2020年高考理科数学原创专题卷:《导数及其应用》

合集下载

2020届山东省新高考高三优质数学试卷分项解析 专题04 一元函数导数及其应用(解析版)

2020届山东省新高考高三优质数学试卷分项解析 专题04 一元函数导数及其应用(解析版)

专题4 一元函数导数及其应用从高考对导数的要求看,考查分三个层次,一是考查导数公式,求导法则与导数的几何意义;二是导数的简单应用,包括求函数的单调区间、极值、最值等;三是综合考查,如研究函数零点、证明不等式、恒成立问题、求参数范围等.除压轴题,同时在小题中也加以考查,难度控制在中等以上.应特别是注意将导数内容和传统内容中有关不等式、数列、函数图象及函数单调性有机结合,设计综合题,考查学生灵活应用数学知识分析问题、解决问题的能力.预测2020年高考命题将保持稳定.主观题应用导数研究函数的性质,备考的面要注意做到全覆盖,如导数几何意义的应用、单调性问题、极(最)值问题、零点问题、不等式的证明、参数范围的确定等.一、单选题1.(2020届山东省烟台市高三上期末)函数sin y x x =+的部分图象可能是( )A .B .C .D .【答案】D 【解析】由题,x ∈R ,设()sin f x x x =+,则()()sin sin f x x x x x -=-+-=-,故函数不具有奇偶性,可排除A 、B ;当02x π>>时,()sin f x x x =+,所以()1cos 0f x x '=+>,则()sin 0f x x ''=-<,即在0,2x π⎛⎫∈ ⎪⎝⎭时,()f x 图像向上凸. 故选D2.(2020届山东省滨州市三校高三上学期联考)函数sin x xx xy e e -+=+的图象大致为( )A .B .C .D .【答案】B 【解析】 因为sin ()x x x xy f x e e -+==+,所以()sin sin ()x xx x x x x x f x e e e e---+----==++, 得()()f x f x =--,所以sin x xx xy e e -+=+为奇函数,排除C ;设()sin g x x x =+,'()1cos 0g x x ∴=-≥恒成立,所以在[0,)+∞,()sin g x x x =+单调递增,所以()0sin 00g x ≥+=,故sin 0x xx xy e e-+=≥+在[0,)+∞上恒成立,排除AD , 故选:B.3.(2020届山东师范大学附中高三月考)已知()21ln 2f x x a x =-在区间()0,2上有极值点,实数a 的取值范围是( ) A .()0,2 B .()()2,00,2-UC .()0,4D .()()4,00,4-U【答案】C 【解析】2()a x a f x x x x -'=-=,由于函数()f x 在(0,2)上有极值点,所以()f x '在(0,2)上有零点.所以02a a >⎧⎪,解得(0,4)a ∈. 故选:D.4.(2020届山东师范大学附中高三月考)已知偶函数()f x 的定义域为,22ππ⎛⎫- ⎪⎝⎭,其导函数为()f x ',当02x π<<时,有()cos ()sin 0f x x f x x '+<成立,则关于x 的不等式()2cos 4f x x π⎛⎫<⋅ ⎪⎝⎭的解集为( )A .,42ππ⎛⎫⎪⎝⎭B .,,2442ππππ⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭ C .,00,44ππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭D .,0,442πππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭【答案】B 【解析】 根据题意设()()cos f x g x x =,则2()cos ()sin ()cos f x x f x x g x x'+'=,又当02x π<<时,()cos ()sin 0f x x f x x '+<,则有()0g x '<,所以()g x 在0,2π⎛⎫ ⎪⎝⎭上单调递减,又()f x 在,22ππ⎛⎫- ⎪⎝⎭上是偶函数,所以()()()()cos()cos f x f x g x g x x x--===-,所以()g x是偶函数,所以()()4()cos 4cos 4cos cos 4f f x f x f x x x x ππππ⎛⎫ ⎪⎛⎫⎛⎫⎝⎭<→<⇒<⇒ ⎪ ⎪⎝⎭⎝⎭()4g x g π⎛⎫< ⎪⎝⎭,又()g x 为偶函数,且在0,2π⎛⎫ ⎪⎝⎭上为减函数,且定义域为,22ππ⎛⎫- ⎪⎝⎭,则有||4x π>,解得24x ππ-<<-或42x ππ<<,即不等式的解集为,,2442ππππ⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭, 故选:B.5.(2020·山东省淄博实验中学高三上期末)已知0.5log 5a =、3log 2b =、0.32c =、212d ⎛⎫= ⎪⎝⎭,从这四个数中任取一个数m ,使函数()32123x mx x f x =+++有极值点的概率为( ) A .14B .12C .34D .1【答案】B 【解析】f ′(x )=x 2+2mx +1, 若函数f (x )有极值点,则f ′(x )有2个不相等的实数根,故△=4m 2﹣4>0,解得:m >1或m <﹣1,而a =log 0.55<﹣2,0<b =log 32<1、c =20.3>1,0<d =(12)2<1, 满足条件的有2个,分别是a ,c , 故满足条件的概率p 2142==, 故选:B .6.(2020届山东实验中学高三上期中)已知定义在R 上的函数()f x 满足()()22f x f x +=-,且当2x >时,有()()()()2,11xf x f x f x f ''+>=若,则不等式()12f x x <-的解集是( ) A .(2,3) B .(),1-∞C .()()1,22,3⋃D .()(),13,-∞⋃+∞【答案】A 【解析】根据题意,设()(2)()g x x f x =-,则()()111g f =-=-,则有(2)(2)g x xf x +=+,(2)(2)g x f x -=--,即有(2)(2)g x g x +=--, 故函数()g x 的图象关于(2,0)对称, 则有()()311g g =-=,当2x >时,()(2)()g x x f x =-,()(2)()()g x x f x f x '=-'+, 又由当2x >时,()()2()x f x f x f x ''+>g ,即当2x >时,()0g x '>, 即函数()g x 在区间(2,)+∞为增函数, 由1()2f x x <-可得(2)()1x f x -<,即()()13g x g <=, 23x ∴<<,Q 函数()g x 的图象关于(2,0)对称,∴函数()g x 在区间(,2)-∞为增函数,由1()2f x x <-可得(2)()1x f x ->,即()1g x >,此时x 不存在, 故选:A .7.(2020届山东省潍坊市高三上学期统考)当直线10()kx y k k --+=∈R 和曲线E :325(0)3y ax bx ab =++≠交于112233()()()A x y B x y C x y ,,,,,123()x x x <<三点时,曲线E 在点A ,点C 处的切线总是平行的,则过点()b a ,可作曲线E 的切线的条数为( ) A .0 B .1 C .2 D .3【答案】C 【解析】直线()10kx y k k R --+=∈过定点()1,1 由题意可知:定点()1,1是曲线()325:03E y ax bx b =++≠的对称中心, 51313a b b a ⎧++=⎪⎪⎨⎪-=⎪⎩,解得131a b ⎧=⎪⎨⎪=-⎩,所以曲线3215:33E y x x =-+,()1,13b a ⎛⎫=- ⎪⎝⎭, f′(x )=22x x - ,设切点M (x 0,y 0), 则M 纵坐标y 0=32001533x x -+,又f′(x 0)=2002x x -, ∴切线的方程为:()()322000015y 233x x x x x x ⎛⎫--+=-- ⎪⎝⎭又直线过定点113⎛⎫- ⎪⎝⎭,()()322000011521333x x x x x ⎛⎫∴--+=--- ⎪⎝⎭,得30x ﹣03x -2=0,()()300210xx x --+=,即()()2000120x x x +--=解得:021x =-或 故可做两条切线 故选C8.(2020届山东省济宁市高三上期末)已知函数()()()ln 10f x x a x a a =+-+>,若有且只有两个整数12,x x 使得()10f x >,且()20f x >,则a 的取值范围是( )A .3ln 30,2+⎛⎫⎪⎝⎭ B .()0,2ln 2+C .3ln 3,2ln 22+⎡⎫+⎪⎢⎣⎭ D .2ln 243ln 3,32++⎡⎫⎪⎢⎣⎭【答案】C 【解析】()()()ln 10f x x a x a a =+-+>,()()1'1f x a x=+-,()()1ln111f a a =+-+= 当1a ≤时,函数单调递增,不成立; 当1a >时,函数在10,1a ⎛⎫ ⎪-⎝⎭上单调递增,在1,1a ⎛⎫+∞ ⎪-⎝⎭上单调递增;有且只有两个整数12,x x 使得()10f x >,且()20f x >,故()20f >且()30f ≤ 即ln 2220,ln 22a a a +-+>∴<+;ln 33ln 3330,2a a a ++-+≤∴≥ 故选:C . 二、多选题9.(2020届山东省潍坊市高三上学期统考)函数()()1,1,ln 1,1,x e x f x x x -⎧≤⎪=⎨->⎪⎩若函数()()g x f x x a =-+只有一个零点,则a 可能取的值有( ) A .2 B .2- C .0 D .1【答案】ABC 【解析】∵()()g x f x x a =-+只有一个零点, ∴函数()y f x =与函数y x a =-有一个交点,作函数函数()()1,1,ln 1,1,x e x f x x x -⎧≤⎪=⎨->⎪⎩与函数y x a =-的图象如下,结合图象可知,当0a ≤时;函数()y f x =与函数y x a =-有一个交点; 当0a >时,ln(1)y x =-,可得11y x '=-,令111x =-可得2x =,所以函数在2x =时,直线与ln(1)y x =-相切,可得2a =.综合得:0a ≤或2a =. 故选:ABC.10.(2020届山东省滨州市三校高三上学期联考)已知函数2,0()(1),0x x e mx m x f x e x x -⎧++<=⎨-≥⎩(e 为自然对数的底),若()()()F x f x f x =+-且()F x 有四个零点,则实数m 的取值可以为( ) A .1 B .e C .2e D .3e【答案】CD 【解析】因为()()()F x f x f x =+-,可得()()F x F x =-,即()F x 为偶函数, 由题意可得0x >时,()F x 有两个零点, 当0x >时,0x -<,()2xf x e mx m -=-+即0x >时,()22xxxxF x xe e e mx m xe mx m =-+-+=-+, 由()0F x =,可得20x xe mx m -+=,由(),21xy xe y m x ==-相切,设切点为(),tt te ,x y xe =的导数为(1)x y x e '=+,可得切线的斜率为(1)t t e +,可得切线的方程为(1)()tty te t e x t -=+-, 由切线经过点1,02⎛⎫ ⎪⎝⎭,可得1(1)2t tte t e t ⎛⎫-=+- ⎪⎝⎭, 解得:1t =或12-(舍去),即有切线的斜率为2e , 故22,m e m e >∴>, 故选:CD.11.(2020届山东师范大学附中高三月考)已知函数2()ln f x x x x =+,0x 是函数()f x 的极值点,以下几个结论中正确的是( ) A .010x e<< B .01x e>C .00()20f x x +<D .00()20f x x +>【答案】AC 【解析】函数2()l (),n 0f x x x x x =+>,()ln 12f x x x '∴=++,∵0x 是函数()f x 的极值点,∴()'00f x =,即00ln 120x x ∴++=,120f e e'⎛⎫∴=> ⎪⎝⎭,0,()x f x '→→-∞Q ,010x e∴<<,即A 选项正确,B 选项不正确;()()()2000000000002ln 2l 21n 0f x x x x x x x x x x x +=++==-+++<,即C 正确,D 不正确.故答案为:AC.12.(2020届山东实验中学高三上期中)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a =-(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是( )A .12B C .2e D【答案】BCD 【解析】Q 令函数21()()2T x f x x =-,因为2()()f x f x x -+=,22211()()()()()()()022T x T x f x x f x x f x f x x ∴+-=-+---=+--=,()T x ∴为奇函数,当0x „时,()()0T x f x x '='-<, ()T x ∴在(],0-∞上单调递减, ()T x ∴在R 上单调递减.Q 存在0{|()(1)}x x T x T x ∈-…, ∴得00()(1)T x T x -…,001x x -„,即012x „,()x g x e a =-Q ;1()2x „, 0x Q 为函数()y g x =的一个零点; Q当12x „时,()0x g x e '=-„, ∴函数()g x 在12x „时单调递减,由选项知0a >,取12x =<,又0g e⎛=> ⎝Q ,∴要使()g x 在12x „时有一个零点,只需使102g a ⎛⎫= ⎪⎝⎭„,解得a ,a ∴的取值范围为⎡⎫+∞⎪⎢⎪⎣⎭, 故选:BCD .13.(2020·山东省淄博实验中学高三上期末)关于函数()2ln f x x x=+,下列判断正确的是( ) A .2x =是()f x 的极大值点 B .函数()y f x x =-有且只有1个零点 C .存在正实数k ,使得()f x kx >成立D .对任意两个正实数1x ,2x ,且12x x >,若()()12f x f x =,则124x x +>. 【答案】BD 【解析】A .函数的 的定义域为(0,+∞), 函数的导数f ′(x )22212x x x x-=-+=,∴(0,2)上,f ′(x )<0,函数单调递减,(2,+∞)上,f ′(x )>0,函数单调递增,∴x =2是f (x )的极小值点,即A 错误;B .y =f (x )﹣x 2x =+lnx ﹣x ,∴y ′221x x =-+-1222x x x-+-=<0, 函数在(0,+∞)上单调递减,且f (1)﹣12=+ln 1﹣1=1>0,f (2)﹣21=+ln 2﹣2= ln 2﹣1<0,∴函数y =f (x )﹣x 有且只有1个零点,即B 正确; C .若f (x )>kx ,可得k 22lnx x x +<,令g (x )22lnx x x =+,则g ′(x )34x xlnxx-+-=, 令h (x )=﹣4+x ﹣xlnx ,则h ′(x )=﹣lnx ,∴在x ∈(0,1)上,函数h (x )单调递增,x ∈(1,+∞)上函数h (x )单调递减, ∴h (x )⩽h (1)<0,∴g ′(x )<0, ∴g (x )22lnxx x=+在(0,+∞)上函数单调递减,函数无最小值, ∴不存在正实数k ,使得f (x )>kx 恒成立,即C 不正确; D .令t ∈(0,2),则2﹣t ∈(0,2),2+t >2,令g (t )=f (2+t )﹣f (2﹣t )22t =++ln (2+t )22t ---ln (2﹣t )244t t =+-ln 22t t+-, 则g ′(t )()22222222222244822241648(4)2(2)(4)4(4)t t t t t t t t t t t t t ----++---=+⋅=+=-+----<0, ∴g (t )在(0,2)上单调递减, 则g (t )<g (0)=0, 令x 1=2﹣t ,由f (x 1)=f (x 2),得x 2>2+t , 则x 1+x 2>2﹣t +2+t =4, 当x 2≥4时,x 1+x 2>4显然成立,∴对任意两个正实数x 1,x 2,且x 2>x 1,若f (x 1)=f (x 2),则x 1+x 2>4,故D 正确 故正确的是BD , 故选:BD .14.(2020届山东省滨州市高三上期末)已知定义在0,2π⎡⎫⎪⎢⎣⎭上的函数()f x 的导函数为()f x ',且()00f =,()cos ()sin 0f x x f x x '+<,则下列判断中正确的是( )A .624f f ππ⎛⎫⎛⎫<⎪⎪⎝⎭⎝⎭B .ln03f π⎛⎫> ⎪⎝⎭C .63f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭D .43f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭【答案】CD 【解析】 令()()cos f x g x x =,0,2x π⎡⎫∈⎪⎢⎣⎭, 则2()cos ()sin ()cos f x x f x xg x x'+'=, 因为()cos ()sin 0f x x f x x '+<, 所以2()cos ()sin ()0cos f x x f x x g x x '+'=<在0,2π⎡⎫⎪⎢⎣⎭上恒成立,因此函数()()cos f x g x x =在0,2π⎡⎫⎪⎢⎣⎭上单调递减, 因此64g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,即64cos cos64f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>,即624f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故A 错;又()00f =,所以(0)(0)0cos0f g ==,所以()()0cos f x g x x =≤在0,2π⎡⎫⎪⎢⎣⎭上恒成立, 因为ln0,32ππ⎡⎫∈⎪⎢⎣⎭,所以ln 03f π⎛⎫< ⎪⎝⎭,故B 错; 又63g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以63coscos63f f ππππ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭>,即63f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故C 正确;又43g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以43coscos43f f ππππ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭>,即43f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故D 正确;故选:CD.15.(2020届山东省临沂市高三上期末)已知函数()sin cos f x x x x x =+-的定义域为[)2,2ππ-,则( )A .()f x 为奇函数B .()f x 在[)0,π上单调递增C .()f x 恰有4个极大值点D .()f x 有且仅有4个极值点 【答案】BD 【解析】因为()f x 的定义域为[)2,2ππ-,所以()f x 是非奇非偶函数,()sin cos f x x x x x =+-Q()()1cos cos sin 1sin f x x x x x x x '∴=+--=+,当[)0,x Îp 时,()0f x '>,则()f x 在[)0,p 上单调递增. 显然()00f '≠,令()0f x '=,得1sin x x=-, 分别作出sin y x =,1y x=-在区间[)2,2ππ-上的图象,由图可知,这两个函数的图象在区间[)2,2ππ-上共有4个公共点,且两图象在这些公共点上都不相切,故()f x 在区间[)2,2ππ-上的极值点的个数为4,且()f x 只有2个极大值点.故选:BD .16.(2020届山东省泰安市高三上期末)已知函数()f x 是定义在R 上的奇函数,当0x <时,()()1x f x e x =+,则下列命题正确的是( )A .当0x >时,()()1xf x e x -=--B .函数()f x 有3个零点C .()0f x <的解集为()(),10,1-∞-⋃D .12,x x R ∀∈,都有()()122f x f x -< 【答案】BCD 【解析】(1)当0x >时,0x -<,则由题意得()()1xf x e x --=-+,∵ 函数()f x 是奇函数,∴ ()00f =,且0x >时,()()f x f x =--()1x ex -=--+()1x e x -=-,A 错;∴ ()()()1,00,01,0x x e x x f x x e x x -⎧+<⎪==⎨⎪->⎩,(2)当0x <时,由()()10xf x e x =+=得1x =-,当0x >时,由()()10xf x ex -=-=得1x =,∴ 函数()f x 有3个零点1,0,1-,B 对; (3)当0x <时,由()()10xf x e x =+<得1x <-,当0x >时,由()()10xf x ex -=-<得01x <<,∴ ()0f x <的解集为()(),10,1-∞-⋃,C 对; (4)当0x <时,由()()1xf x e x =+得()()'2x f x e x =+,由()()'20xf x ex =+<得2x <-,由()()'20x f x e x =+≥得20x -≤<,∴ 函数()f x 在(],2-∞-上单调递减,在[)2,0-上单调递增, ∴函数在(),0-∞上有最小值()22f e --=-,且()()1xf x ex =+()0011e <⋅+=,又∵ 当0x <时,()()10xf x ex =+=时1x =-,函数在(),0-∞上只有一个零点,∴当0x <时,函数()f x 的值域为)2,1e -⎡-⎣,由奇函数的图象关于原点对称得函数()f x 在R 的值域为()221,,1e e --⎤⎡-⋃-⎦⎣()1,1=-, ∴ 对12,x x R ∀∈,都有()()122f x f x -<,D 对;故选:BCD . 三、填空题17.(2020·全国高三专题练习(文))设点P 是曲线2x y e x =+上任一点,则点P 到直线10x y --=的最小距离为__________.【解析】由题,过点P 作曲线2x y e x =+的切线,则2xy e x '=+,设点()00,P x y ,则002xk e x =+,当切线与直线10x y --=平行时点P 到该直线距离最小,则0021xe x +=,即00x =,所以点P 为()0,1,则点P 到直线10x y --==,18.(2020届山东省滨州市高三上期末)曲线(1)xy x e =+在点(0,1)处的切线的方程为__________.【答案】21y x =+ 【解析】(2)212,21x y x e k y x y x =+∴=∴=='-+Q19.(2020届山东省九校高三上学期联考)直线y x =与曲线()2ln y x m =+相切,则m =__________. 【答案】22ln 2- 【解析】函数()2ln y x m =+的导函数2y x m'=+, 设切点坐标00(,)x y ,则()0002ln 21x x m x m=+=+⎧⎪⎨⎪⎩,解得:02ln 2,22ln 2x m ==-. 故答案为:22ln 2-20.(2020·山东省淄博实验中学高三上期末)已知函数()()()212ln f x a x x =---.若函数()f x 在10,2⎛⎫ ⎪⎝⎭上无零点,则a 的最小值为________.【答案】24ln 2- 【解析】因为()0f x <在区间10,2⎛⎫ ⎪⎝⎭上恒成立不可能,故要使函数()f x 在10,2⎛⎫ ⎪⎝⎭上无零点,只要对任意的10,2x ⎛⎫∈ ⎪⎝⎭,()0f x >恒成立,即对任意的10,2x ⎛⎫∈ ⎪⎝⎭,2ln 21x a x >--恒成立.令()2ln 21x l x x =--,10,2x ⎛⎫∈ ⎪⎝⎭,则()()222ln 2'1x x l x x +-=-, 再令()22ln 2m x x x =+-,10,2x ⎛⎫∈ ⎪⎝⎭,则()()22212'20x x x xm x ---==+<, 故()m x 在10,2⎛⎫ ⎪⎝⎭上为减函数,于是()122ln 202m x m ⎛⎫>=->⎪⎝⎭, 从而()'0l x >,于是()l x 在10,2⎛⎫ ⎪⎝⎭上为增函数,所以()124ln 22l x l ⎛⎫<=- ⎪⎝⎭, 故要使2ln 21xa x >--恒成立,只要[)24ln 2,a ∈-+∞, 综上,若函数()f x 在10,2⎛⎫⎪⎝⎭上无零点,则a 的最小值为24ln 2-.故答案为:24ln 2-21.(2020届山东省泰安市高三上期末)设函数()f x 在定义域(0,+∞)上是单调函数,()()0,,x x f f x e x e ⎡⎤∀∈+∞-+=⎣⎦,若不等式()()f x f x ax '+≥对()0,x ∈+∞恒成立,则实数a 的取值范围是______. 【答案】(],21e -∞- 【解析】由题意可设()xf x e x t -+=,则()xf x e x t =-+,∵()xf f x e x e ⎡⎤-+=⎣⎦,∴()ttf t e t t e e =-+==,∴1t =,∴()1xf x e x =-+,∴()1xf x e '=-,由()()f x f x ax '+≥得11x x e x e ax -++-≥,∴21xe a x≤-对()0,x ∈+∞恒成立,令()21xe g x x =-,()0,x ∈+∞,则()()221'x e x g x x-=, 由()'0g x =得1x =,∴()g x 在()0,1上单调递减,在()1,+∞单调递增, ∴()()121g x g e ≥=-, ∴21a e ≤-,故答案为:(],21e -∞-.22.