3) 因为(()βγα⋅())αγβγ-⋅⋅=()βγ⋅()αγ⋅()αγ-⋅()βγ⋅0=,所以()βγα⋅()αγβ-⋅γ⊥.二、 位置关系的判断1. 两个向量的共线;三个向量的共面.2. 两条直线异面,共面(相交、平行、重合)3. 两个平面相交、平行、重合4. 直线与平面相交、平行、直线在平面上.三、距离和垂线(在右手直角坐标系中讨论)1. 点到直线的距离,垂线方程垂线方程:设直线过已知点0000,,)P x y z (方向向量为0()X Y Z υ=,,,求过111(,,)P x y z 点直线的垂线方程。

线性代数讲义(第三章)

线性代数讲义(第三章)
成行阶梯形矩阵, 可同时看出矩阵( 1, 2, 3) 及( 1, 2)的秩,利用定理2即可得出结论.
1 0 2 ( 1 , 2 , 3 ) 1 2 4 1 5 7
r2 r1
r3 r1
~
1 1 0 0 1 0
2 2 2 2 5 7 5 5 0 0 2 2
第三章 n维向量空间
• • • • • • n维向量的定义 n维向量的线性运算 向量组的线性相关性 向量组的极大线性无关组 向量空间 习题课
第一节 n维向量的定义
一、 n维向量的概念 二、 n维向量的表示方法 三、 向量空间
一、n 维向量的概念
定义1 n 个有次序的数 a1 , a2 , , an 所组成的数 组称为n维向量,这n个数称为该向量的n个分量,
(2)设
a1 j a1 j a2 j a2 j j , b j , ( j 1,2, , m ), arj a rj a r 1, j
即 j 添上一个分量后得向量b j .若向量组 A: 1 , 2 , , m 线性无关, 则向量组B:1 , b2 , , bm 也线性无 b 关 .反言之,若向量组B线性相关, 则向量组A也线 性相关 .
a T ( a 1 , a 2 , , a n )
n 维向量写成一列,称为列向量,也就是列 矩阵,通常用 a ,b, , 等表示,如: a1 a2 a a n
注意
1.行向量和列向量总被看作是两个不同的 向量;
2.行向量和列向量都按照矩阵的运算法则 进行运算; 3.当没有明确说明是行向量还是列向量时, 都当作列向量;

线性代数知识点总结

线性代数知识点总结

大学线性代数知识点总结第一章 行列式 二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j n ij a a a a ...)1(21212121)..(∑-=τ奇偶排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变.转置行列式T D D = ②行列式中某两行列互换,行列式变号.推论:若行列式中某两行列对应元素相等,则行列式等于零. ③常数k 乘以行列式的某一行列,等于k 乘以此行列式. 推论:若行列式中两行列成比例,则行列式值为零; 推论:行列式中某一行列元素全为零,行列式为零. ④行列式具有分行列可加性⑤将行列式某一行列的k 倍加到另一行列上,值不变 行列式依行列展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零.克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解逆否:若方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:3331222113121100a a a a a a a 方法:用221a k 把21a 化为零,..化为三角形行列式⑤上下三角形行列式: 行列式运算常用方法主要行列式定义法二三阶或零元素多的 化零法比例化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵矩阵的运算:加法同型矩阵---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA,不满足消去律;由AB=0,不能得A=0或B=0转置A A T T =)( T T T B A B A +=+)( T T kA kA =)( T T T A B AB =)(反序定理 方幂:2121k k k k A A A +=2121)(k k k kA A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵 数量矩阵:相当于一个数若…… 单位矩阵、上下三角形矩阵若…… 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0 分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A =-1非奇异矩阵、奇异矩阵|A|=0、伴随矩阵 初等变换1、交换两行列 2.、非零k 乘某一行列3、将某行列的K 倍加到另一行列初等变换不改变矩阵的可逆性 初等矩阵都可逆初等矩阵:单位矩阵经过一次初等变换得到的对换阵 倍乘阵 倍加阵等价标准形矩阵⎪⎪⎭⎫⎝⎛=O O O I D r r矩阵的秩rA :满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则rAB=rB 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式n ij nn ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的.矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置T A 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB 但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B AA 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵. 5、若A 可逆,则11--=A A伴随矩阵:A 为N 阶方阵,伴随矩阵:⎪⎪⎭⎫⎝⎛=22211211*A A A A A 代数余子式 特殊矩阵的逆矩阵:对1和2,前提是每个矩阵都可逆1、分块矩阵⎪⎪⎭⎫ ⎝⎛=C O B A D 则⎪⎪⎭⎫ ⎝⎛-=-----11111C O BC A AD 2、准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321A A A A A , 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----141312111A A A A A 3、 I A A A AA ==** 4、1*-=A A A A 可逆 5、1*-=n A A 6、()()A AA A 1*11*==--A 可逆7、()()**T TA A = 8、()***AB AB =判断矩阵是否可逆:充要条件是0≠A ,此时*11A AA =- 求逆矩阵的方法:定义法I AA =-1伴随矩阵法AA A *1=-初等变换法()()1||-=A I I A n n 只能是行变换初等矩阵与矩阵乘法的关系: 设()nm ij aA *=是mn 阶矩阵,则对A 的行实行一次初等变换得到的矩阵,等于用同等的m 阶初等矩阵左乘以A :对A 的列实行一次初等变换得到的矩阵,等于用同种n 阶初等矩阵右乘以A 行变左乘,列变右乘第三章 线性方程组消元法 非齐次线性方程组:增广矩阵→简化阶梯型矩阵rAB=rB=r 当r=n 时,有唯一解;当n r ≠时,有无穷多解 rAB ≠rB,无解齐次线性方程组:仅有零解充要rA=n 有非零解充要rA<n 当齐次线性方程组方程个数<未知量个数,一定有非零解 当齐次线性方程组方程个数=未知量个数,有非零解充要|A|=0齐次线性方程组若有零解,一定是无穷多个N 维向量:由n 个实数组成的n 元有序数组.希腊字母表示加法数乘 特殊的向量:行列向量,零向量θ,负向量,相等向量,转置向量 向量间的线性关系: 线性组合或线性表示向量组间的线性相关无:定义179P向量组的秩:极大无关组定义P188定理:如果rj j j ααα,.....,21是向量组s ααα,.....,21的线性无关的部分组,则它是 极大无关组的充要条件是:s ααα,.....,21中的每一个向量都可由rj j j ααα,.....,21线性表出.秩:极大无关组中所含的向量个数.定理:设A 为mn 矩阵,则r A r =)(的充要条件是:A 的列行秩为r.现性方程组解的结构:齐次非齐次、基础解系线性组合或线性表示注:两个向量αβ,若βαk =则α是β线性组合单位向量组任意向量都是单位向量组的线性组合 零向量是任意向量组的线性组合任意向量组中的一个都是他本身的线性组合 向量组间的线性相关无注: n 个n 维单位向量组一定是线性无关 一个非零向量是线性无关,零向量是线性相关 含有零向量的向量组一定是线性相关 若两个向量成比例,则他们一定线性相关向量β可由n ααα,..,21线性表示的充要条件是)...