(2020届山东省枣庄市高三上学期统考)关于函数()2ln f x x x=+,下列判断正确的是( ) A .2x =是()f x 的极大值点 B .函数()y f x x =-有且只有1个零点 C .存在正实数k ,使得()f x kx >恒成立D .对任意两个正实数1x ,2x ,且21x x >,若()()12f x f x =,则124x x +> 【答案】BD 【解析】(1)()f x 的定义域为()0,∞+,()'22x f x x -=,所以()f x 在()0,2上递减,在()2,+∞上递增,所以2x =是()f x 的极小值点.故A 选项错误.(2)构造函数()()()2ln 0g x f x x x x x x =-=+->,()()2'22x x g x x --+=2217240x x⎡⎤⎛⎫--+⎢⎥⎪⎝⎭⎢⎥⎣⎦=<,所以()g x 在()0,∞+上递减.而()1ln 210g =+>,()2ln 210g =-<,()()120g g ⋅<.所以()g x 有且只有一个零点.故B 选项正确.(3)构造函数()()()2ln 0,0h x f x kx x kx x k x =-=+->>.()2'22kx x h x x-+-=,由于0k -<,22y kx x =-+-开口向下,0x →和x →+∞时,220y kx x =-+-<,即()2'220kx x h x x-+-=<,x →+∞时()0h x <,故不存在正实数k ,使得()f x kx >恒成立,C 选项错误.(4)由(1)知,()f x 在()0,2上递减,在()2,+∞上递增, 2x =是()f x 的极小值点.由于任意两个正实数1x ,2x ,且21x x >,()()12f x f x =,故1202x x <<<.令211x t x =>,21x tx =.由()()12f x f x =得121222ln ln x x x x +=+,即2121212ln x x x x x x -⋅=,即()11112ln t x t x tx -⋅=⋅,解得()121ln t x t t-=⋅,则()2121ln t t x tx t t -==⋅.所以21222ln t x x t t-+=⋅.要证124x x +>,即证1240x x +->,即证2222224ln 40ln ln t t t t t t t t----=>⋅⋅,由于1t >,所以ln 0t t >,故即证()2224ln 01t t t t -->>①.构造函数()()2224ln 1h t t t t t =--≥(先取1t ≥),()10h =;()'44ln 4h t t t =--,()'10h =;()()''41440t h t t t-=-=>.所以()'h t 在[)1,+∞上为增函数,所以()()''10h t h ≥=,所以()h t 在[)1,+∞上为增函数,所以()()10h t h ≥=.故当1t >时,()0h t >.即证得①成立,故D 选项正确. 故选:BD.23.(2020届山东省枣庄市高三上学期统考)已知函数()ex x f x =(e是自然对数的底数),则函数()f x 的最大值为______;若关于x 的方程()()22210f x tf x t ++-=⎡⎤⎣⎦恰有3个不同的实数解,则实数t 的取值范围为______. 【答案】1e e 11,2e 2-⎛⎫⎪⎝⎭ 【解析】(1)()f x 的定义域为R ,()'1xx f x e -=,故()f x 在(),1-∞上递增,在()1,+∞上递减,所以()11f e=是()f x 的极大值也即是最大值.(2)由(1)知()f x 在(),1-∞上递增,在()1,+∞上递减,最大值为()11f e=. 当0x >时()0f x >,当0x =时,()0f x =,当0x <时,()0f x <. 由()()22210f x tf x t ++-=⎡⎤⎣⎦,即()()2110f x t f x +-+=⎡⎤⎡⎤⎣⎦⎣⎦. 由上述分析可知()()10,1f x f x +==-有一个解1x .故需()()210,12f x t f x t +-==-有两个不同的解,由上述分析可知1012t e <-<,解得1122e t e -<<.所以实数t 的取值范围是e 11,2e 2-⎛⎫⎪⎝⎭. 故答案为:(1)1e ;(2)e 11,2e 2-⎛⎫⎪⎝⎭. 四、解答题24.(2020届山东省临沂市高三上期末)已知函数()()2ln 1sin 1f x x x =+++,函数()1ln g x ax b x =--(,,0a b ab ∈≠R ). (1)讨论()g x 的单调性;(2)证明:当0x ≥时,()31f x x ≤+. (3)证明:当1x >-时,()()2sin 22exf x x x <++.【答案】(1)答案不唯一,具体见解析(2)证明见解析(3)证明见解析 【解析】(1)解:()g x 的定义域为()0,∞+,()a g x x bx'=-, 当0a >,0b <时,()0g x '>,则()g x 在()0,∞+上单调递增; 当0a >,0b >时,令()0g x '>,得b x a >,令()0g x '<,得0b x a <<,则()g x 在0,b a ⎛⎫⎪⎝⎭上单调递减,在,b a ⎛⎫+∞⎪⎝⎭上单调递增;当0a <,0b >时,()0g x '<,则()g x 在()0,∞+上单调递减; 当0a <,0b <时,令()0g x '>,得0b x a <<,令()0g x '<,得b x a >,则()g x 在0,b a ⎛⎫⎪⎝⎭上单调递增,在,b a ⎛⎫+∞⎪⎝⎭上单调递减; (2)证明:设函数()()()31h x f x x =-+,则()2cos 31x x h x '=+-+. 因为0x ≥,所以(]20,21x ∈+,[]cos 1,1x ∈-, 则()0h x '≤,从而()h x 在[)0,+∞上单调递减,所以()()()()3100h x f x x h =-+≤=,即()31f x x ≤+. (3)证明:当1a b ==时,()1ln g x x x =--.由(1)知,()()min 10g x g ==,所以()1ln 0g x x x =--≥, 即1ln x x ≥+.当1x >-时,()210x +>,()2sin 1e 0x x +>,则()()22sin sin 1e 1ln 1e xx x x ⎡⎤++≥+⎣⎦, 即()()2sin 1e 2ln 1sin 1x x x x ++++≥,又()()22sin sin 22e1e xx x x x ++>+, 所以()()2sin 22e2ln 1sin 1xx x x x ++>+++,即()()2sin 22exf x x x <++.25.(2020届山东省潍坊市高三上期中)已知函数()32112f x x x ax =-++. (1)当2a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若函数()1f x x =在处有极小值,求函数()f x 在区间32,2⎡⎤-⎢⎥⎣⎦上的最大值.【答案】(1)210x y -+=;(2)4927. 【解析】(1)当2a =时,321()212f x x x x =-++,2()32f x x x '=-+, 所以(0)2f '=,又(0)1f =,所以曲线()y f x =在点()()0,0f 处切线方程为12y x -=,即210x y -+=. (2)因为2()3f x x x a '=-+,因为函数()1f x x =在处有极小值,所以(1)202f a a '=+=⇒=-, 所以2()32f x x x '=-- 由()0f x '=,得23x =-或1x =, 当23x <-或1x >时,()0f x '>, 当213x -<<时,()0f x '<, 所以()f x 在22,3⎛⎫--⎪⎝⎭,31,2⎛⎫ ⎪⎝⎭上是增函数,在2,13⎛⎫- ⎪⎝⎭上是减函数, 因为249327f ⎛⎫-=⎪⎝⎭,3124f ⎛⎫= ⎪⎝⎭, 所以()f x 的最大值为249327f ⎛⎫-= ⎪⎝⎭. 26.(2019·夏津第一中学高三月考)已知函数()()11ln f x x m x m R x x ⎛⎫=+-+∈ ⎪⎝⎭. (1)当1m >时,讨论()f x 的单调性; (2)设函数()()1m g x f x x-=+,若存在不相等的实数1x ,2x ,使得()()12g x g x =,证明:120m x x <<+.【答案】(1)见解析;(2)详见解析. 【解析】(1)函数()f x 的定义域为(0,)+∞.'21()1m m f x x x -=+-2221(1)[(1)]x mx m x x m x x-+----==, 因为1m >,所以10m ->,①当011m <-<,即12m <<时,由()0f x '>得1x >或1x m <-,由()0f x '<得11m x -<<, 所以()f x 在()0,1m -,()1,+∞上是增函数, 在()1,1m -上是减函数; ②当11m -=,即2m =时()0f x '≥,所以()f x 在()0,∞+上是增函数;③当11m ->,即2m >时,由()0f x '>得1x m >-或1x <,由()0f x '<得11x m <<-,所以()f x 在()0,1,()1,m -+∞.上是增函数,在()1,1m -.上是减函综上可知:当12m <<时()f x 在()0,1m -,()1,+∞上是单调递增,在()1,1m -上是单调递减; 当2m =时,()f x 在()0,∞+.上是单调递增;当2m >时()f x 在()0,1,()1,m -+∞上是单调递增,在()1,1m -上是单调递减. (2)1()()ln m g x f x x m x x -=+=-,()1mg x x'=-, 当0m ≤时,()0g x '> ,所以()g x 在()0,∞+上是增函数,故不存在不相等的实数1x ,2x ,使得()()12 g x g x =,所以0m >.由()()12 g x g x =得1122ln ln x m x x m x -=-,即()2121ln ln m x x x x -=-, 不妨设120x x <<,则21210ln ln x x m x x -=>-,要证12m x x <+,只需证211221ln ln x x x x x x -<+-,即证212112ln ln x xx x x x -<-+,只需证2122111ln 1x x x x x x -<+,令211x t x =>,只需证1ln 1t t t -<+,即证10l 1n t t t -->+, 令1()ln (1)1t h t t t t -=->+,则222121()0(1)(1)t h t t t t t +'=-=>++, 所以()h t 在()1,+∞上是增函数,所以()(1)0h t h >=,从而10l 1n t t t -->+,故120m x x <<+. 27.(2020届山东省泰安市高三上期末)已知函数()xf x e ax =-. (1)当0a >时,设函数()f x 的最小值为()g a ,证明:()1g a ≤; (2)若函数()()212h x f x x =-有两个极值点()1212,x x x x <,证明:()()122h x h x +>. 【答案】(1)证明见解析 (2)证明见解析 【解析】(1)()()0xf x e a a '=->,令()0f x '=,解得ln x a =,当ln x a >时,()0f x '>,当ln x a <时,()0f x '<,()()min ln ln f x f a a a a ∴==-,()()ln 0g a a a a a ∴=->,令()()ln 0g x x x x x =->,则()ln g x x '=-, 令()0g x '=,解得1x =,∴当()0,1x ∈时,()0g x '>,当()1x ∈+∞,时,()0g x '<,()()max 11g x g ∴==,()1g x ∴≤,∴当0a >时,()1g a ≤;(2)()212xh x e ax x =--,()x h x e a x '=--, 令()xx e a x ϕ=--,则()1xx e ϕ'=-,令()0x ϕ'=,解得0x =,当0x >时,()0x ϕ'>,当0x <时,()0x ϕ'<,()()min 01x a ϕϕ∴==-,又函数()h x 有两个极值点,则10a -<,1a ∴>,且120x x <<,∴当()1x x ∈-∞,时,()h x 单调递增,当()10x x ∈,时,()h x 单调递减,∴当()0x ∈-∞,时,()()1h x h x ≤, 又()2,0x -∈-∞,()()21h x h x ∴-≤,()()()()22212222x x h x h x h x h x e e x -∴+≥-+=+-,令()()20xxm x e ex x -=+-≥,则()12x x m x e x e'=--, 令()()n x m x '=,则()120xx n x e e'=+-≥, ()n x ∴在[)0,+∞上单调递增,()()()00m x n x n '∴=≥=, ()m x ∴在[)0,+∞上单调递增,()()02m x m ∴≥=,20x >Q ,()222222x x m x e e x -∴=+->,即()()222h x h x -+>,()()122h x h x ∴+>.28.(2020·山东省淄博实验中学高三上期末)设函数()()ln 1f x ax bx =++,()()2g x f x bx =-.(1)若1a =,1b =-,求函数()f x 的单调区间;(2)若曲线()y g x =在点()1,ln3处的切线与直线1130x y -=平行. ①求a ,b 的值;②求实数()3k k ≤的取值范围,使得()()2g x k x x >-对()0,x ∈+∞恒成立.【答案】(1)()f x 的单调增区间为()1,0-,单调减区间为()0,+?(2)①23a b =⎧⎨=-⎩②[]1,3k ∈【解析】(1)当1a =,1b =-时,()()()ln 11f x x x x =+->-, 则()111'1xx xx f --=++=.当()'0f x >时,10x -<<; 当()'0f x <时,0x >;所以()f x 的单调增区间为()1,0-,单调减区间为()0,+?.(2)①因为()()()()22ln 1g x f x bx ax b x x=-=++-,所以()()'121a g x b x ax =+-+,依题设有()()()1ln 111'13g a g =+⎧⎪⎨=⎪⎩,即()ln 1ln 31113a a b a+=⎧⎪⎨-=⎪+⎩. 解得23a b =⎧⎨=-⎩.②()()()2ln 123g x x x x=+--,1,2x ⎛⎫∈-+∞ ⎪⎝⎭. ()()2g x k x x >-对()0,x ∈+∞恒成立,即()()20g x k x x -->对()0,x ∈+∞恒成立. 令()()()2F x g x k x x =--,则有()()2431'12k x k F x x-+-=+. 当13k ≤≤时,当()0,x ∈+∞时,()'0F x >, 所以()F x 在()0,+?上单调递增.所以()()00F x F >=,即当()0,x ∈+∞时,()()2g x k x x >-;当1k <时,当x ⎛∈ ⎝时,()'0F x <,所以()F x在⎛ ⎝上单调递减,故当x ⎛∈ ⎝时,()()00F x F <=,即当()0,x ∈+∞时,()()2g x k x x >-不恒成立. 综上,[]1,3k ∈.29.(2020届山东省潍坊市高三上学期统考)已知函数()()245x af x x x a R e=-+-∈. ()Ⅰ若()f x 在(),-∞+∞上是单调递增函数,求a 的取值范围;()Ⅱ设()()x g x e f x =,当m 1≥时,若()()()122g x g x g m +=,且12x x ≠,求证:122x x m +<.【答案】(1)[)2,a e ∈+∞(2)见解析 【解析】解:()1 Q ()f x 在(),-∞+∞上是单调递增函数,∴在x R ∈上,()240x af x x e=-+≥'恒成立,即:()42x a x e ≥-∴设()()42x h x x e =- R x ∈ ∴ ()()22x h x x e =-',∴当(),1x ∈-∞时()0h x '>,∴ ()h x 在(),1x ∈-∞上为增函数, ∴当()1,x ∈+∞时()0h x '<,∴ ()h x 在()1,x ∈+∞上为减函数, ∴ ()()max 12h x h e ==Q ()max42xa x e ⎡⎤≥-⎣⎦∴ 2a e ≥, 即[)2,a e ∈+∞ .()2方法一:因为()()245x g x e x x a =-+-,所以()()2'10x g x e x =-≥, 所以()g x 在(),-∞+∞上为增函数,因为()()()122g x g x g m +=,即()()()()12g x g m g m g x -=-,()()()()12g x g m g m g x --和同号,所以不妨设12x m x <<,设()()()()22(1)h x g m x g x g m x m =-+->≥,…8分 所以()()()222'211m x x h x e m x e x -=---+-,因为2m x x e e -<,()()()()2221122220m x x m m x ----=--≤, 所以()'0h x >,所以()h x 在(),m +∞上为增函数,所以()()0h x h m >=,所以()()()()222220h x g m x g x g m =-+->, 所以()()()()22122g m x g m g x g x ->-=, 所以212m x x ->,即122x x m +<. 方法二:Q ()()()245x x g x e f x x x e a ==-+-()()()122g x g x g m += [)1,m ∈+∞,∴ ()()()12222112245452452x x m x x e a x x e a m m e a -+-+-+-=-+- ∴ ()()()1222211224545245x x m x x e x x e m m e -++-+=-+∴设()()245x x x x e ϕ=-+ x R ∈,则()()()122x x m ϕϕϕ+=, ∴ ()()210x x x e ϕ'=-≥ ∴ ()x ϕ在x R ∈上递增且()10ϕ'=令()1,x m ∈-∞,()2,x m ∈+∞设()()()F x m x m x ϕϕ=++-, ()0,x ∈+∞,∴ ()()()2211m x m x F x m x e m x e +----'=+- Q 0x >∴ 0m x m x e e +->>,()()()22112220m x m x m x +----=-≥ ∴ ()0F x '>, ()F x 在()0,x ∈+∞上递增, ∴ ()()()02F x F m ϕ>=,∴ ()()()2m x m x m ϕϕϕ++->,()0,x ∈+∞令1x m x =-∴ ()()()112m m x m m x m ϕϕϕ+-+-+>即:()()()1122m x x m ϕϕϕ-+> 又Q()()()122x x m ϕϕϕ+=,∴ ()()()()12222m x m x m ϕϕϕϕ-+->即:()()122m x x ϕϕ-> Q ()x ϕ在x R ∈上递增∴ 122m x x ->,即:122x x m +<得证.30.(2020届山东省潍坊市高三上期末)已知函数()()2(,)1xf x ae x a Rg x x =--∈=.(1)讨论函数()f x 的单调性;(2)当0a >时,若曲线()1:1C y f x x =++与曲线()2:C y g x =存在唯一的公切线,求实数a 的值;(3)当1,0a x =≥时,不等式()()1f x kxln x ≥+恒成立,求实数k 的取值范围. 【答案】(1)见解析(2)24a e =(3)1,2⎛⎤-∞ ⎥⎝⎦【解析】(1)()1xf x ae '=-,当0a ≤时,()'0f x <恒成立,()f x 在()-∞+∞,上单调递减, 当0a >时,由()'0f x =,解得x lna =-, 由于0a >时,导函数()1xf x ae '=-单调递增,故 ()x lna ∈-∞-,,()()0,f x f x '<单调递减, ()()(),,0,x lna f x f x '∈-+∞>单调递增. 综上,当0a ≤时()f x 在()-∞+∞,上单调递减; 当0a >时, ()f x 在()lna -∞-,上单调递减,在,()lna -+∞上单调递增. . (2)曲线11:x C y ae =与曲线222:C y x =存在唯一公切线,设该公切线与12,C C 分别切于点()()12122,,,x x ae x x ,显然12xx ≠.由于12','2xy ae y x ==,所以11222122x x ae x ae x x x -==-,1222212222222x x x x ae x x x -=-=- , 2122222x x x x ∴-=由于0a >,故20x >,且21220x x =-> 因此11x >,此时()111214(2 1)1x x x x a x e e -==>, 设()()1 4()1xx F x x e =>-问题等价于直线y a =与曲线()y F x =在1x >时有且只有一个公共点, 又()4(2 )xx F x e-'=,令()'0F x =,解得2x =, 则()F x 在()1,2上单调递增,(2,)+∞上单调递减, 而()()242,10F F e==,当x →+∞时,()0F x → 所以()F x 的值域为240,e ⎛⎤ ⎥⎝⎦. 故24a e =. (3)当1a =时,()1xf x e x =--,问题等价于不等式()11x e x kxln x --≥+,当0x ≥时恒成立.设()()110()xh x e x kxln x x =---+≥,()00h =,又设()()()' 1 11) 0(xx m x h x e k ln x x x ⎡⎤==--++≥⎢⎥+⎣⎦则()()211'11xm x e k x x ⎡⎤=-+⎢⎥++⎢⎥⎣⎦而()'012m k =-. (i)当120k -≥时,即12k ≤时, 由于0,1xx e ≥≥,()()2211111112111k x x x x ⎡⎤⎡⎤+≤+≤⎢⎥⎢⎥++++⎢⎥⎢⎥⎣⎦⎣⎦此时()()'0,m x m x ≥在[0,)+∞上单调递增. 所以()()00m x m ≥=即()'0h x ≥,所以()h x 在[0,)+∞上单调递增 所以()()00h x h ≥=, 即()110xe x kxln x ---+≥,故12k ≤适合题意.(ii)当12k >时,()'00m <, 由于()()21111xm x e k x x ⎡⎤'=-+⎢⎥++⎢⎥⎣⎦在[0,)+∞上单调递增, 令()20x ln k =>,则()()211'222201ln 21ln 2m ln k k k k k x x ⎡⎤=-+>-=⎢⎥++⎢⎥⎣⎦, 故在()0,ln 2k 上存在唯一o x ,使()'0o m x =, 因此当()00,x x ∈时,()()'0,m x m x <单调递减, 所以()()00m x m <=,即()()'0,h x h x ≤在()00,x 上单调递减, 故()()00h x h <=,亦即()1 10xe x hxln x ---+<,故12k >时不适合题意, 综上,所求k 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦. 31.(2020届山东省枣庄、滕州市高三上期末)已知函数()ln(2)f x x a =+(0,0)x a >>,曲线()y f x =在点(1,(1))f 处的切线在y 轴上的截距为2ln 33-. (1)求a ;(2)讨论函数()()2g x f x x =-(0)x >和2()()21xh x f x x =-+(0)x >的单调性; (3)设12,5a =()1n n a f a +=,求证:1521202n nn a +-<-<(2)n ≥. 【答案】(1)1a = (2)()()2g x f x x =-(0)x >为减函数,2()()12xh x f x x=-+(0)x >为增函数. (3)证明见解析 【解析】(1)对()ln(2)f x x a =+求导,得2()2f x x a'=+.因此2(1)2f a'=+.又因为(1)ln(2)f a =+, 所以曲线()y f x =在点(1,(1)f 处的切线方程为2ln(2)(1)2y a x a -+=-+, 即22ln(2)22y x a a a=++-++. 由题意,22ln(2)ln 323a a +-=-+. 显然1a =,适合上式. 令2()ln(2)2a a aϕ=+-+(0)a >, 求导得212()02(2)a a a ϕ'=+>++, 因此()a ϕ为增函数:故1a =是唯一解.(2)由(1)可知,()ln(21)2g x x x =+-(0),x >2()ln(21)21xh x x x =+-+(0)x >, 因为24()202121xg x x x '=-=-<++, 所以()()2g x f x x =-(0)x >为减函数. 因为222()21(21)h x x x '=-++240(21)xx =>+, 所以2()()12xh x f x x =-+(0)x >为增函数.(3)证明:由12,5a =()()1ln 21n n n a f a a +==+,易得0n a >.15212225n nn nn a a +-<-⇔< 由(2)可知,()()2g x f x x =-ln(21)2x x =+-在(0,)+∞上为减函数. 因此,当0x >时,()(0)0g x g <=,即()2f x x <. 令1(2)n x a n -=≥,得()112n n f a a --<,即12n n a a -<. 因此,当2n ≥时,21121222n n n n a a a a ---<<<⋅⋅⋅<25n=.所以152122n n na +-<-成立.。

2020年高考数学试题分项版—函数、导数应用(原卷版)

2020年高考数学试题分项版—函数、导数应用(原卷版)

2020年高考数学试题分项版——函数、导数应用(原卷版)一、选择题1.(2020·全国Ⅰ理,6)函数f (x )=x 4-2x 3的图象在点(1,f (1))处的切线方程为( ) A .y =-2x -1 B .y =-2x +1 C .y =2x -3D .y =2x +12.(2020·全国Ⅰ理,12)若2a +log 2a =4b +2log 4b ,则( ) A .a >2b B .a <2b C .a >b 2 D .a <b 23.(2020·全国Ⅱ理,9)设函数f (x )=ln|2x +1|-ln|2x -1|,则f (x )( ) A .是偶函数,且在⎝⎛⎭⎫12,+∞单调递增 B .是奇函数,且在⎝⎛⎭⎫-12,12单调递减 C .是偶函数,且在⎝⎛⎭⎫-∞,-12单调递增 D .是奇函数,且在⎝⎛⎭⎫-∞,-12单调递减 4.(2020·全国Ⅱ理,11)若2x -2y <3-x -3-y ,则( ) A .ln(y -x +1)>0 B .ln(y -x +1)<0 C .ln|x -y |>0D .ln|x -y |<05.(2020·全国Ⅲ理,4)Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I (t )=K1+e -0.23(t -53),其中K 为最大确诊病例数.当I (t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( ) A .60 B .63 C .66 D .696.(2020·全国Ⅲ理,12)已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <c C .b <c <a D .c <a <b7.(2020·新高考全国Ⅰ,6)基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I (t )=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)( )A .1.2天B .1.8天C .2.5天D .3.5天8.(2020·新高考全国Ⅰ,8)若定义在R 上的奇函数f (x )在(-∞,0)上单调递减,且f (2)=0,则满足xf (x -1)≥0的x 的取值范围是( )A .[-1,1]∪[3,+∞)B .[-3,-1]∪[0,1]C .[-1,0]∪[1,+∞)D .[-1,0]∪[1,3]9.(2020·新高考全国Ⅱ,7)已知函数f (x )=lg(x 2-4x -5)在(a ,+∞)上单调递增,则a 的取值范围是( ) A .(-∞,-1] B .(-∞,2] C .[2,+∞)D .[5,+∞)10.(2020·新高考全国Ⅱ,8)若定义在R 的奇函数f (x )在(-∞,0)单调递减,且f (2)=0,则满足xf (x -1)≥0的x 的取值范围是( ) A .[-1,1]∪[3,+∞) B .[-3,-1]∪[0,1] C .[-1,0]∪[1,+∞)D .[-1,0]∪[1,3]11.(2020·北京,6)已知函数f (x )=2x -x -1,则不等式f (x )>0的解集是( ) A .(-1,1) B .(-∞,-1)∪(1,+∞) C .(0,1)D .(-∞,0)∪(1,+∞)12.(2020·天津,3)函数y =4xx 2+1的图象大致为( )13.(2020·天津,6)设a =30.7,b =⎝⎛⎭⎫13-0.8,c =log 0.70.8,则a ,b ,c 的大小关系为( ) A .a <b <c B .b <a <c C .b <c <aD .c <a <b14.(2020·天津,9)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≥0,-x ,x <0.若函数g (x )=f (x )-|kx 2-2x |(k ∈R )恰有4个零点,则k 的取值范围是( ) A.⎝⎛⎭⎫-∞,-12∪(22,+∞) B.⎝⎛⎭⎫-∞,-12∪(0,22) C .(-∞,0)∪(0,22) D .(-∞,0)∪(22,+∞)15.(2020·全国Ⅰ文,8)设a log 34=2,则4-a等于( )A.116B.19C.18D.1616.(2020·全国Ⅱ文,10)设函数f(x)=x3-1x3,则f(x)()A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减17.(2020·全国Ⅱ文,12)若2x-2y<3-x-3-y,则()A.ln(y-x+1)>0 B.ln(y-x+1)<0C.ln|x-y|>0 D.ln|x-y|<018.(2020·全国Ⅲ文,4)Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=K1+e-0.23(t-53),其中K为最大确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为(ln 19≈3)()A.60 B.63 C.66 D.6919.(2020·全国Ⅲ文,10)设a=log32,b=log53,c=23,则()A.a<c<b B.a<b<c C.b<c<a D.c<a<b 二、填空题1.(2020·北京,11)函数f(x)=1x+1+ln x的定义域是________.2.(2020·北京,15)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W与时间t的关系为W=f(t),用-f(b)-f(a)b-a的大小评价在[a,b]这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强.其中所有正确结论的序号是________.3.(2020·江苏,7)已知y =f (x )是奇函数,当x ≥0时,f (x )=23x ,则f (-8)的值是________. 4.(2020·全国Ⅰ文,15)曲线y =ln x +x +1的一条切线的斜率为2,则该切线的方程为________.5.(2020·全国Ⅲ文,15)设函数f (x )=e x x +a .若f ′(1)=e 4,则a =________.三、解答题1.(2020·全国Ⅰ理,21)已知函数f (x )=e x +ax 2-x . (1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.2.(2020·全国Ⅱ理,21)已知函数f (x )=sin 2x sin 2x . (1)讨论f (x )在区间(0,π)的单调性; (2)证明:|f (x )|≤338; (3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22n x ≤3n 4n.3.(2020·全国Ⅲ理,21)设函数f (x )=x 3+bx +c ,曲线y =f (x )在点⎝⎛⎭⎫12,f ⎝⎛⎭⎫12处的切线与y轴垂直. (1)求b ;(2)若f (x )有一个绝对值不大于1的零点,证明:f (x )所有零点的绝对值都不大于1.4.(2020·新高考全国Ⅰ,21)已知函数f (x )=a e x -1-ln x +ln a .(1)当a =e 时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围.5.(2020·新高考全国Ⅱ,22)已知函数f (x )=a e x -1-ln x +ln a .(1)当a =e 时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围.6.(2020·北京,19)已知函数f (x )=12-x 2. (1)求曲线y =f (x )的斜率等于-2的切线方程;(2)设曲线y =f (x )在点(t ,f (t ))处的切线与坐标轴围成的三角形的面积为S (t ),求S (t )的最小值.7.(2020·天津,20)已知函数f (x )=x 3+k ln x (k ∈R ),f ′(x )为f (x )的导函数. (1)当k =6时,①求曲线y =f (x )在点(1,f (1))处的切线方程; ②求函数g (x )=f (x )-f ′(x )+9x的单调区间和极值;(2)当k ≥-3时,求证:对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f ′(x 1)+f ′(x 2)2>f (x 1)-f (x 2)x 1-x 2.8.(2020·江苏,17)某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO ′为铅垂线(O ′在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离h 1(米)与D 到OO ′的距离a (米)之间满足关系式h 1=140a 2;右侧曲线BO 上任一点F 到MN 的距离h 2(米)与F 到OO ′的距离b (米)之间满足关系式h 2=-1800b 3+6b .已知点B 到OO ′的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO ′的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0),问O ′E 为多少米时,桥墩CD 与EF 的总造价最低?9.(2020·江苏,19)已知关于x 的函数y =f (x ),y =g (x )与h (x )=kx +b (k ,b ∈R )在区间D 上恒有f (x )≥h (x )≥g (x ).(1)若f (x )=x 2+2x ,g (x )=-x 2+2x ,D =(-∞,+∞),求h (x )的表达式; (2)若f (x )=x 2-x +1,g (x )=k ln x ,h (x )=kx -k ,D =(0,+∞),求k 的取值范围; (3)若f (x )=x 4-2x 2,g (x )=4x 2-8,h (x )=4(t 3-t )x -3t 4+2t 2(0<|t |≤2),D =[m ,n ]⊆[-2,2],求证:n -m ≤7.10.(2020·浙江,22)已知1<a ≤2,函数f (x )=e x -x -a .其中e =2.718 28…为自然对数的底数.(1)证明:函数y =f (x )在(0,+∞)上有唯一零点; (2)设x 0为函数y =f (x )在(0,+∞)上的零点,证明:①a-1≤x0≤2(a-1);e x)≥(e-1)(a-1)a.②x0f(011.(2020·全国Ⅰ文,20)已知函数f(x)=e x-a(x+2),(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.12.(2020·全国Ⅱ文,21)已知函数f(x)=2ln x+1. (1)若f(x)≤2x+c,求c的取值范围;13.(2020·全国Ⅲ文,20)已知函数f(x)=x3-kx+k2.(1)讨论f(x)的单调性;(2)若f(x)有三个零点,求k的取值范围.。

2020版高考数学导数及其应用 Word版含解析

2020版高考数学导数及其应用  Word版含解析

第2课时 导数与方程题型一 求函数零点个数例1 已知函数f (x )=2a 2ln x -x 2(a >0). (1)求函数f (x )的单调区间;(2)讨论函数f (x )在区间(1,e 2)上零点的个数(e 为自然对数的底数). 解 (1)∵f (x )=2a 2ln x -x 2,∴f ′(x )=2a 2x -2x =2a 2-2x 2x =-2(x -a )(x +a )x ,∵x >0,a >0,当0<x <a 时,f ′(x )>0, 当x >a 时,f ′(x )<0.∴f (x )的单调增区间是(0,a ),单调减区间是(a ,+∞). (2)由(1)得f (x )max =f (a )=a 2(2ln a -1). 讨论函数f (x )的零点情况如下:①当a 2(2ln a -1)<0,即0<a <e 时,函数f (x )无零点,在(1,e 2)上无零点;②当a 2(2ln a -1)=0,即a =e 时,函数f (x )在(0,+∞)内有唯一零点a ,而1<a =e<e 2,∴f (x )在(1,e 2)内有一个零点;③当a 2(2ln a -1)>0,即a >e 时,由于f (1)=-1<0,f (a )=a 2(2ln a -1)>0,f (e 2)=2a 2ln(e 2)-e 4=4a 2-e 4=(2a -e 2)(2a +e 2),当2a -e 2<0,即e<a <e 22时,1<e<a <e 22<e 2,f (e 2)<0,由函数f (x )的单调性可知,函数f (x )在(1,a )内有唯一零点x 1,在(a ,e 2)内有唯一零点x 2, ∴f (x )在(1,e 2)内有两个零点.当2a -e 2≥0,即a ≥e 22>e 时,f (e 2)≥0,而且f (e)=2a 2·12-e =a 2-e>0,f (1)=-1<0,由函数的单调性可知,无论a ≥e 2,还是a <e 2,f (x )在(1,e)内有唯一的零点,在(e ,e 2)内没有零点,从而f (x )在(1,e 2)内只有一个零点.综上所述,当0<a <e 时,函数f (x )在区间(1,e 2)上无零点;当a =e 或a ≥e 22时,函数f (x )在区间(1,e 2)上有一个零点;当e<a <e 22时,函数f (x )在区间(1,e 2)上有两个零点.思维升华 (1)可以通过构造函数,将两曲线的交点问题转化为函数零点问题.(2)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根的情况. 跟踪训练1 设函数f (x )=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3的零点的个数.解 (1)由题设,当m =e 时,f (x )=ln x +ex ,则f ′(x )=x -ex2(x >0),由f ′(x )=0,得x =e.∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二 根据函数零点情况求参数范围例2 (2018·南京联合体调研)已知f (x )=12x 2-a ln x ,a ∈R .(1)求函数f (x )的单调增区间;(2)若函数f (x )有两个零点,求实数a 的取值范围,并说明理由. (参考求导公式:[f (ax +b )]′=af ′(ax +b ))解 (1)由题知f ′(x )=x -a x =x 2-ax,x >0,当a ≤0时,f ′(x )>0,函数f (x )的增区间为(0,+∞); 当a >0时,f ′(x )=(x +a )(x -a )x ,令f ′(x )>0,因为x >0,所以x +a >0,所以x >a , 所以函数f (x )的单调增区间为(a ,+∞). 综上,当a ≤0时,f (x )的单调增区间为(0,+∞); 当a >0时,f (x )的单调增区间为(a ,+∞).(2)由(1)知,若a ≤0,f (x )在(0,+∞)上为增函数,函数f (x )至多有一个零点,不合题意. 若a >0,当x ∈(0,a )时,f ′(x )<0,f (x )在(0,a )上为减函数; 当x ∈(a ,+∞)时,f ′(x )>0,f (x )在(a ,+∞)上为增函数, 所以f (x )min =f (a )=12a -12a ln a =12a (1-ln a ).要使f (x )有两个零点,则f (x )min =12a (1-ln a )<0,所以a >e. 下面证明:当a >e 时,函数f (x )有两个零点.因为a >e ,所以1∈(0,a ),而f (1)=12>0,所以f (x )在(0,a )上存在唯一零点.方法一 又f (e a )=12e a 2-a ⎝⎛⎭⎫12+ln a =12a (e a -1-2ln a ), 令h (a )=e a -1-2ln a ,a >e ,h ′(a )=e -2a >0,所以h (a )在(e ,+∞)上单调递增, 所以h (a )>h (e)=e 2-3>0,所以f (x )在(a ,+∞)上也存在唯一零点. 综上,当a >e 时,函数f (x )有两个零点.所以当f (x )有两个零点时,实数a 的取值范围为(e ,+∞). 方法二 先证x ∈(1,+∞)有ln x <x -1, 所以f (x )=12x 2-a ln x >12x 2-ax +a .因为a >e ,所以a +a 2-2a >a >a .因为12(a +a 2-2a )2-a (a +a 2-2a )+a =0.所以f (a +a 2-2a )>0,所以f (x )在(a ,+∞)上也存在唯一零点;综上,当a >e 时,函数f (x )有两个零点.所以当f (x )有两个零点时,实数a 的取值范围为(e ,+∞).思维升华 函数的零点个数可转化为函数图象的交点个数,确定参数范围时要根据函数的性质画出大致图象,充分利用导数工具和数形结合思想.跟踪训练2 已知函数f (x )=x ln x ,g (x )=-x 2+ax -3(a 为实数),若方程g (x )=2f (x )在区间⎣⎡⎦⎤1e ,e 上有两个不等实根,求实数a 的取值范围. 解 由g (x )=2f (x ),可得2x ln x =-x 2+ax -3,a =x +2ln x +3x ,设h (x )=x +2ln x +3x(x >0),所以h ′(x )=1+2x -3x 2=(x +3)(x -1)x 2.所以x 在⎣⎡⎦⎤1e ,e 上变化时,h ′(x ),h (x )的变化情况如下表:又h ⎝⎛⎭⎫1e =1e +3e -2,h (1)=4,h (e)=3e +e +2. 且h (e)-h ⎝⎛⎭⎫1e =4-2e +2e<0. 所以h (x )min =h (1)=4,h (x )max =h ⎝⎛⎭⎫1e =1e +3e -2, 所以实数a 的取值范围为4<a ≤e +2+3e ,即a 的取值范围为⎝⎛⎦⎤4,e +2+3e .1.已知函数f (x )=a +x ·ln x (a ∈R ),试求f (x )的零点个数. 解 f ′(x )=(x )′ln x +x ·1x =x (ln x +2)2x ,令f ′(x )>0,解得x >e -2, 令f ′(x )<0,解得0<x <e -2, 所以f (x )在(0,e -2)上单调递减, 在(e -2,+∞)上单调递增. f (x )min =f (e -2)=a -2e,显然当a >2e 时,f (x )min >0,f (x )无零点,当a =2e 时,f (x )min =0,f (x )有1个零点,当a <2e 时,f (x )min <0,f (x )有2个零点.2.已知f (x )=1x +e x e -3,F (x )=ln x +e xe -3x +2.(1)判断f (x )在(0,+∞)上的单调性; (2)判断函数F (x )在(0,+∞)上零点的个数.解 (1)f ′(x )=-1x 2+e x e =x 2e x-ee x 2,令f ′(x )>0,解得x >1,令f ′(x )<0,解得0<x <1, 所以f (x )在(0,1)上单调递减, 在(1,+∞)上单调递增. (2)F ′(x )=f (x )=1x +e xe -3,由(1)得∃x 1,x 2,满足0<x 1<1<x 2,使得f (x )在(0,x 1)上大于0,在(x 1,x 2)上小于0,在(x 2,+∞)上大于0, 即F (x )在(0,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增, 而F (1)=0,x →0时,F (x )→-∞, x →+∞时,F (x )→+∞, 画出函数F (x )的草图,如图所示.故F (x )在(0,+∞)上的零点有3个.3.已知函数f (x )=ax 2(a ∈R ),g (x )=2ln x ,且方程f (x )=g (x )在区间[2,e]上有两个不相等的解,求a 的取值范围.解 由已知可得方程a =2ln xx2在区间[2,e]上有两个不等解,令φ(x )=2ln xx 2,由φ′(x )=2(1-2ln x )x 3易知,φ(x )在(2,e)上为增函数,在(e ,e)上为减函数, 则φ(x )max =φ(e)=1e ,由于φ(e)=2e 2,φ(2)=ln 22,φ(e)-φ(2)=2e 2-ln 22=4-e 2ln 22e 2=24e 2ln e ln 22e-<ln 81-ln 272e 2<0, 所以φ(e)<φ(2). 所以φ(x )min =φ(e),如图可知φ(x )=a 有两个不相等的解时,需ln 22≤a <1e.即f (x )=g (x )在[2,e]上有两个不相等的解时,a 的取值范围为⎣⎡⎭⎫ln 22,1e .4.已知函数f (x )=(x -2)e x +a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.(1)解 f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ). ①设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点. ②设a >0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)内单调递减,在(1,+∞)内单调递增. 又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a2,则f (b )>a2(b -2)+a (b -1)2=a ⎝⎛⎭⎫b 2-32b >0, 故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ). 若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)内单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点.若a <-e2,则ln(-2a )>1,故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞)时,f ′(x )>0.因此f (x )在(1,ln(-2a ))内单调递减,在(ln(-2a ),+∞)内单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).(2)证明 不妨设x 1<x 2,由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1), f (x )在(-∞,1)内单调递减, 所以x 1+x 2<2等价于f (x 1)>f (2-x 2), 即f (2-x 2)<0. 由于222222(2)e(1)x f x x a x --=-+-,而()22222(2)e (1)0xf x x a x =-+-=, 所以222222(2)e(2)e .x x f x x x --=---设g(x)=-x e2-x-(x-2)e x,则g′(x)=(x-1)(e2-x-e x).所以当x>1时,g′(x)<0.而g(1)=0,故当x>1时,g(x)<0.从而g(x2)=f(2-x2)<0,故x1+x2<2.5.(2018·南通模拟)已知函数f (x )=e x -|x -a |,其中a ∈R . (1)若f (x )在R 上单调递增,求实数a 的取值范围;(2)若函数有极大值点x 2和极小值点x 1,且f (x 2)-f (x 1)≥k (x 2-x 1)恒成立,求实数k 的取值范围.解 (1)因为f (x )=e x -|x -a |=⎩⎪⎨⎪⎧e x -x +a ,x ≥a ,e x+x -a ,x <a ,则f ′(x )=⎩⎪⎨⎪⎧e x-1,x ≥a ,e x +1,x <a .因为f (x )在R 上单调递增, 所以f ′(x )≥0恒成立,当x <a 时,f ′(x )=e x +1>1>0恒成立; 当x ≥a 时,要使f ′(x )=e x -1≥0恒成立, 所以f ′(a )≥0,即a ≥0.所以实数a 的取值范围为[0,+∞).(2)由(1)知,当a ≥0时,f (x )在R 上单调递增,不符合题意, 所以有a <0.此时,当x <a 时,f ′(x )=e x +1>1>0,f (x )单调递增; 当x ≥a 时,f ′(x )=e x -1,令f ′(x )=0,得x =0, 所以f ′(x )<0在(a,0)上恒成立,f (x )在(a,0)上单调递减, f ′(x )>0在(0,+∞)上恒成立,f (x )在(0,+∞)上单调递增. 所以f (x )极大值=f (a )=e a ,f (x )极小值=f (0)=1+a ,即a <0符合题意. 由f (x 2)-f (x 1)≥k (x 2-x 1)恒成立, 可得e a -a -1≥ka 对任意a <0恒成立.设g (a )=e a -(k +1)a -1,求导得g ′(a )=e a -(k +1).①当k ≤-1时,g ′(a )>0恒成立,g (a )在(-∞,0)上单调递增,又因为g (-1)=1e+k <0,与g (a )≥0矛盾. ②当k ≥0时,g ′(a )<0在(-∞,0)上恒成立,g (a )在(-∞,0)上单调递减, 又因为当a →0时,g (a )→0,所以此时g (a )>0恒成立,符合题意. ③当-1<k <0时,g ′(a )>0在(-∞,0)上的解集为(ln(k +1),0), 即g (a )在(ln(k +1),0)上单调递增,又因为当a →0时,g (a )→0,所以g (ln(k +1))<0,不合题意.综上,实数k 的取值范围为[0,+∞).。