()...(2121T Tn TTTnTTr r βαααααα=判断是否为线性相关的方法:1、定义法:设n k k k ....21,求n k k k ....21适合维数低的2、向量间关系法183P :部分相关则整体相关,整体无关则部分无关3、分量法n 个m 维向量组180P :线性相关充要n r Tn T T <⇒)....(21ααα 线性无关充要n r T n T T =⇒)....(21ααα推论①当m=n 时,相关,则0321=T T T ααα;无关,则0321≠T T T ααα ②当m<n 时,线性相关推广:若向量s ααα,...,21组线性无关,则当s 为奇数时,向量组13221,...,αααααα+++s 也线性无关;当s 为偶数时,向量组也线性相关.定理:如果向量组βααα,,...,21s 线性相关,则向量β可由向量组s ααα,...,21线性表出,且 表示法唯一的充分必要条件是s ααα,...,21线性无关. 极大无关组注:向量组的极大无关组不是唯一的,但他们所含向量的个数是确定的;不全为零的向量组的极大无关组一定存在; 无关的向量组的极大无关组是其本身; 向量组与其极大无关组是等价的. 齐次线性方程组I 解的结构:解为...,21αα I 的两个解的和21αα+仍是它的解; I 解的任意倍数αk 还是它的解;I 解的线性组合s s c c c ααα+++....2211也是它的解,s c c c ,...,21是任意常数.非齐次线性方程组II 解的结构:解为...,21μμII 的两个解的差21μμ-仍是它的解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的一个解,则u+v 是II 的一个解. 定理:如果齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则该方程组的基础解系存在,且在每个基础解系中,恰含有n-r 个解.若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的全部解,则u+v 是II 的全部解.第四章 向量空间向量的内积 实向量定义:α,β=n n T b a b a b a +++=....2211αβ 性质:非负性、对称性、线性性 α,k β=k α,β; k α,k β=2k α,β;α+β,δγ+=α,γ+α,δ+β,γ+β,δ;),(),(1111j i sj j ri i j sj j ri i i l k l k βαβα∑∑∑∑===== n R ∈δγβα,,,,向量的长度),(ααα=0=α的充要条件是α=0;α是单位向量的充要条件是α,α=1单位化 向量的夹角正交向量:αβ是正交向量的充要条件是α,β=0 正交的向量组必定线性无关 正交矩阵:n阶矩阵A I A A AA T T ==性质:1、若A 为正交矩阵,则A可逆,且T A A =-1,且1-A 也是正交矩阵;2、若A 为正交矩阵,则1±=A ;3、若A 、B为同阶正交矩阵,则AB也是正交矩阵; 4、n阶矩阵A=ij a 是正交矩阵的充要条件是A的列行向量组是 标准正交向量;第五章 矩阵的特征值和特征向量 特征值、特征向量A 是N 阶方阵,若数λ使AX=λX,即λI-A=0有非零解,则称λ为A 的一 个特征值,此时,非零解称为A 的属于特征值λ的特征向量. |A|=n λλλ...**21 注: 1、AX=λX2、求特征值、特征向量的方法0=-A I λ 求i λ 将i λ代入λI-AX=0求出所有非零解 3、对于不同的矩阵,有重根、单根、复根、实根主要学习的特殊:n I )(λ的特征向量为任意N 阶非零向量或)(21不全为零i n c c c c ⎪⎪⎪⎭⎫ ⎝⎛4、特征值: 若)0(≠λλ是A 的特征值则1-A --------λ1 则m A --------m λ则kA --------λk若2A =A 则-----------λ=0或1若2A =I 则-----------λ=-1或1若k A =O 则----------λ=0迹trA :迹A=nn a a a +⋯⋯++2211性质:1、N 阶方阵可逆的充要条件是A 的特征值全是非零的2、A 与1-A 有相同的特征值3、N 阶方阵A 的不同特征值所对应的特征向量线性无关4、5、P281相似矩阵定义P283:A 、B 是N 阶矩阵,若存在可逆矩阵P,满足B AP P =-1,则矩阵A 与B 相似,记作A~B性质1、自身性:A~A,P=I2、对称性:若A~B 则B~A B AP P =-1 1-=PBP A A BP P =---111)(3、传递性:若A~B 、B~C 则A~C B AP P =-111 C BP P =-212---C P P A P P =-)()(211214、若AB,则A 与B 同不可逆5、若A~B,则11~--B A B AP P =-1两边同取逆,111---=B P A P6、若A~B,则它们有相同的特征值. 特征值相同的矩阵不一定相似7、若A~B,则)()(B r A r = 初等变换不改变矩阵的秩例子:B AP P =-1则1100100-=P PB AO AP P =-1 A=OI AP P =-1 A=II AP P λ=-1 A=I λ矩阵对角化定理:N 阶矩阵A 与N 阶对角形矩阵相似的充要条件是A 有N 个线性无关的特征向量注:1、P 与^中的i i x λ与顺序一致2、A~^,则^与P 不是唯一的推论:若n 阶方阵A 有n 个互异的特征值,则~^A P281定理:n 阶方阵~^A 的充要条件是对于每一个i K 重特征根i λ,都有i i K n A I r -=-)(λ注:三角形矩阵、数量矩阵I λ的特征值为主对角线.约当形矩阵约当块:形如⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=λλλλ111J 的n 阶矩阵称为n 阶约当块; 约当形矩阵:由若干个约当块组成的对角分块矩阵⎪⎪⎪⎭⎫ ⎝⎛=n J J J J 21i J 是约当块称为约当形矩阵. 定理:任何矩阵A 都相似于一个约当形矩阵,即存在n 阶可逆矩阵J AP P =-1.第六章 二次型二次型与对称矩阵只含有二次项的n 元多项式f 称为一个n 元二次型,简称二次型. 标准型:形如 的二次型,称为标准型.规范型:形如 的二次型,称为规范型.线性变换矩阵的合同:设AB 是n 阶方阵,若存在一个n 阶可逆矩阵C,使得 则称A 与B 是合同的,记作A B.合同的性质:反身性、对称性、传递性、秩、化二次型为标准型:配方法、做变换二次型中不含有平方项。