2020届高考数学(理):第3章 导数及其应用 14-2 Word版含解析

2020届高考数学(理):第3章 导数及其应用 14-2 Word版含解析

【课时训练】课时2 导数与函数的极值、最值一、选择题1.(2018山东菏泽一模)函数f (x )=ln x -x 在区间(0,e ]上的最大值为( )A .1-eB .-1C .-eD .0【答案】B【解析】因为f ′(x )=1x -1=1-x x ,当x ∈(0,1)时, f ′(x )>0;当x ∈(1,e ]时, f ′(x )<0,所以f (x )的单调递增区间是(0,1),单调递减区间是(1,e ],所以当x =1时, f (x )取得最大值ln 1-1=-1.2.(2018广西来宾一模)已知函数f (x )=x (x -m )2在x =1处取得极小值,则实数m =( )A .0B .1C .2D .3 【答案】B【解析】f ′(x )=(x -m )2+2x (x -m )=(x -m )·(3x -m ).由f ′(1)=0可得m =1或m =3.当m =3时, f ′(x )=3(x -1)(x -3),当1<x <3时, f ′(x )<0;当x <1或x >3时, f ′(x )>0.此时在x =1处取得极大值,不合题意.所以m =1,此时f ′(x )=(x -1)(3x -1),当13<x <1时, f ′(x )<0;当x <13或x >1时, f ′(x )>0.此时在x =1处取得极小值.选B.3.(2018安徽池州一模)已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于点(1,0),则f (x )的极大值、极小值分别为( )A .-427,0 B .0,-427 C.427,0 D .0,427 【答案】C【解析】由题意知, f ′(x )=3x 2-2px -q ,由f ′(1)=0, f (1)=0得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得p =2,q =-1,∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0,得x =13或x =1,易知当x =13时, f (x )取极大值427,当x =1时, f (x )取极小值0.4.(2018山东潍坊二模)已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k,2]上的最大值为28,则实数k 的取值范围为( )A .[-3,+∞)B .(-3,+∞)C .(-∞,-3)D .(-∞,-3]【答案】D【解析】由题意知f ′(x )=3x 2+6x -9,令f ′(x )=0,解得x =1或x =-3,所以f ′(x ), f (x )随x 的变化情况如下表:28,所以k ≤-3.5.(2018长沙模拟)已知函数f (x )=xx 2+a (a >0)在[1,+∞)上的最大值为33,则a 的值为( )A.3-1 B .34 C .43 D .3+1【答案】A【解析】由f (x )=xx 2+a 得f ′(x )=a -x 2(x 2+a )2.当a >1时,若x >a ,则f ′(x )<0, f (x )单调递减;若1<x <a ,则f ′(x )>0, f (x )单调递增.故当x =a 时,函数f (x )有最大值12a =33,得a =34<1,不合题意;当a =1时,函数f (x )在[1,+∞)上单调递减,最大值为f (1)=12,不合题意;当0<a <1时,函数f (x )在[1,+∞)上单调递减,此时最大值为f (1)=1a +1=33,得a =3-1,符合题意,故a 的值为3-1.选A.6.(2018浙江瑞安中学月考)已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22=( )A.23 B .43 C .83 D .163【答案】C【解析】由图象可知f (x )的图象过点(1,0)与(2,0),因此⎩⎪⎨⎪⎧1+b +c =0,8+4b +2c =0,解得b =-3,c =2,所以f (x )=x 3-3x 2+2x ,所以f ′(x )=3x 2-6x +2.因为x 1,x 2是方程f ′(x )=3x 2-6x +2=0的两根,所以x 1+x 2=2,x 1x 2=23,所以x 21+x 22=(x 1+x 2)2-2x 1x 2=4-43=83.7.(2018福建宁德一模)若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是( )A .[-5,0)B .(-5,0)C .[-3,0)D .(-3,0)【答案】C【解析】由题意知, f ′(x )=x 2+2x =x (x +2),令f ′(x )=0,解得x =0或-2,故f (x )在(-∞,-2),(0,+∞)上是增函数,在(-2,0)上是减函数,做出其图象如图所示.令13x 3+x 2-23=-23得,x =0或x =-3,则结合图象可知,⎩⎪⎨⎪⎧-3≤a <0,a +5>0,解得 a ∈[-3,0).故选C.8.(2018湖北武汉一模)已知函数f (x )=x 3-2x 2-4x -7,其导函数为f ′(x ),给出以下命题:①f (x )的单调递减区间是⎝ ⎛⎭⎪⎫-23,2;②f (x )的极小值是-15;③当a >2时,对任意的x >2且x ≠a ,恒有f (x )>f (a )+f ′(a )(x -a );④函数f (x )有且只有一个零点. 其中真命题的个数为( ) A .1 B .2 C .3 D .4【答案】C【解析】f ′(x )=3x 2-4x -4=(x -2)(3x +2).①令f ′(x )<0,得-23<x <2,所以f (x )的单调递减区间是⎝ ⎛⎭⎪⎫-23,2;②令f ′(x )>0,得x <-23或x >2,结合①可知f (x )的极小值是f (2)=-15;③显然当a >2时,对任意的x >2且x ≠a ,恒有f (x )>f (a )+f ′(a )(x -a )不成立;④f ⎝ ⎛⎭⎪⎫-23=-14927<0, f (2)=-15<0,并结合①②易知f (x )有且只有一个零点.故选C.二、填空题9.(2019江苏泰州调研)函数f (x )=13x 3+x 2-3x -4在[0,2]上的最小值是________.【答案】-173【解析】f ′(x )=x 2+2x -3,令f ′(x )=0得x =1(x =-3舍去).又f (0)=-4, f (1)=-173, f (2)=-103,故f (x )在[0,2]上的最小值是f (1)=-173.10.(2018广州模拟)已知函数f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a -b =________.【答案】-7【解析】由题意得f ′(x )=3x 2+6ax +b ,则⎩⎪⎨⎪⎧ -1+3a -b +a 2=0,3-6a +b =0,解得⎩⎪⎨⎪⎧ a =1,b =3,或⎩⎪⎨⎪⎧a =2,b =9.经检验当a =1,b =3时,函数f (x )单调递增无法取得极值,而a =2,b =9满足题意,故a -b =-7.11.(2018广西柳州模拟)已知函数f (x )=x 3+mx 2+(m +6)x +1既存在极大值又存在极小值,则实数m 的取值范围是________.【答案】(-∞,-3)∪(6,+∞)【解析】对函数f (x )求导得f ′(x )=3x 2+2mx +m +6,要使函数f (x )既存在极大值又存在极小值,则f ′(x )=0有两个不同的根,所以判别式Δ>0,即4m 2-12(m +6)>0,所以m 2-3m -18>0,解得m >6或m <-3.12.(2018内蒙古包头联考)已知函数f (x )=x 3-6x 2+9x -abc ,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.其中正确结论的序号是________.【答案】②③【解析】∵f′(x)=3x2-12x+9=3(x-1)·(x-3),由f′(x)<0,得1<x<3;由f′(x)>0,得x<1或x>3.∴f(x)在区间(1,3)上是减函数,在区间(-∞,1),(3,+∞)上是增函数.又a<b<c, f(a)=f(b)=f(c)=0,∴y极大值=f(1)=4-abc>0,y极小值=f(3)=-abc<0,∴0<abc<4.∴a,b,c均大于零,或者a<0,b<0,c>0.又x=1,x=3为函数f(x)的极值点,∴a<0,b<0,c>0不成立,如图.∴f(0)<0.∴f(0)f(1)<0, f(0)f(3)>0,∴正确结论的序号是②③.三、解答题13.(2018大连双基测试)已知函数f(x)=xa-ex(a>0).(1)求函数f(x)的单调区间;(2)求函数f(x)在[1,2]上的最大值.【解】(1)f(x)=xa-ex(a>0),则f′(x)=1a-ex.令f′(x)-e x=0,则x=ln 1 a.当x变化时,f′(x), f(x)的变化情况如下表:故函数f (x )的单调递增区间为⎝ ⎭⎪⎫-∞,ln 1a ;单调递减区间为⎝ ⎛⎭⎪⎫ln 1a ,+∞. (2)当ln 1a ≥2,即0<a ≤1e 2时, f (x )m a x =f (2)=2a -e 2;当1<ln 1a <2,即1e 2<a <1e 时,f (x )m a x =f ⎝⎛⎭⎪⎫ln 1a =1a ln 1a -1a ;当ln 1a ≤1,即a ≥1e 时,f (x )m a x =f (1)=1a -e.。

2020年高考数学(理)总复习:导数的简单应用与定积分(原卷版)

2020年高考数学(理)总复习:导数的简单应用与定积分(原卷版)

2020年高考数学(理)总复习:导数的简单应用与定积分题型一 导数的几何意义及导数的运算 【题型要点解析】(1)曲线y =f (x )在点x =x 0处导数f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,即k =f ′(x 0),由此当f ′(x 0)存在时,曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为y -f (x 0)=f ′(x 0)(x -x 0).(2)过P 点的切线方程的切点坐标的求解步骤:①设出切点坐标;①表示出切线方程;①已知点P 在切线上,代入求得切点坐标的横坐标,从而求得切点坐标.(3)①分式函数的求导,要先观察函数的结构特征,可化为整式函数或较为简单的分式函数;①对数函数的求导,可先化为和、差的形式;①三角函数的求导,先利用三角函数的公式转化为和或差的形式;①复合函数的求导过程就是对复合函数由外层逐层向里求导.所谓最里层是指此函数已经可以直接引用基本初等函数导数公式进行求导.例1.函数f (x )=14 ln x +x 2-bx +a (b >0,a ①R )的图象在点(b ,f (b ))处的切线的倾斜角为α,则倾斜角α 的取值范围是( )A.⎪⎭⎫⎝⎛2,4ππ B.⎪⎭⎫⎢⎣⎡2,4ππ C.⎪⎭⎫⎢⎣⎡ππ,43 D.⎪⎭⎫⎝⎛ππ,43例2.若实数a ,b ,c ,d 满足(b +a 2-3ln a )2+(c -d +2)2=0,则(a -c )2+(b -d )2的最小值为( )A. 2 B .2 C .2 2 D .8题组训练一 导数的几何意义及导数的运算1.若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln (x +1)的切线,则b =( )A .1 B.12C .1-ln 2D .1-2ln 22.在直角坐标系xOy 中,设P 是双曲线C :xy =1(x >0)上任意一点,l 是曲线C 在点P 处的切线,且l 交坐标轴于A 、B 两点,则以下结论正确的是( )A .①OAB 的面积为定值2 B .①OAB 的面积有最小值为3C .①OAB 的面积有最大值为4D .①OAB 的面积的取值范围是[3,4]题型二 利用导数研究函数的单调性 【题型要点解析】求解或讨论函数单调性有关问题的解题策略讨论函数的单调性其实就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论:(1)在能够通过因式分解求出不等式对应方程的根时依据根的大小进行分类讨论. (2)在不能通过因式分解求出根的情况时根据不等式对应方程的判别式进行分类讨论. 【提醒】 讨论函数的单调性是在函数的定义域内进行的,千万不要忽视了定义域的限制.例1.已知函数f (x )=x 2+a ln x .(1)当a =-2时,求函数f (x )的单调区间;(2)若g (x )=f (x )+2x,在[1,+∞)上是单调函数,求实数a 的取值范围.题组训练二 利用导数研究函数的单调性 设函数f (x )=3x 2+axe x(a ①R ).(1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程;(2)若f (x )在[3,+∞)上为减函数,求a 的取值范围.题型三 利用导数研究函数的极值(最值)问题 【题型要点解析】(1)利用导数研究函数的极值的一般思想:①求定义域;①求导数f ′(x );①解方程f ′(x )=0,研究极值情况;①确定f ′(x 0)=0时x 0左右的符号,定极值.(2)求函数y =f (x )在[a ,b ]上最大值与最小值的步骤:①求函数y =f (x )在(a ,b )内的极值;①将函数y =f (x )的极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.(3)当极值点和给定的自变量范围关系不明确时,需要分类求解,在求最值时,若极值点的函数值与区间端点的函数值大小不确定时需分类求解.例1.设函数G (x )=x ln x +(1-x )·ln (1-x ). (1)求G (x )的最小值;(2)记G (x )的最小值为c ,已知函数f (x )=2a ·e x +c +a +1x-2(a +1)(a >0),若对于任意的x ①(0,+∞),恒有f (x )≥0成立,求实数a 的取值范围.题组训练三 利用导数研究函数的极值(最值)问题已知函数f (x )=ax 2+bx +ce x (a >0)的导函数y =f ′(x )的两个零点为-3和0.(1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值.题型四 定积分 【题型要点解析】(1)求简单定积分最根本的方法就是根据微积分定理找到被积函数的原函数,其一般步骤:①把被积函数变为幂函数、正弦函数、余弦函数、指数函数与常数的和或差;①利用定积分的性质把所求定积分化为若干个定积分的和或差;①分别用求导公式找到F (x ),使得F ′(x )=f (x );①利用牛顿——莱布尼兹公式求出各个定积分的值;①计算所求定积分的值.有些特殊函数可根据其几何意义,求其围成的几何图形的面积,即其对应的定积分.(2)求由函数图象或解析几何中曲线围成的曲边图形的面积,一般转化为定积分的计算与应用,但一定找准积分上限、积分下限及被积函数,且当图形的边界不同时,要讨论解决,其一般步骤:①画出图形,确定图形范围;①解方程组求出图形交点范围,确定积分上、下限;①确定被积函数,注意分清函数图象的上、下位置;①计算下积分,求出平面图形的面积.例1.设f (x )=⎩⎨⎧1-x 2,x ①[-1,1)x 2-1,x ①[1,2],则⎰-21f (x )d x 的值为( )A.π2+43 B.π2+3 C.π4+43 D.π4+3例2.⎰1⎪⎭⎫ ⎝⎛+-212x x d x =________.例3.由曲线y =x 2+1,直线y =-x +3,x 轴正半轴与y 轴正半轴所围成图形的面积为( )A .3 B.103 C.73D.83题组训练四 定积分1.已知1sin φ+1cos φ=22,若φ①⎪⎭⎫⎝⎛2,0π,则⎰-ϕtan 1(x 2-2x )d x =( )A.13 B .-13 C.23 D .-232.函数y =⎰t(sin x +cos x sin x )d x 的最大值是________.【专题训练】 一、选择题1.已知变量a ,b 满足b =-12a 2+3ln a (a >0),若点Q (m ,n )在直线y =2x +12上,则(a-m )2+(b -n )2的最小值为( )A .9 B.353 C.95D .32.设a ①R ,若函数y =e ax +3x ,x ①R 有大于零的极值点,则( ) A .a >-3 B .a <-3 C .a >-13D .a <-133.已知函数f (x )=x 3-tx 2+3x ,若对于任意的a ①[1,2],b ①(2,3],函数f (x )在区间[a ,b ]上单调递减,则实数t 的取值范围是( )A .(-∞,3]B .(-∞,5]C .[3,+∞)D .[5,+∞)4.已知函数f (x )=e x -ln(x +a )(a ①R )有唯一的零点x 0,(e =2.718…)则( ) A .-1<x 0<-12B .-12<x 0<-14C .-14<x 0<0D .0<x 0<125.定义在(0,+∞)上的函数f (x )满足f (x )>2(x +x )f ′(x ),其中f ′(x )为f (x )的导函数,则下列不等式中,一定成立的是( )A .f (1)>f (2)2>f (3)3B.f (1)2>f (4)3>f (9)4C .f (1)<f (2)2<f (3)3D.f (1)2<f (4)3<f (9)46.已知函数f (x )在R 上可导,其导函数为f ′(x ),若f ′(x )满足f ′(x )-f (x )x -1>0,y =f (x )e x 关于直线x =1对称,则不等式f (x 2-x )e x 2-x<f (0)的解集是( )A .(-1,2)B .(1,2)C .(-1,0)①(1,2)D .(-∞,0)①(1,+∞)7.已知偶函数f (x )(x ≠0)的导函数为f ′(x ),且满足f (1)=0,当x >0时,xf ′(x )<2f (x ),则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)①(0,1)B .(-∞,-1)①(1,+∞)C .(-1,0)①(1,+∞)D .(-1,0)①(0,1)8.定义在⎪⎭⎫⎝⎛2,0π上的函数f (x ),f ′(x )是它的导函数,且恒有f (x )<f ′(x )·tan x 成立,则( ) A.3f ⎪⎭⎫⎝⎛4π>2f ⎪⎭⎫ ⎝⎛3π B .f (1)<2f ⎪⎭⎫⎝⎛6πsin 1 C.2f ⎪⎭⎫⎝⎛6π>f ⎪⎭⎫⎝⎛4π D.3f ⎪⎭⎫⎝⎛6π<f ⎪⎭⎫⎝⎛3π 二、填空题9.已知曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则实数a +b 的值为____________.10.已知函数f (x )是定义在R 上的奇函数,且当x ①(0,+∞)时,都有不等式f (x )+xf ′(x )>0成立,若a =40.2f (40.2),b =(log 43)f (log 43),c =⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1614log 1614log f ,则a ,b ,c 的大小关系是________.11.已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是________.12.曲线y =2sin x (0≤x ≤π)与直线y =1围成的封闭图形的面积为________. 三、解答题13.已知函数f (x )=a e 2x +(a -2)e x -x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.14.已知函数f (x )=e ax (其中e =2.71828…),g (x )=f (x )x .(1)若g (x )在[1,+∞)上是增函数,求实数a 的取值范围; (2)当a =12时,求函数g (x )在[m ,m +1](m >0)上的最小值.。