线性代数_第三章

线性代数_第三章
lts ks 0
这与1,2, . . .,s与线性无关矛盾.

推论1 两个等价的且线性无关的向量组,含有相 同个数的向量。

推论2 等价的向量组有相同的秩。

推论3 向量组(I)的秩为r1,向量组(II)的秩为r2,且
组(I)可由组(II)线性表出,则r1≤r2。
lts ks 0
于是
1 , 2 ,
k1 k2 b1 , b 2 , , s ks
l11 l12 l21 l22 , bt lt1 lt 2
l1s k1 0 l2 s k 2 0
第三章 向量组与线性方程组
§3.1 向量组的线性相关性
2 x1 3 x2 3 x3 5 x1 2 x2 x3 2 7 x2 x3 1
2 3 3 5 1 2 1 2 0 7 1 1

显然第三行是前两行的代数和; 也就是说,第三个方程能由前两 个方程“表示”;
4, (III) 1, 2, 3, 5, 且向量组的秩分别
为R(I)=R(II)=3, R(III)=4. 证明:向量组1, 2, 3, 5-4的秩为4.

证明: 由R(I)=R(II)=3得知向量组(I)线性无关,向
量组(II)线性相关,且4可由1, 2, 3,线性表出,
lm m 0
定理3 设m≤n,则m个n维向量1 ,2 ,
,m 线性无关的充
分必要条件是,其组成的矩阵的秩R(A)=m.即A为列满秩。
证:必要性. 因为Q可逆,必有l1,l2,…,lm不全为零, 这与1,2,…,m线性无关矛盾。 因此,R(A)=m。