2020年高考天津版高考理科数学 3.2 导数的应用

2020年高考天津版高考理科数学          3.2 导数的应用

3.2 导数的应用挖命题【考情探究】5年考情考点内容解读考题示例考向关联考点预测热度1.导数与函数的单调性1.了解函数单调性和导数的关系2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次)2014天津文,19利用导数研究函数的单调性和极值构造新函数、不等式的证明★★★2.导数与函数的极(最)值1.了解函数在某点取得极值的必要条件和充分条件2.会用导数求函数的极大值、极小值(其中多项式函数不超过三次),会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次)2016天津,20利用导数研究函数的极值和最值导数的运算、不等式的证明★★★2018天津,20利用导数研究指数函数、对数函数的性质3.导数的综合应用利用导数解决实际问题2014天津,20利用导数解决函数零点问题利用导数研究函数的性质★★★分析解读 函数的单调性是函数的一条重要的性质,也是高中阶段研究的重点.一般分两类考查,一是直接用导数研究函数的单调性、求函数的最值与极值以及实际问题中的优化问题等.二是把导数、函数、方程、不等式、数列等知识相联系,综合考查函数的最值与参数的值(取值范围),常以解答题的形式出现,分值14分,难度较大.破考点【考点集训】考点一 导数与函数的单调性1.已知函数f(x)=+1,则函数f(x)的单调增区间为 .x x 2+1答案 (-1,1)2.已知函数f(x)=+aln x(a ∈R ).1ex (1)当a=时,求曲线y=f(x)在(1, f(1))处的切线方程;1e (2)若函数f(x)在定义域内不单调,求a 的取值范围.解析 函数f(x)的定义域为(0,+∞),导函数f '(x)=-+=.1e x a x a e x-xx ex (1)当a=时,因为f '(1)=-+=0, f(1)=,1e 1e 1e 1e 所以曲线y=f(x)在(1, f(1))处的切线方程为y=.1e (2)f '(x)=(x>0),a e x-x x ex 设函数f(x)在定义域内不单调时,a 的取值集合是A;函数f(x)在定义域内单调时,a 的取值集合是B,则A=∁R B.函数f(x)在定义域内单调等价于f '(x)≤0恒成立或 f '(x)≥0恒成立,即ae x -x ≤0恒成立或ae x -x ≥0恒成立,等价于a ≤恒成立或a ≥恒成立.xex xex 令g(x)=(x>0),则g'(x)=,x ex 1-x ex由g'(x)>0得0<x<1,所以g(x)在(0,1)上单调递增;由g'(x)<0得x>1,所以g(x)在(1,+∞)上单调递减.因为g(1)=,且x>0时,g(x)>0,1e 所以g(x)∈.(0,1e ]所以B=,{a |a ≤0或a ≥1e }所以A=.{a |0<a <1e }考点二 导数与函数的极(最)值3.如图,已知直线y=kx 与曲线y=f(x)相切于两点,函数g(x)=kx+m(m>0),则函数F(x)=g(x)-f(x)( )A.有极小值,没有极大值B.有极大值,没有极小值C.至少有两个极小值和一个极大值D.至少有一个极小值和两个极大值答案 C 4.已知函数y=f(x)的导函数有且仅有两个零点,其图象如图所示,则函数y=f(x)在x= 处取得极值.答案 -1考点三 导数的综合应用5.已知函数f(x)=pe -x +x+1(p ∈R ).(1)当实数p=e 时,求曲线y=f(x)在x=1处的切线方程;(2)求函数f(x)的单调区间;(3)当p=1时,若直线y=mx+1与曲线y=f(x)没有公共点,求实数m 的取值范围.解析 (1)当p=e 时, f(x)=e -x+1+x+1,则f '(x)=-e -x+1+1,∴f(1)=3, f '(1)=0.∴曲线y=f(x)在x=1处的切线方程为y=3.(2)∵f(x)=pe -x +x+1,∴f '(x)=-pe -x +1.①当p ≤0时, f '(x)>0,函数f(x)的单调递增区间为(-∞,+∞);②当p>0时,令f '(x)=0,得e x =p,解得x=ln p.当x 变化时, f '(x), f(x)的变化情况如下表:x (-∞,ln p)ln p (ln p,+∞)f '(x)-0+f(x)↘2+ln p↗所以当p>0时, f(x)的单调递增区间为(ln p,+∞),单调递减区间为(-∞,ln p).(3)当p=1时, f(x)=e -x +x+1,直线y=mx+1与曲线y=f(x)没有公共点等价于关于x 的方程mx+1=e -x +x+1在(-∞,+∞)上没有实数解,即关于x 的方程(m-1)x=e -x (*)在(-∞,+∞)上没有实数解.①当m=1时,方程(*)化为e -x =0,显然在(-∞,+∞)上没有实数解.②当m ≠1时,方程(*)化为xe x =,令g(x)=xe x ,则有g'(x)=(1+x)e x .令g'(x)=0,得x=-1.1m -1当x 变化时,g'(x),g(x)的变化情况如下表:x (-∞,-1)-1(-1,+∞)g'(x)-0+g(x)↘-1e↗当x=-1时,g(x)min =-,当x 趋近于+∞时,g(x)趋近于+∞,从而g(x)的值域为.1e [-1e ,+∞)所以当<-,即1-e<m<1时,方程(*)无实数解.1m -11e 综合①②可知,实数m 的取值范围是(1-e,1].炼技法【方法集训】方法1 利用导数解决函数的单调性问题1.(2015重庆文,19,12分)已知函数f(x)=ax 3+x 2(a ∈R )在x=-处取得极值.43(1)确定a 的值;(2)若g(x)=f(x)e x ,讨论g(x)的单调性.解析 (1)对f(x)求导得f '(x)=3ax 2+2x,因为f(x)在x=-处取得极值,所以f '=0,43(-43)即3a·+2×=-=0,解得a=.169(-43)16a 38312(2)由(1)得g(x)=e x ,(12x 3+x 2)故g'(x)=e x +e x (32x 2+2x )(12x 3+x 2)=e x (12x 3+52x 2+2x )=x(x+1)(x+4)e x .12令g'(x)=0,解得x=0或x=-1或x=-4.当x<-4时,g'(x)<0,故g(x)为减函数;当-4<x<-1时,g'(x)>0,故g(x)为增函数;当-1<x<0时,g'(x)<0,故g(x)为减函数;当x>0时,g'(x)>0,故g(x)为增函数.综上,知g(x)在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数.2.已知函数f(x)=e x ,a ∈R .(x +ax )(1)求f(x)的零点;(2)当a ≥-5时,求证: f(x)在区间(1,+∞)上为增函数.解析 (1)f(x)的定义域为(-∞,0)∪(0,+∞),令f(x)=0,得x 2+a=0,则x 2=-a.当a ≥0时,方程无解, f(x)无零点;当a<0时,得x=±.-a 综上,当a ≥0时, f(x)无零点;当a<0时, f(x)的零点为±.-a (2)证明: f '(x)=e x +e x =.(1-a x2)(x +a x )(x 3+x 2+ax -a)e xx2令g(x)=x 3+x 2+ax-a(x>1),则g'(x)=3x 2+2x+a,其图象的对称轴为直线x=-,13所以g'(x)在(1,+∞)上单调递增.所以g'(x)>g'(1)=3×12+2×1+a=5+a.当a ≥-5时,g'(x)≥0恒成立,所以g(x)在(1,+∞)上为增函数.方法2 利用导数解决函数的极值、最值问题3.已知函数f(x)=ln x-ax-1(a ∈R ),g(x)=xf(x)+x 2+2x.12(1)求函数f(x)的单调区间;(2)当a=1时,若函数g(x)在区间(m,m+1)(m ∈Z )内存在唯一的极值点,求m 的值.解析 (1)由已知得x>0, f '(x)=-a=.1x 1-axx (i)当a ≤0时, f '(x)>0恒成立,则函数f(x)在(0,+∞)上单调递增;(ii)当a>0时,由f '(x)>0,得0<x<,1a 由f '(x)<0,得x>.1a 所以函数f(x)的单调递增区间为,单调递减区间为.(0,1a )(1a ,+∞)(2)因为g(x)=xf(x)+x 2+2x=x(ln x-x-1)+x 2+2x 1212=xln x-x 2+x,12所以g'(x)=ln x+1-x+1=ln x-x+2=f(x)+3.由(1)可知,函数g'(x)在(0,1)上单调递增,在(1,+∞)上单调递减.又因为g'=-2-+2=-<0,g'(1)=1>0,(1e2)1e21e2所以g'(x)在(0,1)上有且只有一个零点x 1.又在(0,x 1)上,g'(x)<0,g(x)在(0,x 1)上单调递减;在(x 1,1)上,g'(x)>0,g(x)在(x 1,1)上单调递增.所以x 1为极值点,此时m=0.又g'(3)=ln 3-1>0,g'(4)=2ln 2-2<0,所以g'(x)在(3,4)上有且只有一个零点x 2.又在(3,x 2)上,g'(x)>0,g(x)在(3,x 2)上单调递增;在(x 2,4)上,g'(x)<0,g(x)在(x 2,4)上单调递减.所以x 2为极值点,此时m=3.综上所述,m=0或m=3.4.已知函数f(x)=e x -a(ln x+1)(a ∈R ).(1)求函数y=f(x)在点(1, f(1))处的切线方程;(2)若函数y=f(x)在上有极值,求a 的取值范围.(12,1)解析 函数f(x)的定义域为(0,+∞), f '(x)=e x -.ax (1)因为f(1)=e-a, f '(1)=e-a,所以函数y=f(x)在点(1, f(1))处的切线方程为y-(e-a)=(e-a)(x-1),即y=(e-a)x.(2)对实数a 分类讨论,如下:(i)当a ≤0时,对于任意的x ∈,都有f '(x)>0,(12,1)所以函数f(x)在上为增函数,没有极值,不合题意;(12,1)(ii)当a>0时,令g(x)=e x -,则g'(x)=e x +>0.ax ax2所以g(x)在上单调递增,即f '(x)在上单调递增,(12,1)(12,1)所以函数f(x)在上有极值等价于(12,1){f '(1)>0,f '(12)<0,所以所以<a<e.{e -a >0,e -2a <0.e 2所以a 的取值范围是.(e2,e )方法3 利用导数解决不等式问题5.已知函数f(x)=,a ∈R .x -aln x (1)当a=0时,求函数f(x)的单调区间;(2)对任意的x ∈(1,+∞), f(x)>恒成立,求a 的取值范围.x 解析 (1)因为a=0,所以f(x)=,x ∈(0,1)∪(1,+∞).xln x 所以f '(x)=.ln x -1(ln x )2令f '(x)>0,即ln x-1>0,所以x>e;令f '(x)<0,即ln x-1<0,所以x<e.所以f(x)在(e,+∞)上单调递增,在(0,1)和(1,e)上单调递减.所以f(x)的单调递增区间是(e,+∞),单调递减区间是(0,1)和(1,e).(2)因为x>1,所以ln x>0.所以对任意的x ∈(1,+∞), f(x)>恒成立等价于>恒成立,等价于a<x-ln x 恒成立.x x -aln x x x 令g(x)=x-ln x,x>1,x 所以g'(x)=.2x -ln x -22x再令h(x)=2-ln x-2,x>1,x 所以h'(x)=.x -1x 所以当x>1时,h'(x)>0.所以h(x)在(1,+∞)上单调递增.所以h(x)>h(1)=0.所以当x>1时,g'(x)>0.所以g(x)在(1,+∞)上单调递增.所以g(x)>g(1)=1.所以a<1.6.已知函数f(x)=ln(kx)+-k(k>0).1x (1)求f(x)的单调区间;(2)对任意x ∈,都有xln(kx)-kx+1≤mx,求m 的取值范围.[1k ,2k ]解析 由已知得, f(x)的定义域为(0,+∞).(1)f '(x)=.x -1x2令f '(x)>0,得x>1;令f '(x)<0,得0<x<1.所以函数f(x)的单调减区间是(0,1),单调增区间是(1,+∞).(2)由xln(kx)-kx+1≤mx,得ln(kx)+-k ≤m,即m ≥f(x)max .1x ①当k ≥2时, f(x)在上单调递减,所以f(x)max =f =0,所以m ≥0;[1k ,2k ](1k )②当0<k ≤1时, f(x)在上单调递增,所以f(x)max =f =ln 2-,所以m ≥ln 2-;[1k ,2k ](2k )k 2k2③当1<k<2时, f(x)在上单调递减,在上单调递增,[1k ,1)(1,2k ]所以f(x)max =max .{f (1k ), f (2k )}又f =0, f =ln 2-,所以(1k )(2k )k2(i)若f ≥f ,即ln 2-≥0,(2k )(1k )k2所以1<k ≤2ln 2,此时f(x)max =f =ln 2-,(2k )k2所以m ≥ln 2-;k 2(ii)若f <f ,即ln 2-<0,(2k )(1k )k2所以2ln 2<k<2,此时f(x)max =0,所以m ≥0.综上所述,当k>2ln 2时,m ≥0;当0<k ≤2ln 2时,m ≥ln 2-.k2方法4 利用导数解决函数的零点问题7.已知函数f(x)=xe x +ax 2+2ax(a ∈R ).(1)若曲线y=f(x)在点(0, f(0))处的切线方程为3x+y=0,求a 的值;(2)当-≤a<0时,讨论函数f(x)的零点个数.12解析 由题意可知f '(x)=(x+1)(e x +2a).(1)因为曲线y=f(x)在点(0, f(0))处的切线方程为3x+y=0,所以f(0)=0, f '(0)=-3,由e 0+2a=-3,得a=-2.(2)当-≤a<0时,令f '(x)=(x+1)(e x +2a)=0,得x=-1或x=ln(-2a).12①当ln(-2a)<-1,即a ∈时,(-12e ,0)f '(x), f(x)的变化情况如下表:x (-∞,ln(-2a))ln(-2a)(ln(-2a),-1)-1(-1,+∞)f '(x)+0-0+f(x)↗极大值↘极小值↗所以函数f(x)在(ln(-2a),-1)上单调递减,在(-∞,ln(-2a))和(-1,+∞)上单调递增.又因为f(ln(-2a))=aln 2(-2a)<0, f(0)=0,所以函数f(x)有一个零点.②当ln(-2a)=-1,即a=-时,12e f '(x), f(x)的变化情况如下表:x (-∞,-1)-1(-1,+∞)f '(x)+0+f(x)↗-a-1e↗所以函数f(x)在(-∞,+∞)上单调递增.又因为f(0)=0,所以函数f(x)有一个零点.③当-1<ln(-2a)<0,即a ∈时,(-12,-12e )f '(x), f(x)的变化情况如下表:x (-∞,-1)-1(-1,ln(-2a))ln(-2a)(ln(-2a),+∞)f '(x)+0-0+f(x)↗极大值↘极小值↗所以函数f(x)在(-1,ln(-2a))上单调递减,在(-∞,-1)和(ln(-2a),+∞)上单调递增.又因为f(-2)=-2e -2+4a-4a=-2e -2<0, f(-1)=-a-,1e f(ln(-2a))=aln 2(-2a)<0, f(0)=0,所以当a ∈时, f(-1)=-a-<0,函数f(x)有一个零点;(-1e ,-12e )1e 当a=-时, f(-1)=0,函数f(x)有两个零点;1e 当a ∈时, f(-1)=-a->0,函数f(x)有三个零点.(-12,-1e )1e ④当ln(-2a)=0,即a=-时,显然函数f(x)有两个零点.12综上所述,当a ∈时,函数f(x)有一个零点;(-1e ,0)当a ∈时,函数f(x)有两个零点;{-1e ,-12}当a ∈时,函数f(x)有三个零点.(-12,-1e )过专题【五年高考】A 组 自主命题·天津卷题组考点一 导数与函数的单调性 (2014天津文,19,14分)已知函数f(x)=x 2-ax 3(a>0),x ∈R .23(1)求f(x)的单调区间和极值;(2)若对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f(x 1)·f(x 2)=1.求a 的取值范围.解析 (1)由已知,有f '(x)=2x-2ax 2(a>0).令f '(x)=0,解得x=0或x=.1a 当x 变化时, f '(x), f(x)的变化情况如下表:x (-∞,0)0(0,1a)1a(1a,+∞)f '(x)-0+0-f(x)↘↗13a2↘所以, f(x)的单调递增区间是;单调递减区间是(-∞,0),.(0,1a )(1a ,+∞)当x=0时, f(x)有极小值,且极小值f(0)=0;当x=时,f(x)有极大值,且极大值f =.1a (1a )13a 2(2)由f(0)=f =0及(1)知,当x ∈时, f(x)>0;当x ∈时, f(x)<0.(32a )(0,32a )(32a ,+∞)设集合A={f(x)|x ∈(2,+∞)},集合B=,则“对于任意的x 1∈(2,+∞),都存在{1f (x )|x ∈(1,+∞), f(x)≠0}x 2∈(1,+∞),使得f(x 1)·f(x 2)=1”等价于A ⊆B.显然,0∉B.下面分三种情况讨论:①当>2,即0<a<时,由f =0可知,0∈A,而0∉B,所以A 不是B 的子集.32a 34(32a )②当1≤≤2,即≤a ≤时,有f(2)≤0,且此时f(x)在(2,+∞)上单调递减,故A=(-∞, f(2)),因而A ⊆(-32a 3432∞,0);由f(1)≥0,有f(x)在(1,+∞)上的取值范围包含(-∞,0),则(-∞,0)⊆B.所以,A ⊆B.③当<1,即a>时,有f(1)<0,且此时f(x)在(1,+∞)上单调递减,故B=,A=(-∞,f(2)),所以A 不32a 32(1f (1),0)是B 的子集.综上,a 的取值范围是.[34,32]评析本题主要考查导数的运算,利用导数研究函数的性质,考查化归思想、分类讨论思想、函数思想.考查综合分析问题和解决问题的能力.考点二 导数与函数的极(最)值 (2016天津,20,14分)设函数f(x)=x 3-ax-b,x ∈R ,其中a,b ∈R .(1)求f(x)的单调区间;(2)若f(x)存在极值点x 0,且f(x 1)=f(x 0),其中x 1≠x 0,求证:x 1+2x 0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[-1,1]上的最大值.不小于···14解析 (1)由f(x)=x 3-ax-b,可得f '(x)=3x 2-a.下面分两种情况讨论:①当a ≤0时,有f '(x)=3x 2-a ≥0恒成立,所以f(x)的单调递增区间为(-∞,+∞).②当a>0时,令f '(x)=0,解得x=,或x=-.3a 33a3当x 变化时, f '(x), f(x)的变化情况如下表:x(-∞,-3a 3)-3a3(-3a 3,3a 3)3a 3(3a 3,+∞)f '(x)+0-0+f(x)单调递增极大值单调递减极小值单调递增所以f(x)的单调递减区间为,单调递增区间为,.(-3a 3,3a3)(-∞,-3a3)(3a3,+∞)(2)证明:因为f(x)存在极值点,所以由(1)知a>0,且x 0≠0.由题意,得f '(x 0)=3-a=0,即=,进而x 20x 20a3f(x 0)=-ax 0-b=-x 0-b.x 302a3又f(-2x 0)=-8+2ax 0-b=-x 0+2ax 0-b=-x 0-b=f(x 0),x 308a 32a3且-2x 0≠x 0,由题意及(1)知,存在唯一实数x 1满足 f(x 1)=f(x 0),且x 1≠x 0,因此x 1=-2x 0.所以x 1+2x 0=0.(3)证明:设g(x)在区间[-1,1]上的最大值为M,max{x,y}表示x,y 两数的最大值.下面分三种情况讨论:①当a ≥3时,-≤-1<1≤,3a 33a3由(1)知, f(x)在区间[-1,1]上单调递减,所以f(x)在区间[-1,1]上的取值范围为[f(1), f(-1)],因此M=max{|f(1)|,|f(-1)|}=max{|1-a-b|,|-1+a-b|}=max{|a-1+b|,|a-1-b|}={a -1+b ,b ≥0,a -1-b ,b <0.所以M=a-1+|b|≥2.②当≤a<3时,-≤-1<-<<1≤,3423a33a33a323a3由(1)和(2)知f(-1)≥f =f , f(1)≤f =f ,(-23a3)(3a 3)(23a 3)(-3a 3)所以f(x)在区间[-1,1]上的取值范围为 f , f ,(3a3)(-3a3)因此M=max,|f (3a3)||f (-3a3)|=max{|-2a 93a -b |,|2a93a -b |}=max {|2a 93a +b |,|2a 93a -b |}=+|b|≥××=.2a93a 29343×3414③当0<a<时,-1<-<<1,3423a 323a3由(1)和(2)知f(-1)<f =f ,(-23a3)(3a 3)f(1)>f =f ,(23a3)(-3a 3)所以f(x)在区间[-1,1]上的取值范围为[f(-1), f(1)],因此M=max{|f(-1)|,|f(1)|}=max{|-1+a-b|,|1-a-b|}=max{|1-a+b|,|1-a-b|}=1-a+|b|>.14综上所述,当a>0时,g(x)在区间[-1,1]上的最大值不小于.14思路分析 (1)求含参数的函数f(x)的单调区间,需要进行分类讨论;(2)由第(1)问可知a>0,要证x 1+2x 0=0,只需证出f(-2x 0)=f(x 0),其中x 1=-2x 0,即可得结论;(3)求g(x)在[-1,1]上的最大值,对a 分情况讨论即可.评析本题主要考查导数的运算、利用导数研究函数的性质、证明不等式等基础知识和方法.考查分类讨论思想和化归思想.考查综合分析问题和解决问题的能力.考点三 导数的综合应用1.(2018天津,20,14分)已知函数f(x)=a x ,g(x)=log a x,其中a>1.(1)求函数h(x)=f(x)-xln a 的单调区间;(2)若曲线y=f(x)在点(x 1,f(x 1))处的切线与曲线y=g(x)在点(x 2,g(x 2))处的切线平行,证明x 1+g(x 2)=-;2ln ln a ln a (3)证明当a ≥时,存在直线l,使l 是曲线y=f(x)的切线,也是曲线y=g(x)的切线.e 1e解析 本小题主要考查导数的运算、导数的几何意义、运用导数研究指数函数与对数函数的性质等基础知识和方法.考查函数与方程思想、化归思想.考查抽象概括能力、综合分析问题和解决问题的能力.(1)由已知,h(x)=a x -xln a,有h'(x)=a x ln a-ln a.令h'(x)=0,解得x=0.由a>1,可知当x 变化时,h'(x),h(x)的变化情况如下表:x (-∞,0)0(0,+∞)h'(x)-0+h(x)↘极小值↗所以函数h(x)的单调递减区间为(-∞,0),单调递增区间为(0,+∞).(2)证明:由f '(x)=a x ln a,可得曲线y=f(x)在点(x 1, f(x 1)) 处的切线斜率为ln a.a x 1由g'(x)=,可得曲线y=g(x)在点(x 2,g(x 2))处的切线斜率为.1x ln a 1x 2ln a 因为这两条切线平行,故有ln a=,即x 2(ln a)2=1.a x 11x 2ln a a x 1两边取以a 为底的对数,得log a x 2+x 1+2log a ln a=0,所以x 1+g(x 2)=-.2ln ln aln a (3)证明:曲线y=f(x)在点(x 1,)处的切线l 1:y-=ln a·(x-x 1).a x 1a x 1a x 1曲线y=g(x)在点(x 2,log a x 2)处的切线l 2:y-log a x 2=(x-x 2).1x 2ln a 要证明当a ≥时,存在直线l,使l 是曲线y=f(x)的切线,也是曲线y=g(x)的切线,只需证明当a ≥时,存e 1ee 1e在x 1∈(-∞,+∞),x 2∈(0,+∞),使得l 1与l 2重合.即只需证明当a ≥时,e 1e方程组有解.{a x 1ln a =1x 2ln a ,①a x 1-x 1a x 1ln a =log a x 2-1ln a ,②由①得x 2=,代入②,1a x 1(ln a )2得-x 1ln a+x 1++=0.③a x 1a x 11ln a 2ln ln aln a 因此,只需证明当a ≥时,关于x 1的方程③存在实数解.e 1e设函数u(x)=a x -xa x ln a+x++,1ln a 2ln ln aln a即要证明当a ≥时,函数y=u(x)存在零点.e 1eu'(x)=1-(ln a)2xa x ,可知x ∈(-∞,0)时,u'(x)>0;x ∈(0,+∞)时,u'(x)单调递减,又u'(0)=1>0,u'(1(ln a )2)=1-<0,故存在唯一的x 0,且x 0>0,使得u'(x 0)=0,a1(ln a )2即1-(ln a)2x 0=0.a x 0由此可得u(x)在(-∞,x 0)上单调递增,在(x 0,+∞)上单调递减.u(x)在x=x 0处取得极大值u(x 0).因为a ≥,故ln ln a ≥-1,e 1e所以u(x 0)=-x 0ln a+x 0++=+x 0+≥≥0.a x 0a x 01ln a 2ln ln a ln a 1x 0(ln a )22ln ln aln a 2+2ln ln aln a下面证明存在实数t,使得u(t)<0.由(1)可得a x ≥1+xln a,当x>时,有1ln a u(x)≤(1+xln a)(1-xln a)+x++=-(ln a)2x 2+x+1++,1ln a 2ln ln a ln a 1ln a 2ln ln aln a 所以存在实数t,使得u(t)<0.因此,当a ≥时,存在x 1∈(-∞,+∞),使得u(x 1)=0.e 1e 所以,当a ≥时,存在直线l,使l 是曲线y=f(x)的切线,也是曲线y=g(x)的切线.e 1e 2.(2015天津,20,14分)已知函数f(x)=nx-x n ,x ∈R ,其中n ∈N *,且n ≥2.