线性代数[第三章n维向量]山东大学期末考试知识点复习

线性代数[第三章n维向量]山东大学期末考试知识点复习

线性代数[第三章n维向量]⼭东⼤学期末考试知识点复习第3章 n维向量⼀、n维向量的概念1.n维向量的定义由n个数a1,a2,…,a n所组成的⼀个有序数组α=(a1,a2,…,a n)称为⼀个n维向量,其中第i个数ai称为向量α的第i个分量(i=1,2,…,n).向量常⽤希腊字母α,β,γ,…来表⽰,其分量常⽤⼩写拉丁字母a,b,c,…来表⽰.2.零向量所有分量都是零的向量称为零向量.3.负向量向量α中的每个分量都变号后得到的向量,称为α的负向量,记为-α.4.向量相等两个向量相等的充要条件是它们的对应分量相等.⼆、向量的线性运算1.向量的加法设α=(a1,a2,…,a n),β=(b1,b2,…,b n),定义α+β为这两个向量的对应元素相加所得到的向量,即α+β=(a1+b1,a2+b2,…,a n+b n),并称其为向量的加法.2.数与向量的乘法设α=(a1,a2,…,a n),k∈R,则kα=(ka1,ka2,…,ka n)3.向量的减法设α=(a1,a2,…,a n),β=(b1,b2,…,b n),则α-β=(a1-b1,a2-b2,…,a n-b n).4.向量的线性运算向量的加法以及数与向量的乘法称为向量的线性运算.向量的线性运算满⾜以下⼋条运算规律:(1)α+β=β+α;(2)(α+β)+γ=α+(β+γ);(3)α+θ=α;(4)α+(-α)=θ;(5)1.α=α;(6)(kl)α=k(lα);(7)k(α+β)=kα+kβ;(8)(k+l)α=kα+lα三、向量的线性组合1.向量的线性组合的定义设β,α1,α2,…,αn是⼀组m维向量,如果存在数k1,k2,…,k n使得关系式β=k1α1+k2α2+…+k nαn成⽴,则称卢是向量组α1,α2,…,αn的线性组合,或称β可由向量组α1,α2,…,αn线性表⽰.2.⼏个常⽤结论(1)零向量可由任意同维向量组线性表⽰;(2)向量组中的任⼀向量可由该向量组线性表⽰;(3)任⼀n维向量α=(a1,a2,…,a n)都可由n维单位向量组ε1,ε2,…,ε线性表⽰,且α=a1ε1+a2ε2+…+a nεn.n四、向量组的等价1.定义设有两个向量组α1,α2,…,αm,(1)β1,β2,…,βn.(2)若向量组(1)中每个向量可以由向量组(2)线性表⽰,则称向量组(1)可由向量组(2)线性表⽰.若向量组(1)与向量组(2)可互相线性表⽰,则称两向量组等价,记作{α1,α2,…,αm}≌{β1,β2,…,βn}.2.向量组的等价性质向量组的等价满⾜反⾝性、对称性、传递性.五、向量组线性相关与线性⽆关1.定义设α1,α2,…,αn为n个m维向量,如果存在⼀组不全为零的数k1,k2,…,k n,使得k1α1+k2α2+…+k nαn=θ成⽴,则称向量组α1,α2,…,αn线性相关;否则,称向量组α1,α2,…,αn线性⽆关.线性⽆关的⼏种等价定义:(1)对任意⼀组不全为零的数k1,k2,…,k n,都有k1α1+k2α2+…+k nαn≠θ(2)k1α1+k2α2+…+k nαn=θ当且仅当k1,k2,…,k n全为零.2.⼏个常⽤结论(1)由⼀个向量α构成的向量组线性相关的充要条件是α=θ.(2)由两个向量构成的向量组线性相关的充要条件是其对应分量成⽐例.(3)含有零向量的任⼀向量组线性相关.(4)若⼀个向量组中有⼀个部分向量组线性相关,则该向量组线性相关;反之,若⼀个向量组线性⽆关,则它的任⼀部分组都线性⽆关.我们可把这个结论简单地记为“部分相关,整体相关;整体⽆关,部分⽆关”.(5)⼀个线性⽆关的向量组中的每个向量按相同的位置随意增加⼀些分量所得到的⾼维向量组仍线性⽆关.逆否命题:⼀个线性相关的向量组中的每个向量按相同的序号划去⼀些分量所得的低维向量组仍线性相关.(6)n维向量组α1,α2,…,αn线性⽆关的充要条件是D=det(α1,α2,…,αn)≠0;n维向量组α1,α2,…,αn线性相关的充要条件是D=det(α1,α2,…,αn)=0.(7)向量组α1,α2,…,αs(s≥2)线性相关的充要条件是其中⾄少有⼀个向量是其余s-1个向量的线性组合.(8)若向量组α1,α2,…,αs线性⽆关,⽽α1,α2,…,αs,β线性相关,则向量β可由向量组α1,α2,…,αs线性表⽰,且表⽰法惟⼀.(9)若向量组α1,α2,…,αs可由向量组β1,β2,…,βt线性表⽰,且s>t,则向量组α1,α2,…,αs线性相关.逆否命题:若向量组α1,α2,…,αs线性⽆关,且可由向量组β1,β2,…,βt线性表⽰,则s≤t.(10)m个n维向量组(m>n)必线性相关.(11)两个等价的线性⽆关的向量组必含有相同个数的向量.六、向量组的极⼤线性⽆关组1.极⼤线性⽆关组的概念向量组α1,α2,…,αr,αr+1,…,αs的部分组α1,α2,…,αr是极⼤⽆关组(1)α1,α2,…,αr线性⽆关;(2)α1,α2,…,αr,αr+1,…,αs中每个向量可由α1,α2,…,αr 线性表⽰.(1)α1,α2,…,αr线性⽆关;(2)α1,α2,…,αr,αr+1,…,αs中任意r+1个向量线性相关.2.关于极⼤线性⽆关组的常⽤结论(1)含⾮零向量的任⼀向量组⼀定存在极⼤⽆关组.(2)线性⽆关向量组的极⼤⽆关组是其⾃⾝、.(3)任何向量组均与其极⼤⽆关组等价.(4)⼀个向量组的任意两个极⼤⽆关组都含有相同个数的向量.七、向量组的秩1.向量组的秩的定义向量组α1,α2,…,αs的任⼀极⼤⽆关组所含向量的个数称为这个向量组的秩,记为r(α1,α2,…,αs).2.关于向量组的秩的常⽤结论(1)对任何向量组α1,α2,…,αs均有0≤r(α1,α2,…,αs)≤s;(2)向量组α1,α2,…,αs线性⽆关?r(α1,α2,…,αs)=s;(3)向量组α1,α2,…,αs线性相关?r(α1,α2,…,αs)(4)若向量组α1,α2,…,αs可由向量组β1,β2,…,βt线性表⽰,则r(α1,α2,…,αs)≤r(β1,β2,…,βt).特别地,若两向量组等价,则它们的秩相同;反之不真.(5)若向量组的秩为r,则其任何含r个向量的线性⽆关的部分组都是其极⼤线性⽆关组.⼋、矩阵的⾏秩与列秩1.定义矩阵A的⾏(列)向量组的秩称为A的⾏(列)秩.2.矩阵秩的性质(1)对任何矩阵A,都有A的⾏秩=A的列秩=r(A);(2)r(AB)≤min{r(A),r(B)};(4)r(A+B)≤r(A)+r(B).九、极⼤⽆关组的求法1.矩阵的初等⾏(列)变换不改变其列(⾏)向量间的线性关系2.求向量组α1,α2,…,αs的⼀个极⼤⽆关组的⽅法(1)以α1,α2,…,αs为列向量作矩阵A;(2)对A施以初等⾏变换化成阶梯形矩阵B,设r(B)=r,且B中第j1,j2,…,j r列有⼀个r阶⼦式不等于零,则αj1,αj2,…,αjr 即为所求向量组的⼀个极⼤⽆关组.3.求向量组α1,α2,…,αs的极⼤⽆关组并将其余向量⽤该极⼤⽆关组表出的⽅法(1)以α1,α2,…,αs为列向量作矩阵A;(2)对A施以初等⾏变换化成阶梯形矩阵B;(3)再通过初等⾏变换化为⾏简化阶梯形矩阵C,设矩阵C的第j1,j2,…,j r列为单位向量,则αj1,αj2,…,αjr即为所求向量组的⼀个极⼤⽆关组,且C 中列向量间的线性关系即为A中相应列向量间的线性关系.⼗*、向量空间1.向量空间的定义设V是⾮空的n维向量的集合,若集合V对于加法及数乘两种运算封闭,则称V是向量空间.2.向量空间的⽣成3.向量空间的相等若{α1,α2,…,αm}≌{β1,β2,…,βn},则span(α1,α2,…,αm)=span(β1,β2,…,βn).4.向量空间的⼦空间设有向量空间V1,V2,若V1?V2,则称V1是V2的⼦空间.5.向量空间的基及其维数设V是向量空间,如果存在r个向量α1,α2,…,αr∈V,满⾜(1)α1,α2,…,αr线性⽆关;(2)V中任⼀向量都可由α1,α2,…,αr线性表⽰;则称α1,α2,…,αr为V的⼀个基,r称为V的维数.⼗⼀、重点难点(⼀)重点(1)向量的线性运算可以看做是特殊矩阵的线性运算,它是后⾯讨论向量的线性组合、线性相关性等概念的基础,必须熟练掌握.(2)向量的线性组合、线性相关、线性⽆关的概念、性质及三者之间的关系定理是本章的重点,要熟练掌握三个概念及有关结论,详见内容提要;要深刻理解概念、定理的本质,熟练掌握线性相关和线性⽆关的有关性质及判别法,并能灵活应⽤.(3)向量组的极⼤⽆关组是特别重要的概念,它在向量组线性相关性的证明中往往能起到重要的作⽤;此外,还应当掌握求向量组的极⼤⽆关组的⽅法.(4)理解并掌握向量组的秩的概念,理解矩阵的秩与其⾏(列)向量组的秩的关系,熟练掌握求向量组的秩的⽅法,并能通过秩这⼀重要⼯具来判断向量组的线性相关性.(⼆)难点(1)向量组的线性相关性的证明.常见的⽅法有:定义法、利⽤有关结论及定理、利⽤齐次线性⽅程组有⽆⾮零解、利⽤向量组的秩与向量组所含向量的个数关系等.(2)向量组的秩与线性⽅程组有关理论的证明.。

线性代数 第3章 主要学习内容

线性代数 第3章 主要学习内容

求解线性方程组 首先要判断线性 方程组是否有解
若无解则结束
若有解则利用高斯消 元法化简方程组并求 得全体未知数的取值
实际上,高斯消元法通过对线性方程 组进行行变换,将其转化为三角形方 程组,然后再通过回代法求解出未知 数的值,由以下例题加以说明。
3.1 高斯消元法求解线性方程组
例1.《九章算术》第八章中介绍“方程术”的案例为:
方程组(3-11)的解为:
3.3 高斯消元法求逆矩阵
思考:可逆矩阵的乘积矩阵是否可逆?
3.3 高斯消元法求逆矩阵
解:由题意 根据例8的结果知
3.3 高斯消元法求逆矩阵
3.3 高斯消元法求逆矩阵
3.3 高斯消元法求逆矩阵
回顾与小结
1.逆矩阵的定义; 2.用逆矩阵的定义求方阵的逆矩阵; 3.用高斯消元法求方阵的逆矩阵。
“今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉, 实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗.问上、中、下禾实一秉各几何?”
将其翻译过来就是:现有上等谷子3捆,中等谷子2捆,下等谷子1捆,果实共计39斗; 上等谷子2捆,中等谷子3捆,下等谷子1捆,果实共计34斗;上等谷子1捆,中等谷子2捆, 下等谷子3捆,果实共计26斗,问上等、中等、下等谷子1捆分别是几斗?
3.1 高斯消元法求解线性方程组
解:利用高斯消元法从上往下消元依次为:
求解线性方程组首先要 判断线性方程组是否有 解,若无解则结束;若 有解,则利用高斯消元 法化简方程组并求得全 体未知数的取值
3.1 高斯消元法求解线性方程组
例3 求解线性方程组
3.1 高斯消元法求解线性方程组
解:利用高斯消元法从上往下消元依次为:

线性代数知识点总结(第3章)

线性代数知识点总结(第3章)

线性代数知识点总结(第3章)(一)向量的概念及运算1、向量的内积:(α,β)=αTβ=βTα2、长度定义:||α||=3、正交定义:(α,β)=αTβ=βTα=a1b1+a2b2+…+a n b n=04、正交矩阵的定义:A为n阶矩阵,AA T=E ←→ A-1=A T←→ A T A=E → |A|=±1 (二)线性组合和线性表示5、线性表示的充要条件:非零列向量β可由α1,α2,…,αs线性表示(1)←→非齐次线性方程组(α1,α2,…,αs)(x1,x2,…,x s)T=β有解。

★(2)←→r(α1,α2,…,αs)=r(α1,α2,…,αs,β)(系数矩阵的秩等于增广矩阵的秩,用于大题第一步的检验)6、线性表示的充分条件:(了解即可)若α1,α2,…,αs线性无关,α1,α2,…,αs,β线性相关,则β可由α1,α2,…,αs线性表示。

7、线性表示的求法:(大题第二步)设α1,α2,…,αs线性无关,β可由其线性表示。

(α1,α2,…,αs|β)→初等行变换→(行最简形|系数)行最简形:每行第一个非0的数为1,其余元素均为0(三)线性相关和线性无关8、线性相关注意事项:(1)α线性相关←→α=0(2)α1,α2线性相关←→α1,α2成比例9、线性相关的充要条件:向量组α1,α2,…,αs线性相关(1)←→有个向量可由其余向量线性表示;(2)←→齐次方程(α1,α2,…,αs)(x1,x2,…,x s)T=0有非零解;★(3)←→r(α1,α2,…,αs)<s 即秩小于个数特别地,n个n维列向量α1,α2,…,αn线性相关(1)←→ r(α1,α2,…,αn)<n(2)←→|α1,α2,…,αn |=0(3)←→(α1,α2,…,αn)不可逆10、线性相关的充分条件:(1)向量组含有零向量或成比例的向量必相关(2)部分相关,则整体相关(3)高维相关,则低维相关(4)以少表多,多必相关★推论:n+1个n维向量一定线性相关11、线性无关的充要条件向量组α1,α2,…,αs线性无关(1)←→任意向量均不能由其余向量线性表示;(2)←→齐次方程(α1,α2,…,αs)(x1,x2,…,x s)T=0只有零解(3)←→r(α1,α2,…,αs)=s特别地,n个n维向量α1,α2,…,αn线性无关←→r(α1,α2,…,αn)=n ←→|α1,α2,…,αn |≠0 ←→矩阵可逆12、线性无关的充分条件:(1)整体无关,部分无关(2)低维无关,高维无关(3)正交的非零向量组线性无关(4)不同特征值的特征向量无关13、线性相关、线性无关判定(1)定义法★(2)秩:若小于阶数,线性相关;若等于阶数,线性无关【专业知识补充】(1)在矩阵左边乘列满秩矩阵(秩=列数),矩阵的秩不变;在矩阵右边乘行满秩矩阵,矩阵的秩不变。

线性代数课件第三章

线性代数课件第三章
的元素都为零, 则称这个矩阵为标准形矩阵.
定理 任何矩阵都可经过单纯的初等行变换化为行
最简形矩阵. 任何矩阵都可经过初等变换化为标准形矩 阵.
下面我们还是通过例子来说明该定理.
单击这里开始
从上面的例子可见, 任何矩阵经单纯的初等行变换 必能化为行阶梯形矩阵和行最简形矩阵, 但不一定能化 成标准形矩阵, 如果再使用初等列变换, 则一定能化成 标准形矩阵. 将矩阵化为行阶梯形矩阵的方法不是唯一 的, 所得结果也不唯一. 但一个矩阵的标准形是唯一的, 这反映了矩阵的另一个属性, 即矩阵的秩的概念.
第三章 矩阵的初等变换与线性方程组
第一节 矩阵的初等变换 第二节 矩阵的秩 第三节 线性方程组的解 知识要点 释疑解难 习题课
第三章 矩阵的初等变换与线性方程组
本章先引进矩阵的初等变换, 建立矩阵的秩的概念; 然后利用矩阵的秩讨论齐次线性方程组有非零解的充要 条件和非齐次线性方程组有解的充要条件, 并介绍用初 等变换解线性方程组的方法.
(i) 对调两行(对调 i, j 两行, 记作 ri rj ); (ii) 以数 k 0 乘某一行中的所有元素
(第 i 行乘 k , 记作 ri k ); (iii) 把某一行所有元素的 k 倍加到另一行对应的元素 上去(第 j 行的 k 倍加到第 i 行上,记作 ri + krj).
把定义中的“行”换成“列”,即得矩阵的初等列变 定义换. 的矩阵的初等行变换与初等列变换, 统称初等变换.