(1)讨论f(x)的单调性;(2)设曲线y=f(x)与x 轴正半轴的交点为P,曲线在点P 处的切线方程为y=g(x),求证:对于任意的正实数x,都有f(x)≤g(x);(3)若关于x 的方程f(x)=a(a 为实数)有两个正实数根x 1,x 2,求证:|x 2-x 1|<+2.a1-n 解析 (1)由f(x)=nx-x n ,可得f '(x)=n-nx n-1=n(1-x n-1),其中n ∈N *,且n ≥2.下面分两种情况讨论:①当n 为奇数时.令f '(x)=0,解得x=1,或x=-1.当x 变化时, f '(x), f(x)的变化情况如下表:x (-∞,-1)(-1,1)(1,+∞)f '(x)-+-f(x)↘↗↘所以, f(x)在(-∞,-1),(1,+∞)上单调递减,在(-1,1)内单调递增.②当n 为偶数时.当f '(x)>0,即x<1时,函数f(x)单调递增;当f '(x)<0,即x>1时,函数f(x)单调递减.所以, f(x)在(-∞,1)上单调递增,在(1,+∞)上单调递减.(2)证明:设点P 的坐标为(x 0,0),则x 0=, f '(x 0)=n-n 2.曲线y=f(x)在点P 处的切线方程为y=fn1n -1'(x 0)(x-x 0),即g(x)=f '(x 0)(x-x 0).令F(x)=f(x)-g(x),即F(x)=f(x)-f '(x 0)(x-x 0),则F'(x)=f '(x)-f '(x 0).由于f '(x)=-nx n-1+n 在(0,+∞)上单调递减,故F'(x)在(0,+∞)上单调递减.又因为F'(x 0)=0,所以当x ∈(0,x 0)时,F'(x)>0,当x ∈(x 0,+∞)时,F'(x)<0,所以F(x)在(0,x 0)内单调递增,在(x 0,+∞)上单调递减,所以对于任意的正实数x,都有F(x)≤F(x 0)=0,即对于任意的正实数x,都有f(x)≤g(x).(3)证明:不妨设x 1≤x 2.由(2)知g(x)=(n-n 2)(x-x 0).设方程g(x)=a 的根为x'2,可得x'2=+x 0.a n -n2当n ≥2时,g(x)在(-∞,+∞)上单调递减.又由(2)知g(x 2)≥f(x 2)=a=g(x'2),可得x 2≤x'2.类似地,设曲线y=f(x)在原点处的切线方程为y=h(x),可得h(x)=nx.当x ∈(0,+∞)时, f(x)-h(x)=-x n <0,即对于任意的x ∈(0,+∞), f(x)<h(x).设方程h(x)=a 的根为x'1,可得x'1=.an 因为h(x)=nx 在(-∞,+∞)上单调递增,且h(x'1)=a=f(x 1)<h(x 1),因此x'1<x 1.由此可得x 2-x 1<x'2-x'1=+x 0.a1-n 因为n ≥2,所以2n-1=(1+1)n-1≥1+=1+n-1=n,C 1n -1故2≥=x 0.所以,|x 2-x 1|<+2.n1n -1a1-n 评析本题主要考查导数的运算、导数的几何意义、利用导数研究函数的性质、证明不等式等基础知识和方法.考查分类讨论思想、函数思想和化归思想.考查综合分析问题和解决问题的能力.3.(2014天津,20,14分)设f(x)=x-ae x (a ∈R ),x ∈R .已知函数y=f(x)有两个零点x 1,x 2,且x 1<x 2.(1)求a 的取值范围;(2)证明随着a 的减小而增大;x 2x 1(3)证明x 1+x 2随着a 的减小而增大.解析 (1)由f(x)=x-ae x ,可得f '(x)=1-ae x .下面分两种情况讨论:①a≤0时,f '(x)>0在R 上恒成立,可得f(x)在R 上单调递增,不合题意.②a>0时,由f '(x)=0,得x=-ln a.当x 变化时, f '(x), f(x)的变化情况如下表:x(-∞,-ln a)-ln a(-ln a,+∞)f '(x)+0-f(x)↗-ln a-1↘这时, f(x)的单调递增区间是(-∞,-ln a);单调递减区间是(-ln a,+∞).于是,“函数y=f(x)有两个零点”等价于如下条件同时成立:(i)f(-ln a)>0;(ii)存在s 1∈(-∞,-ln a),满足f(s 1)<0;(iii)存在s 2∈(-ln a,+∞),满足f(s 2)<0.由f(-ln a)>0,即-ln a-1>0,解得0<a<e -1.而此时,取s 1=0,满足s 1∈(-∞,-ln a),且f(s 1)=-a<0;取s 2=2a+ln ,满足s 2∈(-ln a,+∞),且f(s 2)=+<0.2a (2a -e 2a )(ln 2a -e 2a)所以a 的取值范围是(0,e -1).(2)证明:由f(x)=x-ae x =0,有a=.设g(x)=,由g'(x)=,知g(x)在(-∞,1)上单调递增,在(1,+∞)上单xe x x ex 1-x ex调递减.并且,当x ∈(-∞,0]时,g(x)≤0;当x ∈(0,+∞)时,g(x)>0.由已知,x 1,x 2满足a=g(x 1),a=g(x 2).由a ∈(0,e -1),及g(x)的单调性,可得x 1∈(0,1),x 2∈(1,+∞).对于任意的a 1,a 2∈(0,e -1),设a 1>a 2,g(ξ1)=g(ξ2)=a 1,其中0<ξ1<1<ξ2;g(η1)=g(η2)=a 2,其中0<η1<1<η2.因为g(x)在(0,1)上单调递增,故由a 1>a 2,即g(ξ1)>g(η1),可得ξ1>η1;类似可得ξ2<η2.又由ξ1,η1>0,得<<.ξ2ξ1η2ξ1η2η1所以随着a 的减小而增大.x 2x 1(3)证明:由x 1=a ,x 2=a ,可得ln x 1=ln a+x 1,ln x 2=ln a+x 2.故x 2-x 1=ln x 2-ln x 1=ln .e x 1e x 2x 2x 1设=t,则t>1,且x 2x 1{x 2=t x 1,x 2-x 1=ln t ,解得x 1=,x 2=.ln t t -1t ln tt -1所以x 1+x 2=.(*)(t +1)ln tt -1令h(x)=,x ∈(1,+∞),则h'(x)=.(x +1)ln xx -1-2ln x +x -1x (x -1)2令u(x)=-2ln x+x-,得u'(x)=.当x ∈(1,+∞)时,u'(x)>0.因此,u(x)在(1,+∞)上单调递增,故对于1x (x -1x)2任意的x ∈(1,+∞),u(x)>u(1)=0,由此可得h'(x)>0,故h(x)在(1,+∞)上单调递增.因此,由(*)可得x 1+x 2随着t 的增大而增大.而由(2)知t 随着a 的减小而增大,所以x 1+x 2随着a 的减小而增大.评析本题主要考查函数的零点、导数的运算、利用导数研究函数的性质等基础知识和方法.考查函数思想、化归思想.考查抽象概括能力、综合分析问题和解决问题的能力.4.(2013天津,20,14分)已知函数f(x)=x 2ln x.(1)求函数f(x)的单调区间;(2)证明:对任意的t>0,存在唯一的s,使t=f(s);(3)设(2)中所确定的s 关于t 的函数为s=g(t),证明:当t>e 2时,有<<.25ln g (t )ln t 12解析 (1)函数f(x)的定义域为(0,+∞).f '(x)=2xln x+x=x(2ln x+1),令f '(x)=0,得x=.1e 当x 变化时,f '(x), f(x)的变化情况如下表:x (0,1e)1e(1e,+∞)f '(x)-0+f(x)↘极小值↗所以函数f(x)的单调递减区间是,单调递增区间是.(0,1e )(1e,+∞)(2)证明:当0<x ≤1时, f(x)≤0.令h(x)=f(x)-t,x ∈[1,+∞).由(1)知,h(x)在区间(1,+∞)内单调递增.h(1)=-t<0,h(e t )=e 2t ln e t -t=t(e 2t -1)>0.故存在唯一的s ∈(1,+∞),使得t=f(s)成立.(3)证明:因为s=g(t),由(2)知,t=f(s),且s>1,所以====,其中u=lnln g (t )ln t ln sln f (s )ln sln(s 2ln s )ln s2ln s +ln(ln s )u2u +ln u s.要使<<成立,只需0<ln u<.25ln g (t )ln t 12u2当t>e 2时,若s=g(t)≤e,则由f(s)的单调性,有t=f(s)≤f(e)=e 2,矛盾.所以s>e,即u>1,从而ln u>0成立.另一方面,令F(u)=ln u-,u>1.u2f '(u)=-,1u 12令f '(u)=0,得u=2.当1<u<2时, f '(u)>0;当u>2时, f '(u)<0.故对u>1, f(u)≤F(2)<0.因此ln u<成立.u 2综上,当t>e 2时,有<<.25ln g (t )ln t 12B 组 统一命题、省(区、市)卷题组考点一 导数与函数的单调性1.(2017山东文,10,5分)若函数e x f(x)(e=2.718 28…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M 性质.下列函数中具有M 性质的是( )A. f(x)=2-xB. f(x)=x 2C. f(x)=3-xD. f(x)=cos x 答案 A2.(2016课标Ⅰ文,12,5分)若函数f(x)=x-sin 2x+asin x 在(-∞,+∞)单调递增,则a 的取值范围是13( )A.[-1,1]B.C.D.[-1,13][-13,13][-1,-13]答案 C 3.(2015陕西,9,5分)设f(x)=x-sin x,则f(x)( )A.既是奇函数又是减函数B.既是奇函数又是增函数C.是有零点的减函数D.是没有零点的奇函数答案 B4.(2015安徽文,10,5分)函数f(x)=ax 3+bx 2+cx+d 的图象如图所示,则下列结论成立的是( )A.a>0,b<0,c>0,d>0B.a>0,b<0,c<0,d>0C.a<0,b<0,c>0,d>0D.a>0,b>0,c>0,d<0答案 A5.(2014课标Ⅱ文,11,5分)若函数f(x)=kx-ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A.(-∞,-2] B.(-∞,-1]C.[2,+∞) D.[1,+∞)答案 D 6.(2017江苏,11,5分)已知函数f(x)=x 3-2x+e x -,其中e 是自然对数的底数.若f(a-1)+f(2a 2)≤0,则实1e x 数a 的取值范围是 . 答案 [-1,12]考点二 导数与函数的极(最)值1.(2017课标Ⅱ,11,5分)若x=-2是函数f(x)=(x 2+ax-1)e x-1的极值点,则f(x)的极小值为( )A.-1 B.-2e -3 C.5e -3 D.1答案 A 2.(2016四川文,6,5分)已知a 为函数f(x)=x 3-12x 的极小值点,则a=( )A.-4 B.-2 C.4 D.2答案 D 3.(2018课标Ⅲ,21,12分)已知函数f(x)=(2+x+ax 2)·ln(1+x)-2x.(1)若a=0,证明:当-1<x<0时, f(x)<0;当x>0时, f(x)>0;(2)若x=0是f(x)的极大值点,求a.解析 (1)当a=0时, f(x)=(2+x)ln(1+x)-2x, f '(x)=ln(1+x)-.x1+x 设函数g(x)=f '(x)=ln(1+x)-,x1+x 则g'(x)=.x (1+x )2当-1<x<0时,g'(x)<0;当x>0时,g'(x)>0.故当x>-1时,g(x)≥g(0)=0,且仅当x=0时,g(x)=0,从而f '(x)≥0,且仅当x=0时, f '(x)=0.所以f(x)在(-1,+∞)单调递增.又f(0)=0,故当-1<x<0时, f(x)<0;当x>0时, f(x)>0.(2)(i)若a ≥0,由(1)知,当x>0时, f(x)≥(2+x)ln(1+x)-2x>0=f(0),这与x=0是f(x)的极大值点矛盾.(ii)若a<0,设函数h(x)==ln(1+x)-.f (x )2+x +ax22x 2+x +ax2由于当|x|<min 时,2+x+ax 2>0,故h(x)与f(x)符号相同.{1,1|a |}又h(0)=f(0)=0,故x=0是f(x)的极大值点当且仅当x=0是h(x)的极大值点.h'(x)=-11+x 2(2+x +ax 2)-2x(1+2ax)(2+x +ax 2)2=.x 2(a 2x 2+4ax +6a +1)(x +1)(ax 2+x +2)2如果6a+1>0,则当0<x<-,且|x|<min 时,h'(x)>0,故x=0不是h(x)的极大值点.6a +14a {1,1|a |}如果6a+1<0,则a 2x 2+4ax+6a+1=0存在根x 1<0,故当x ∈(x 1,0),且|x|<min 时,h'(x)<0,{1,1|a |}所以x=0不是h(x)的极大值点.如果6a+1=0,则h'(x)=.x 3(x -24)(x +1)(x 2-6x -12)2则当x ∈(-1,0)时,h'(x)>0;当x ∈(0,1)时,h'(x)<0.所以x=0是h(x)的极大值点,从而x=0是f(x)的极大值点.综上,a=-.16思路分析 (1)a=0时,写出f(x)的解析式,对f(x)求导.易得f(0)=0,结合单调性可将问题解决.(2)对a 进行分类讨论,分析各类情况下的极大值点,进而得参数a 的值.易错警示 容易忽略函数定义域;若函数解析式中含有对数型的式子,则其真数部分应大于零.解后反思 1.利用导数研究函数的单调性,大多数情况下归结为对含有参数的一元二次不等式的解集的情况的讨论,在能够通过因式分解求出不等式对应方程的根时,依据根的大小进行分类讨论;在不能通过因式分解求出根的情况下,根据不等式对应方程的判别式进行分类讨论,讨论函数的单调性是在函数的定义域内进行的.2.利用导数研究出函数的单调性和极值后,可以画出草图,进行观察分析,研究满足条件的参数值或范围.4.(2016课标Ⅱ,21,12分)(1)讨论函数f(x)=e x 的单调性,并证明当x>0时,(x-2)e x +x+2>0;x -2x +2(2)证明:当a ∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.e x-ax -a x2解析 (1)f(x)的定义域为(-∞,-2)∪(-2,+∞).f '(x)==≥0,(x -1)(x +2)e x-(x -2)ex(x +2)2x 2ex(x +2)2且仅当x=0时, f '(x)=0,所以f(x)在(-∞,-2),(-2,+∞)单调递增.因此当x ∈(0,+∞)时, f(x)>f(0)=-1.所以(x-2)e x >-(x+2),(x-2)e x +x+2>0.(2)g'(x)==(f(x)+a).(x -2)e x+a(x +2)x3x +2x3由(1)知, f(x)+a 单调递增.对任意a ∈[0,1), f(0)+a=a-1<0, f(2)+a=a ≥0.因此,存在唯一x a ∈(0,2],使得f(x a )+a=0,即g'(x a )=0.当0<x<x a 时, f(x)+a<0,g'(x)<0,g(x)单调递减;当x>x a 时, f(x)+a>0,g'(x)>0,g(x)单调递增.因此g(x)在x=x a 处取得最小值,最小值为g(x a )===.ex a-a(x a +1)x 2ae xa+f(x a )(x a +1)x 2aexax a+2于是h(a)=,由'=>0,得y=单调递增.ex ax a +2(e xx +2)(x +1)e x (x +2)2e xx +2所以,由x a ∈(0,2],得=<h(a)=≤=.12e 00+2ex ax a+2e 22+2e 24因为y=单调递增,对任意λ∈,存在唯一的x a ∈(0,2],a=-f(x a )∈[0,1),使得h(a)=λ,所以h(a)e xx +2(12,e24]的值域是.(12,e24]综上,当a ∈[0,1)时,g(x)有最小值h(a),h(a)的值域是.(12,e24]疑难突破 本题求解的关键是“设而不求”方法的运用,另外,注意将对g'(x)符号的判断灵活地转化为对f(x)+a 符号的判断.考点三 导数的综合应用1.(2015课标Ⅰ,12,5分)设函数f(x)=e x (2x-1)-ax+a,其中a<1,若存在唯一的整数x 0使得f(x 0)<0,则a 的取值范围是( )A. B. C. D.[-32e ,1)[-32e ,34)[32e ,34)[32e ,1)答案 D 2.(2018课标Ⅰ文,21,12分)已知函数f(x)=ae x -ln x-1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a ≥时, f(x)≥0.1e 解析 (1)f(x)的定义域为(0,+∞),f '(x)=ae x -.1x 由题设知, f '(2)=0,所以a=.12e2从而f(x)=e x-ln x-1, f '(x)=e x-.12e212e21x 当0<x<2时, f '(x)<0;当x>2时, f '(x)>0.所以f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)证明:当a ≥时, f(x)≥-ln x-1.1e exe 设g(x)=-ln x-1,则g'(x)=-.e xe e x e 1x 当0<x<1时,g'(x)<0;当x>1时,g'(x)>0.所以x=1是g(x)的最小值点.故当x>0时,g(x)≥g(1)=0.因此,当a ≥时, f(x)≥0.1e 方法总结 利用导数证明不等式的常用方法:(1)证明f(x)<g(x),x ∈(a,b),可以构造函数F(x)=f(x)-g(x).如果F'(x)<0,则F(x)在(a,b)上是减函数,同时若F(a)≤0,由减函数的定义可知,x ∈(a,b)时,有F(x)<0,即证明了f(x)<g(x).(2)证明f(x)>g(x),x ∈(a,b),可以构造函数F(x)=f(x)-g(x),如果F'(x)>0,则F(x)在(a,b)上是增函数,同时若F(a)≥0,由增函数的定义可知,x ∈(a,b)时,有F(x)>0,即证明了f(x)>g(x).3.(2018课标Ⅱ,21,12分)已知函数f(x)=e x -ax 2.(1)若a=1,证明:当x ≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.解析 (1)证明:当a=1时, f(x)≥1等价于(x 2+1)e -x -1≤0.设函数g(x)=(x 2+1)e -x -1,则g'(x)=-(x 2-2x+1)e -x =-(x-1)2e -x .当x ≠1时,g'(x)<0,所以g(x)在(0,+∞)单调递减.而g(0)=0,故当x ≥0时,g(x)≤0,即f(x)≥1.(2)设函数h(x)=1-ax 2e -x .f(x)在(0,+∞)只有一个零点当且仅当h(x)在(0,+∞)只有一个零点.(i)当a ≤0时,h(x)>0,h(x)没有零点;(ii)当a>0时,h'(x)=ax(x-2)e -x .当x ∈(0,2)时,h'(x)<0;当x ∈(2,+∞)时,h'(x)>0.所以h(x)在(0,2)单调递减,在(2,+∞)单调递增.故h(2)=1-是h(x)在[0,+∞)的最小值.4ae2①若h(2)>0,即a<,h(x)在(0,+∞)没有零点;e24②若h(2)=0,即a=,h(x)在(0,+∞)只有一个零点;e24③若h(2)<0,即a>,由于h(0)=1,e24所以h(x)在(0,2)有一个零点.由(1)知,当x>0时,e x >x 2,所以h(4a)=1-=1->1-=1->0.16a 3e4a16a3(e 2a)216a3(2a )41a 故h(x)在(2,4a)有一个零点.因此h(x)在(0,+∞)有两个零点.综上, f(x)在(0,+∞)只有一个零点时,a=.e24方法总结 利用导数研究不等式恒成立问题时,可以先构造函数,然后对构造的新函数求导,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可以先分离变量,再构造函数,直接把问题转化为函数的最值问题.研究函数的零点个数问题,可以通过导数研究函数的单调性、最值等.具体地,可画出函数图象,根据函数图象的走势规律,标出函数极值点、最值点的位置求解.这种用数形结合思想分析问题的方法,可以使问题有一个清晰、直观的整体展现.4.(2017课标Ⅱ,21,12分)已知函数f(x)=ax 2-ax-xln x,且f(x)≥0.(1)求a;(2)证明: f(x)存在唯一的极大值点x 0,且e -2< f(x 0)<2-2.解析 本题考查了导数的综合应用.(1)f(x)的定义域为(0,+∞).设g(x)=ax-a-ln x,则f(x)=xg(x), f(x)≥0等价于g(x)≥0.因为g(1)=0,g(x)≥0,故g'(1)=0,而g'(x)=a-,g'(1)=a-1,得a=1.1x 若a=1,则g'(x)=1-.1x 当0<x<1时,g'(x)<0,g(x)单调递减;当x>1时,g'(x)>0,g(x)单调递增.所以x=1是g(x)的极小值点,故g(x)≥g(1)=0.综上,a=1.(2)证明:由(1)知f(x)=x 2-x-xln x, f '(x)=2x-2-ln x.设h(x)=2x-2-ln x,则h'(x)=2-.1x 当x ∈时,h'(x)<0;(0,12)当x ∈时,h'(x)>0.(12,+∞)所以h(x)在上单调递减,在上单调递增.(0,12)(12,+∞)又h(e -2)>0,h <0,h(1)=0,所以h(x)在上有唯一零点x 0,在上有唯一零点1,且当x ∈(0,x 0)(12)(0,12)[12,+∞)时,h(x)>0;当x ∈(x 0,1)时,h(x)<0;当x ∈(1,+∞)时,h(x)>0.因为f '(x)=h(x),所以x=x 0是f(x)的唯一极大值点.由f '(x 0)=0得ln x 0=2(x 0-1),故f(x 0)=x 0(1-x 0).由x 0∈(0,1)得f(x 0)<.14因为x=x 0是f(x)在(0,1)的最大值点,由e -1∈(0,1), f '(e -1)≠0得f(x 0)>f(e -1)=e -2,所以e -2<f(x 0)<2-2.方法总结 利用导数解决不等式问题的一般思路:(1)恒成立问题常利用分离参数法转化为最值问题求解.若不能分离参数,可以对参数进行分类讨论.(2)证明不等式问题可通过构造函数转化为函数的最值问题求解.5.(2015课标Ⅰ,21,12分)已知函数f(x)=x 3+ax+,g(x)=-ln x.14(1)当a 为何值时,x 轴为曲线y=f(x)的切线?(2)用min{m,n}表示m,n 中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.解析 (1)设曲线y=f(x)与x 轴相切于点(x 0,0),则f(x 0)=0, f '(x 0)=0,即{x 30+a x 0+14=0,3x 20+a =0.解得x 0=,a=-.1234因此,当a=-时,x 轴为曲线y=f(x)的切线.34(2)当x ∈(1,+∞)时,g(x)=-ln x<0,从而h(x)=min{f(x),g(x)}≤g(x)<0,故h(x)在(1,+∞)无零点.当x=1时,若a ≥-,则f(1)=a+≥0,h(1)=min{f(1),g(1)}=g(1)=0,故x=1是h(x)的零点;若a<-,则545454f(1)<0,h(1)=min{f(1),g(1)}=f(1)<0,故x=1不是h(x)的零点.当x ∈(0,1)时,g(x)=-ln x>0,所以只需考虑f(x)在(0,1)的零点个数.(i)若a ≤-3或a ≥0,则f '(x)=3x 2+a 在(0,1)无零点,故f(x)在(0,1)单调.而f(0)=, f(1)=a+,所以当1454a ≤-3时, f(x)在(0,1)有一个零点;当a ≥0时, f(x)在(0,1)没有零点.(ii)若-3<a<0,则f(x)在单调递减,在单调递增,故在(0,1)中,当x=时, f(x)取得最(0,-a3)(-a3,1)-a3小值,最小值为f =+.(-a 3)2a3-a 314①若f >0,即-<a<0, f(x)在(0,1)无零点;(-a 3)34②若f =0,即a=-,则f(x)在(0,1)有唯一零点;(-a 3)34③若f<0,即-3<a<-,由于f(0)=, f(1)=a+,所以当-<a<-时, f(x)在(0,1)有两个零点;当-(-a3)34145454343<a ≤-时, f(x)在(0,1)有一个零点.54综上,当a>-或a<-时,h(x)有一个零点;3454当a=-或a=-时,h(x)有两个零点;3454当-<a<-时,h(x)有三个零点.54346.(2014课标Ⅱ,21,12分)已知函数f(x)=e x -e -x -2x.(1)讨论f(x)的单调性;(2)设g(x)=f(2x)-4bf(x),当x>0时,g(x)>0,求b 的最大值;(3)已知1.414 2<<1.414 3,估计ln 2的近似值(精确到0.001).2解析 (1)f '(x)=e x +e -x -2≥0,等号仅当x=0时成立.所以f(x)在(-∞,+∞)上单调递增.(2)g(x)=f(2x)-4bf(x)=e 2x -e -2x -4b(e x -e -x )+(8b-4)x,g'(x)=2[e 2x +e -2x -2b(e x +e -x )+(4b-2)]=2(e x +e -x -2)(e x +e -x -2b+2).(i)当b ≤2时,g'(x)≥0,等号仅当x=0时成立,所以g(x)在(-∞,+∞)上单调递增.而g(0)=0,所以对任意x>0,g(x)>0.(ii)当b>2时,若x 满足2<e x +e -x <2b-2,即0<x<ln(b-1+)时,g'(x)<0.而g(0)=0,因此当b 2-2b 0<x ≤ln(b-1+)时,g(x)<0.b 2-2b 综上,b 的最大值为2.(3)由(2)知,g(ln )=-2b+2(2b-1)ln 2.2322当b=2时,g(ln )=-4+6ln 2>0,2322ln 2>>0.692 8;82-312当b=+1时,ln(b-1+)=ln ,324b 2-2b 2)=--2+(3+2)ln 2<0,23222。