①-② ②-③
x2 x3 3, x4 3,
② ③
(B5)
0 0. ④
至此消元结束, 且得到 (1) 的同解方程组 (B5), (B5) 是方程组 (1) 的所有同解方程组中最简单的一个, 其中
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【关键字】知识本章结构常用方法:1、矩阵化等价标准形,求出矩阵的秩,则标准形2、求矩阵的逆3、消元法求线性方程组的解增广矩阵行最简阶梯4、求矩阵的秩5、判断向量能否由向量组线性表示以为列向量的矩阵行最简阶梯6、求向量组的秩和一个极大无关组,并将其它向量用该极大无关组线性表示以为列向量的矩阵行最简阶梯7、用根底解系表示(非)齐次线性方程组的全部解增广矩阵行最简阶梯一、用消元法求解非齐次线性方程组1、,进而求出和2、观察和的关系:(1) ,方程组无解;(2) ,方程组有解:①、,方程组有唯一解;②、,方程组有无穷多个解.3、在有解的情况下,将阶梯形矩阵继续进行初等行变换,从最后一个非零首元开始将非零首元上面的元素消成零;4、写出相应的同解方程组,令自由未知量取任意常数,可得方程组的全部解。

定理3.1线性方程组有解,且当时方程组有唯一解;当,方程组有无穷多个解.二、用消元法求解齐次线性方程组:1、,进而求出;2、观察:(1) ,方程组有唯一解,即只有零解;(2) ,方程组有无穷多个解,即有非零解;3、在有解的情况下,将阶梯形矩阵继续进行初等行变换,从最后一个非零首元开始将非零首元上面的元素消成零;4、写出相应的同解方程组,令自由未知量取任意常数,可得方程组的全部解。

定理3.2齐次方程组有非零解推论当,即当方程个数小于未知元个数时,齐次线性方程组有非零解三、维向量的概念及线性运算(看作特殊的矩阵)书P121-123四、向量与向量组的线性组合(向量由向量组线性表示)对非齐次线性方程组,设,,则线性方程组可表示,从而.定义3.5 (P124)对于给定向量,如果存在一组数,使成立,则称向量是向量组的线性组合,或称向量可由向量组线性表示。

线性组合的判别定理设向量,向量,则五、向量组的线性相关性对齐次线性方程组,设,,则齐次线性方程组可表示为.它一定有零解,考虑其是否有非零解:定义3.7(P128)对于向量组,如果存在一组不全为零的数使成立,则称向量组线性相关;否则称向量组线性无关.注:(1)线性无关.(2)一个零向量线性相关;一个非零向量线性无关.(3)包含零向量的任何向量组都是线性相关的.(4)仅含两个向量的向量组线性相关的充分必要条件是这两个向量的分量对应成比例。

线性相关性的判定:设,则总结:验证向量组的线性相关性主要有以下两种方法: (1)、对于抽象向量组或比较特殊的向量组,可采用定义法:设,去验证要使得等式成立,是否必须全为零; (2)、对于具体的向量组, 以为列向量的矩阵,将矩阵的秩与向量个数作对比如果向量组中有一部分向量(部分组)线性相关,则整个向量组线性相关向量组()12,,,2s s ααα≥线性相关⇔其中至少有一个向量可以由其余1s -个向量线性表示。

若有向量组12,,,,s αααβ线性相关,而向量组12,,,s ααα线性无关,则向量β可由向量组12,,,s ααα线性表示且表示法唯一。

六、向量组间的线性组合与线性相关性(了解) 定义(P125) 设有两个向量组12:,,,s A ααα与12:,,,t B βββ,若向量组B 中的每一个向量都能由向量组A 线性表示,则称向量组B 能由向量组A 线性表示。