2020年高考数学(理)真题与模拟题分类训练 专题03 导数及其应用(学生版)

2020年高考数学(理)真题与模拟题分类训练 专题03 导数及其应用(学生版)

专题03 导数及其应用1.【2020年高考全国Ⅰ卷理数】函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为 A .21y x =-- B .21y x =-+ C .23y x =-D .21y x =+2.【2020年高考全国III 卷理数】若直线l 与曲线y 和x 2+y 2=15都相切,则l 的方程为 A .y =2x +1 B .y =2x +12C .y =12x +1D .y =12x +123.【2020年高考北京】为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改、设企业的污水摔放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论: ①在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强;②在2t 时刻,甲企业的污水治理能力比乙企业强; ③在3t 时刻,甲、乙两企业的污水排放都已达标;④甲企业在[][][]112230,,,,,t t t t t 这三段时间中,在[]10,t 的污水治理能力最强. 其中所有正确结论的序号是____________________.4.【2020年高考全国Ⅰ卷理数】已知函数2()e x f x ax x =+-.(1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围. 5.【2020年高考全国Ⅰ卷理数】已知函数2() sin sin2f x x x =.(1)讨论f (x )在区间(0,π)的单调性;(2)证明:()f x ≤; (3)设*n ∈N ,证明:2222sin sin 2sin 4sin 234nn nx x xx ≤.6.【2020年高考全国Ⅰ卷理数】设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直. (1)求B .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.7.【2020年高考天津】已知函数3()ln ()f x x k x k =+∈R ,()f x '为()f x 的导函数.(Ⅰ)当6k =时,(i)求曲线()y f x =在点(1,(1))f 处的切线方程; (ii)求函数9()()()g x f x f x x'=-+的单调区间和极值; (Ⅰ)当3k ≥-时,求证:对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-. 8.【2020年高考北京】已知函数2()12f x x =-.(Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅰ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值.9.【2020年高考浙江】已知12a <≤,函数()e x f x x a =--,其中e=2.71828…是自然对数的底数.(Ⅰ)证明:函数()y f x =在(0,)+∞上有唯一零点; (Ⅰ)记x 0为函数()y f x =在(0,)+∞上的零点,证明:(Ⅰ)0x ≤≤;(Ⅰ)00(e )(e 1)(1)x x f a a ≥--.10.【2020年高考江苏】某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO '为铅垂线(O '在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO '的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO '的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO '的距离为40米. (1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO '的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点)..桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0),问O E '为多少米时,桥墩CD 与EF 的总造价最低?11.【2020年高考江苏】已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式; (2)若2 1 ln ,()()()(0) x x g k x h kx k D f x x x =-+==-=+∞,,,,求k 的取值范围;(3)若()422342() 2() (48 () 4 3 02 f x x x g x x h x t t x t t t =-=-=--+<≤,,[] , D m n =⊆⎡⎣,求证:n m -≤.12.【2020年新高考全国Ⅰ卷】已知函数1()e ln ln x f x a x a -=-+.(1)当e a =时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围.1.【2020·湖北省高三其他(理)】已知函数()2sin()ln (0,1)6xf x a x x a a a π=+->≠,对任意1x ,2[0x ∈,1],不等式21|()()|2f x f x a --恒成立,则实数a 的取值范围是 A .2[e ,)+∞ B .[e ,)+∞ C .(e ,2e ]D .2(e,e )2.【2020·四川省南充高级中学高三月考(理)】已知P 是曲线1C :e x y =上任意一点,点Q 是曲线2C :ln xy x=上任意一点,则PQ 的最小值是 A .ln 212- B .ln 212+C .2D .3.【2020·河南省高三月考(理)】设函数()f x '是函数()()f x x ∈R 的导函数,当0x ≠时,()()30f x f x x'+<,则函数()()31g x f x x =-的零点个数为A .3B .2C .1D .04.【2019·河北省高三月考(理)】若函数()212ln 2f x x x a x =-+有两个不同的极值点,则实数a 的取值范围是 A .1a > B .10a -<<C .1a <D .01a <<5.【黑龙江省2020届高三理科5月数学模拟试卷】已知定义域为R 的函数f (x )满足()11'4022f f x x ⎛⎫=+> ⎪⎝⎭,,其中f ′(x )为f (x )的导函数,则不等式f (sin x )﹣cos2x ≥0的解集为 A .2233k k k ππ⎡⎤-+π+π∈⎢⎥⎣⎦Z ,,B .2266k k k ππ⎡⎤-+π+π∈⎢⎥⎣⎦Z ,,C .22233k k k ππ⎡⎤+π+π∈⎢⎥⎣⎦Z ,,D .52266k k k ππ⎡⎤+π+π∈⎢⎥⎣⎦Z ,,6.【2020届四川省宜宾市高三高考适应性考试(三诊)数学(理科)试题】已知函数()()2e 31xf x x x =-+,则关于x 的方程()()25e 0f x mf x +-=⎡⎤⎣⎦(m ∈R )的实根个数为 A .3 B .3 或4C .4或 5D .3或 57.【湖北省武汉市部分学校2020届高三上学期起点质量监测(理)】已知π4ln3a =,π3ln 4b =,34ln πc =,则a ,b ,c 的大小关系是 A .c b a << B .b c a << C .b a c <<D .a b c <<8.【甘肃省天水市一中2020届高三第一次模拟考试(理)】设定义在R 上的函数()f x 的导函数为()f x ',若()()2f x f x '+>,()02020f =,则不等式()e 2e 2018xxf x >+(其中e 为自然对数的底数)的解集为A .()0,+∞B .()2018,+∞C .()2020,+∞D .()(),02018,-∞+∞9.【2020届山西省高三高考考前适应性测试数学(理)试题】已知函数()log xa x x f a-=+(其中0a >且1a ≠)有零点,则实数a 的最小值是______.10.【2020·湖北省高三其他(理)】函数()e x f x x =(其中e 2.71828=)的图象在(0,0)处的切线方程是_____.11.【2020·广西壮族自治区高三其他(理)】函数ln y x =在1,1e ⎛⎫- ⎪⎝⎭处的切线在y 轴上的截距为____________.12.【2019·天津市静海区大邱庄中学高三月考】已知11,1()4ln ,1x x f x x x ⎧+≤⎪=⎨⎪>⎩,则方程()f x ax =恰有2个不同的实根,实数a 取值范围__________________.13.【2020·天津市武清区杨村第一中学高三开学考试】已知函数21()sin cos 2f x x x x ax =++,[,]x ∈-ππ (1)当0a =时,求()f x 的单调区间; (2)当0a >,讨论()f x 的零点个数;14.【2020·福建省福州第一中学高三其他(理)】已知函数()eln f x x ax =-,()22x g x x =-.(1)讨论函数()f x 的单调性;(2)若存在直线()y h x =,使得对任意的()0,x ∈+∞,()()h x f x ≥,对任意的x ∈R ,()()g x h x ≥,求a 的取值范围.15.【2020·广西壮族自治区高三其他(理)】设函数2()ln ,f x a x x ax a =++∈R .(1)讨论()f x 的单调性;(2)若()f x 存在极值,对于任意(0,)x ∈+∞,都有()0f x ≥恒成立,求a 的取值范围. 16.【2020·南昌市八一中学高三三模(理)】已知函数()(1)ln(1)f x x x =++,2()cos 2x g x ax x x =+-.(1)当0x ≥时,总有2()2x f x mx +,求m 的最小值;(2)对于[]0,1中任意x 恒有()()f x g x ≤,求a 的取值范围.17.【2020·河北省衡水中学高三其他(理)】已知函数()2ln ,f x ax ax x x =--且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且()2202ef x --<<.18.【2019·山东省实验中学高三月考】已知函数:()()21ln ,e 12x f x x a x a g x x =--=-- (I)当[]1,e x ∈时,求()f x 的最小值;(II)对于任意的[]10,1x ∈都存在唯一的[]21,e x ∈使得()()12g x f x =,求实数a 的取值范围. 19.【2020·河北新乐市第一中学高三其他】设函数()2e e xf x ax x b =--+,其中e 为自然对数的底数.(1)若曲线()f x 在y 轴上的截距为1-,且在点1x =处的切线垂直于直线12y x =,求实数a ,b 的值; (2)记()f x 的导函数为()g x ,求()g x 在区间[]0,1上的最小值()h a .20.【2020·山东省高三其他】已知函数()()ln f x a x b =+.(1)若1a =,0b =,求()f x 的最大值; (2)当0b >时,讨论()f x 极值点的个数.21.【2020·宜宾市叙州区第一中学校高三一模(理)】设函数()ln e xf x x x a =-,()p x kx =,其中a ∈R ,e 是自然对数的底数.(1)若()f x 在()0,∞+上存在两个极值点,求a 的取值范围;(2)若()1()x lnx f x ϕ=+-′,(1)e ϕ=,函数()x ϕ与函数()p x 的图象交于()11,A x y ,()22,B x y ,且AB 线段的中点为()00,P x y ,证明:()()001x p y ϕ<<.22.【山东师范大学附属中学2020届高三年级学习质量评估考试数学试题】已知函数21()e ln (,ax f x x b x ax a b +=⋅--∈R ).(1 )若b =0,曲线f (x )在点(1, f (1)) 处的切线与直线y = 2x 平行,求a 的值; (2)若b =2,且函数f (x )的值域为[2,),+∞求a 的最小值.23.【2020届河南省开封市第五中学高三第四次教学质量检测数学(理)试卷】已知函数()()211ln 2f x x ax a x =-+-,()ln g x b x x =-的最大值为1e. (1)求实数b 的值;(2)当1a >时,讨论函数()f x 的单调性;(3)当0a =时,令()()()22ln 2F x f x g x x =+++,是否存在区间[],(1m n ⊆,)+∞,使得函数()F x 在区间[],m n 上的值域为()()2,2k m k n ⎡⎤++⎣⎦?若存在,求实数k 的取值范围;若不存在,请说明理由.。