定义3.6(P126) 若向量组与向量组能相互线性表示,则称这两个向量组等价。

向量组间线性关系的判定:定理3.4(P126) 若向量组A 可由向量组线性表示,向量组B 可由向量组C 线性表示,则向量组A 可由向量组C 线性表示。

定理3.9(P133) 设有两个向量组12:,,,s A ααα与 12:,,,t B βββ,向量组()B 能由向量组()A 线性表示,如果s t <,则向量组()B 线性相关.另一种说法:向量组()B 能由向量组()A 线性表示,且向量组()B 线性无关,则t s ≤.推论(P134) 设向量组()A 与向量组()B 可以相互线性表示,且()A 与()B 都是线性无关的,则s t =. 定理3.12 设有两个向量组12:,,,s A ααα与 12:,,,t B βββ,如果向量组()A 与()B 等价,则七、向量组的秩1、极大无关组定义 设有向量组12:,,,s A ααα,若在A 能选出r 个向量12,,,j j jr ααα满足:(1)部分组012:,,,j j jr A ααα线性无关;(2)向量组A 中任意1r +个向量(若有的话)都线性相关, 则称向量组0A 是向量组A 的一个极大线性无关组(简称极大无关组) 注:(1)一个向量组12:,,,s A ααα的极大无关组12,,,j j jr ααα要满足以下几个条件:①、向量组12,,,j j jr ααα是向量组12:,,,s A ααα的一个线性无关的部分组;②、向量组12:,,,s A ααα的其余向量均可由向量组12,,,j j jr ααα线性表示或 向量组12:,,,s A ααα与向量组12,,,j j jr ααα等价(能够互相线性表示)2、向量组的秩定义 向量组12,,,s ααα的极大无关组所含向量的个数称为该向量组的秩,记为()12,,,s r ααα定理2 设A 为m n ⨯矩阵,则()r A r =的充分必要条件是:A 的列(行)秩为r . 推论1 矩阵A 的行秩等于列秩求一个向量组的极大无关组或秩,并将其余向量用此极大无关组线性表示的方法由该向量组构造矩阵A ,要求各向量作为A 的列向量,并将该矩阵化为行最简阶梯形矩阵,则非零行的行数即为向量组的秩,非零首元所在的列对应的列向量组成一个极大无关组,其余列向量的各分量即为由极大无关组线性表示的系数.八、线性方程组解的结构1、齐次线性方程组0m n A x ⨯=解的性质(1)如果12,ξξ是方程组0m n A x ⨯=的两个解,则12ξξ+也是它的解; (2)如果ξ是方程组0m n A x ⨯=的解,c 为常数,则c ξ也是它的解; (3)如果12,,,s ξξξ是方程组0m n A x ⨯=的解,则其线性组合1122s s c c c ξξξ+++也是它的解。

基础解系:解向量组的一个极大无关组(解+线性无关+其它解可由它们线性表示);基础解系的向量个数=n r -未知元个数系数矩阵的秩; 基础解系的线性组合表示齐次线性方程组的一个解(向量).2、用基础解系表示齐次线性方程组0m n A x ⨯=的全部解的步骤:(1)、将其系数矩阵通过初等行变换化为简化的阶梯形矩阵(化为阶梯形+回代),并判断方程组是否有非零解; (2)、在有非零解的情况下,写出与原方程组同解的方程组,并注明自由未知量12,,,r r n x x x ++;(3)、121212,,,,,,r r n r n r n x x x εεεξξξ++--⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭对自由未知量向量取值,得到方程组的基础解系(4)、1122n r n r c c c ξξξξ--=+++原方程组的全部解可表示为:,12n r c c c -其中,,,为任意常数3、非齐次线性方程组m n A x b ⨯=解的结构(1)如果η是非齐次方程组m n A x b ⨯=的一个解, ξ是其导出组0m n A x ⨯=的一个解,则ηξ+是m n A x b ⨯=的解; (2)如果12,ηη是非齐次方程组m n A x b ⨯=的两个解,则12ηη-是其导出组0m n A x ⨯=的解.定理 如果η是非齐次方程组m n A x b ⨯=的一个解, ξ是其导出组0m n A x ⨯=的全部解,则ηξ+是m n A x b ⨯=的全部解. 4、用基础解系表示非齐次线性方程组m n A x b ⨯=的全部解的步骤:(1)、将其增广矩阵通过初等行变换化为行最简阶梯形矩阵,并判断方程组是否有解;(2)、在有解的情况下,写出与原方程组同解的方程组,并注明自由未知量;(3)、让自由未知量向量12r r n x x x ++⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭取值000⎛⎫⎪⎪ ⎪ ⎪⎝⎭,得方程组的一个特解η; (4)、写出与原方程组的导出组(对应的齐次线性方程组)同解的方程组,让自由未知量1212,,,r r n r n x x x εεε++-⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭取值,得到导出组的基础解系12,,,n r ξξξ-;(5)、1122n r n r c c c ξηξξξ--=++++原方程组的全部解可表示为:,12n r c c c -其中,,,为任意常数.要点:1、(非)齐次线性方程组的消元解法例:书P116-119例2-例4;P120例5 2、(非)齐次线性方程组解的情况的充分必要条件例:P164第1、2、3题3、向量与向量组的线性组合的定义、与非齐次线性方程组是否有解的关系、判定 例:书P124-125例2-例5; P159第7题; P164第4题4、向量组线性相关、线性无关的定义、与齐次线性方程组是否有非零解的关系、判定及相关定理 例:书P129-131,例1-例6; P160第10、13、14题; P164-166第4-9题5、向量组的极大无关组、秩的概念,求向量组的一个极大无关组与秩,及将其它向量用该极大无关组线性表示 例:P138例1方法一; P161第17题; P165-166第10-14题6、基础解系的定义、向量个数、线性组合 例:书P166-167第18、19题7、(非)齐次线性方程组解的结构,用基础解系表示(非)齐次线性方程组的全部解 例:书P144例1、2; P148例4; P161第20、23-25题; P166第16题此文档是由网络收集并进行重新排版整理.word 可编辑版本!。

相关文档
最新文档