2020年高考浙江版高考理科数学 3.2 导数的应用

2020年高考浙江版高考理科数学  3.2 导数的应用

炼技法
【方法集训】
方法 1 利用导数研究函数的单调性
1.(2017 课标全国Ⅱ文,21,12 分)设函数 f(x)=(1-x2)ex. (1)讨论 f(x)的单调性; (2)当 x≥0 时, f(x)≤ax+1,求 a 的取值范围. 解析 本题考查函数的单调性,恒成立问题. (1)f '(x)=(1-2x-x2)ex. 令 f '(x)=0,得 x=-1- 2或 x=-1+ 2. 当 x∈(-∞,-1- 2)时, f '(x)<0; 当 x∈(-1- 2,-1+ 2)时, f '(x)>0; 当 x∈(-1+ 2,+∞)时, f '(x)<0. 所以 f(x)在(-∞,-1- 2),(-1+ 2,+∞)上单调递减, 在(-1- 2,-1+ 2)上单调递增. (2)解法一:f(x)=(1+x)(1-x)ex. 当 a≥1 时,设函数 h(x)=(1-x)ex,h'(x)=-xex<0(x>0),因此 h(x)在[0,+∞)上单调递减,而 h(0)=1,
f(x)在 0,6 上递减,在 6,1 上递增,且 ������ 6 =f 6 <f(1),符合题意.(12 分)
3
④当-1≤a<-4时, f '(x)=12ax2+6(1-a)x+2a,
������ - 1
Δ=-60a2-72a+36>0, f '(0)<0, f '(1)<0,对称轴 x= 4������ ∈(0,1). 故 f '(x)=0 在(0,1)上有两个不同的实根 x1,x2,设 x1<x2, 则 f(x)在(0,x1)上单调递减,在(x1,x2)上单调递增,在(x2,1)上单调递减.必有|f(x2)|>f(1),不符合题 意.(14 分)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原创理科数学专题卷 专题 导数及其应用考点13:导数的概念及运算(1,2题)考点14:导数的应用(3-11题,13-15题,17-22题) 考点15:定积分的计算(12题,16题)考试时间:120分钟 满分:150分说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上第I 卷(选择题)一、选择题(本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是最符合题目要求的。

)1.【来源】2016-2017年河北武邑中学高二理周考 考点13 易 函数()2sin f x x =的导数是( )A.2sin xB.22sin xC.2cos xD.sin 2x 2.【来源】2016-2017年河北武邑中学高二理周考 考点13 易 已知()21cos 4f x x x =+,()'f x 为()f x 的导函数,则()'f x 的图像是( )3.【2017课标II ,理11】 考点14 易若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e - D.1 4.【来源】2017届湖北孝感市高三理上学期第一次统考 考点14 中难 若曲线()ln y x a =+的一条切线为y ex b =+,其中,a b 为正实数,则2ea b ++的取值范围是( ) A.2,2e e ⎛⎫++∞⎪⎝⎭B.[),e +∞C.[)2,+∞D.[)2,e 5.【来源】2017届福建闽侯县三中高三上期中 考点14 难已知函数2x y =的图象在点),(200x x 处的切线为l ,若l 也与函数x y ln =,)1,0(∈x 的图象相切,则0x 必满足( )A .2100<<x B .1210<<x C .2220<<x D .320<<x 6.【来源】2017届河北磁县一中高三11月月考 考点14 易已知函数()f x 的导数为()f x ′,且()()()10x f x xf x ++>′对x R ∈恒成立,则下列函数在实数集内一定是增函数的为( )A.()f xB.()xf xC.()x e f xD.()x xe f x7.【来源】2017届江西抚州市七校高三上学期联考 考点14 易 已知函数()f x 与()'f x 的图象如图所示,则函数()()x f x g x e=的递减区间为( )A.()0,4B.()4,1,,43⎛⎫-∞ ⎪⎝⎭C.40,3⎛⎫⎪⎝⎭D.()()0,1,4,+∞ 8.【来源】2017届山东省青州市高三10月段测 考点14中难定义在R 上的函数()f x 满足:'()1()f x f x >-,(0)6f =,'()f x 是()f x 的导函数,则不等式()5xxe f x e >+(其中e 为自然对数的底数)的解集为( ) A .(0,)+∞ B .(,0)(3,)-∞+∞U C .(,0)(1,)-∞+∞U D .(3,)+∞ 9.【2017课标3,理11】考点14 难已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =( )A .12-B .13C .12D .110.【来源】2017届河南中原名校高三理上质检三 考点14 难 已知函数()f x 的定义域为R ,()'fx 为函数()f x 的导函数,当[)0,x ∈+∞时,()'2sin cos 0x x f x ->且x R ∀∈,()()cos21f x f x x -++=.则下列说法一定正确的是( ) A.15324643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭B.15344643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭C3134324f f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭D.1332443f f ππ⎛⎫⎛⎫-->- ⎪ ⎪⎝⎭⎝⎭11.【来源】2017届辽宁沈阳二中高三理上学期期中 考点14 中难 已知函数 ()()()()2325ln ,26,2f x x ax a x a Rg x x x x g x =--∈=-++-在[]1,4上的最大值为 b ,当[)1,x ∈+∞时,()f x b ≥恒成立,则a 的取值范围是( ) A.2a ≤ B.1a ≤ C.1a ≤- D.0a ≤ 12.【来源】2017届辽宁盘锦高级中学高三11月月考 考点15 中难 已知0a >,0b >,'()f x 为()f x 的导函数,若()ln2xf x =,且31112'()12bb dx f a b x =+-⎰,则a b +的最小值为( )A .B ..92 D .92+第Ⅱ卷(非选择题)二.填空题(每题5分,共20分) 13.【来源】2017届广东省仲元中学高三9月月考 考点14易 已知函数ln 4()x f x x+=,求曲线)(x f 在点(1,(1))f 处的切线方程____________14.【来源】2017届广西陆川县中学高三8月月考 考点14 中难若函数2()xf x x e ax =--在R 上存在单调递增区间,则实数a 的取值范围是 . 15.【来源】2017届湖北襄阳四中高三七月周考二 考点14 中难若函数21()ln 12f x x x =-+在其定义域内的一个子区间(1,1)a a -+内存在极值,则实数a 的取值范围 . 16.【来源】2015-2016新疆哈密地区二中高二下期末考试 考点15易如图,阴影部分的面积是_________.三.解答题(共70分) 17.(本题满分10分)【来源】2017届四川遂宁等四市高三一诊联考 考点14 易已知函数()()x f x ae x a R =-∈,其中e 为自然对数的底数, 2.71828e =…. (Ⅰ)判断函数()f x 的单调性,并说明理由;(Ⅱ)若[]1,2x ∈,不等式()x f x e -≥恒成立,求a 的取值范围. 18.(本题满分12分)【来源】2017届河南百校联盟高三文11月质监 考点14 中难 已知函数()xf x e ax =-,(0a >).(Ⅰ)记()f x 的极小值为()g a ,求()g a 的最大值;(Ⅱ)若对任意实数x 恒有()0f x ≥,求()f a 的取值范围. 19.(本题满分12分)【来源】2017届河北唐山市高三理上学期期末 考点14中难 已知函数()()ln ,ln 12x ax f x g x x x x ⎛⎫==-- ⎪⎝⎭. (1)求()y f x =的最大值;(2)当10,a e ⎡⎤∈⎢⎥⎣⎦时,函数()(](),0,y g x x e =∈有最小值. 记()g x 的最小值为()h a ,求函数()h a 的值域.20.(本题满分12分)【来源】2016-2017学年江苏南通海安县实验中学高二上学期期中 考点14中难 已知函数22()()xf x x x cec R -=-+∈.(1)若()f x 是在定义域内的增函数,求c 的取值范围;(2)若函数5()()'()2F x f x f x =+-(其中'()f x 为()f x 的导函数)存在三个零点,求c 的取值范围. 21.(本题满分12分)【来源】2017届四川自贡市高三一诊考试 考点14中难已知函数()()()()()121'10'2x f x f e f x x f x -=-+是()f x 的导数,e 为自然对数的底数),()()212g x x ax b a R b R =++∈∈,.(Ⅰ)求()f x 的解析式及极值;(Ⅱ)若()()f x g x ≥,求()12b a +的最大值.22.(本题满分12分)【2017课标1,理21】已知函数2()(2)x xf x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x有两个零点,求a的取值范围.参考答案1.D【解析】由题意得,函数的导数为()2(sin)2sin(sin)2sin cos sin2f x x x x x x x'''==⋅==.2.A【解析】由题意得,()1sin2f x x x'=-,所以()11()sin()[sin]()22f x x x x x f x''-=---=--=-,所以函数()f x'为奇函数,即函数的图象关于原点对称,当2xπ=时,1()1024fππ'=-<,当2x>时,()0f x'>恒成立,故选A.3.【答案】A【解析】4.C【解析】设切点为),(yx,则有2)ln(1-=⇒⎪⎩⎪⎨⎧+=+=+aebbexaxeex,eab2,0>∴>Θ,212≥+=++aabea,故选C.5.D【解析】函数2y x=的导数y'2x=,2y x=在点200(,)x x处的切线斜率为2k x=,切线方程为()20002y x x x x-=-,设切线与lny x=相交的切点为(),lnm m,(01m<<),由lny x=的导数为1'yx=可得12xm=,切线方程为()1lny m x mm-=-,令0x=,可得2ln1y m x=-=-,由01m<<可得12x>,且21x>,解得1x>由12mx=,可得()200,ln210x x--=,令()()2ln21,f x x x=--()()11,'20,x f x x f x x>=->在1x >递增,且2ln 10,3ln 10ff =-<=->,则有()200ln 210x x --=的根x ∈,故选D.6.D 【解析】设()()x F x xe f x =,则()()()()()()()11x x x F x x e f x xe f x e x f x xf x =++=++⎡⎤⎣⎦′′′. ()()()10x f x xf x ++>Q ′对R x ∈恒成立,且0x e >.()()0,F x F x >∴′∴在R 上递增. 7.D【解析】()()()()()()xx xx ex f x f e e x f e x f x g -'=-'='2,令()0<'x g 即()()0<-'x f x f ,由图可得()()+∞∈,41,0Y x ,故函数单调减区间为()()0,1,4,+∞,故选D. 8.A【解析】设x xg x e f x e x R =-∈()(),(),[]1'1x x x x g x e f x e f x e e f x f x f x f x '=+'-=+'--Q ()()()()(),()>(),100f x f x g x y g x ∴+'-∴'∴=()()>,()>,()在定义域上单调递增, 55x x e f x e g x +∴Q ()>,()>,又00061500g e f e g x g x =-=-=∴∴Q ()(),()>(),>,∴不等式的解集为0+∞(,). 9.【答案】C【解析】函数的零点满足()2112x x xx a e e --+-=-+,设()11x x gx ee--+=+,则()()211111111x x x x x x e g x eeee e---+----'=-=-=, 当()0g x '=时,1x =,当1x <时,()0g x '<,函数()g x 单调递减,当1x >时,()0g x '>,函数()g x 单调递增,当1x =时,函数取得最小值()12g=,设()22h x x x =- ,当1x =时,函数取得最小值1- ,10.B【解析】令()()2sin F x x f x =-,则()()''sin 2F x x f x =-.因为当[)0,x ∈+∞时,()'2sin cos 0x x f x ->,即()'sin 2x f x >,所以()()''sin 20F x x f x =->,所以()()2sin F x x f x =-在[)0,x ∈+∞上单调递增.又x R ∀∈,()()cos21f x f x x -++=,所以()()22sin f x f x x -+=, 所以,,故()()2sin F x x f x =-为奇函数,所以()()2sin F x x f x =-在R 上单调递增,所以5463F F ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭.即15344643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭,故选B. 11.B【解析】)13)(2(253)(2'+--=++-=x x x x x g ,所以)(x g 在]2,1[上是增函数,]4,2[上是减函数0)(,0)2()(≥==x f g x g 在),1[+∞∈x 上恒成立, 由),1[+∞∈x 知,0ln >+x x ,所以0)(≥x f 恒成立等价于xx x a ln 2+≤在),1[+∞∈x ,时恒成立,令),1[,ln )(2+∞∈+=x x x x x h ,有0)ln (ln 2)1()(2'>++-=x x xx x x h ,所以)(x h 在),1[+∞上是增函数,有1)1()(=≥h x h ,所以1≤a . 12.C【解析】∵()x x f 1=',∴()a a f 1=',∵2212111213b b x b dx x b bb +-=⎪⎭⎫ ⎝⎛-=⎰,()1212113-+'=⎰b a f dx x b b,∴1212221-+=+-b a b b ,∴1212=+ba ,∵0a >,0b >,∴()()29222252225212=⋅+≥++=⎪⎭⎫ ⎝⎛++=+a b b a a b b a b a b a b a ,当a b b a 22=且1212=+b a ,即23,3==b a 时等号成立,故选C. 13.370x y +-= 【解析】()23ln xx xf +-=',所以(1)3,(1)4k f f '==-=,切线方程为43(1),y x -=--即370x y +-=14.2ln 22a ≤-【解析】因为函数2()xf x x e ax =--,所以()2xf x x e a '=--,因为2()xf x x e ax =--在R 上存在单调递增区间,所以()20xf x x e a '=-->,即2x a x e <-有解,令()2x g x x e =-,则()2x g x e '=-,则()20ln 2x g x e x '=-=⇒=,所以当ln 2x <时,()20x g x e '=->;当ln 2x >时,()20x g x e '=-<,当ln 2x =时,()max 2ln 22g x =-,所以2ln 22a <-. 15.)23,1[【解析】函数的定义域为),0(+∞,令0214212)(2=-=-='x x x x x f ,解得21=x 或21-=x (不在定义域内舍),所以要使函数在子区间)1,1(+-a a 内存在极值等价于),0()1,1(21+∞⊂+-∈a a ,即⎪⎪⎪⎩⎪⎪⎪⎨⎧>+<-≥-21121101a a a ,解得231<≤a ,答案为)23,1[.16.323【解析】由题意得,直线2y x =与抛物线23y x =-,解得交点分别为(3,6)--和(1,2),抛物线23y x =-与x 轴负半轴交点(,设阴影部分的面积为S ,则10220(32))S x x dx x dx =--+-⎰⎰2332)xdx x dx ---+-⎰532933=+-=. 17.(Ⅰ)理由见解析;(Ⅱ)⎪⎪⎭⎫⎢⎣⎡+∞+,112e e【解析】(Ⅰ)由题可知,()x f x ae x =-,则()1x f x ae '=-, (i )当0a ≤时,()0f x '<,函数()x f x ae x =-为R 上的减函数, (ii )当0a >时,令10x ae -=,得ln x a =-,② (),ln x a ∈-∞-,则()0f x '<,此时函数()f x 为单调递减函数;②若()ln ,x a ∈-+∞,则()0f x '>,此时函数()f x 为单调递增函数.………………(4分) (Ⅱ)由题意,问题等价于[]1,2x ∈,不等式x x ae x e --≥恒成立, 即[]1,2x ∈,21xx xe a e+≥恒成立,令()21xx xe g x e+=,则问题等价于a 不小于函数()g x 在[]1,2上的最大值.………………(6分)由()()()()221214212x xx xxe exe e x e xxx e g x e '+-+--'==,当[]1,2x ∈时,()0g x '<,所以函数()g x 在[]1,2上单调递减,……………………………(8分)所以函数()g x 在[]1,2x ∈的最大值为()2111g e e=+, 故[]1,2x ∈,不等式()x f x e -≥恒成立,实数a 的取值范围为⎪⎪⎭⎫⎢⎣⎡+∞+,112e e.…………(10分)18.(Ⅰ)()max 1g a =(Ⅱ)()f a 的取值范围是(21,e e e ⎤-⎦.【解析】(Ⅰ)函数()f x 的定义域是(),-∞+∞,()'xf x e a =-.在定义域上单调递增。

相关文档
最新文档