线性方程组有解的判定条件

合集下载

线性代数第三章线性方程组第4节线性方程组解的结构

线性代数第三章线性方程组第4节线性方程组解的结构

c1
1 0
c2
0 1
k1
1 1
k2
2 2
1
0
0
1
得 c1 k2
cc12
k1 k1
2k2 2k2
c1 k2
即 c1 k2 0
cc12
k1 k1
2k2 2k2
0 0
c1 k2 0
解得 c1 k2,c2 k2,k1 k2.

k2 k 0,
则方程组(Ⅰ)、(Ⅱ)的公共解为
(kk21
(k1 k2 )
k2 k2
)0 0
解之得到
k1 k2.
当k1 k2 0时,向量
k1(0,1,1, 0)T k2 (1, 2, 2,1)T k2[(0,1,1, 0)T (1, 2, 2,1)T
满足方程组(Ⅰ).
k2 (1,1,1,1)T
并且它也是方程组(Ⅱ)的解,故它是方程组(Ⅰ)与(Ⅱ)的 公共解.
定理3.17 若0是非齐次线性方程组AX=b的一个解,则方程组 AX=b的任意一个解 都可以表示为 0 其中 是其导出组AX=0的某个解,0称为方程组
AX=b的一个特解.
例7 求线性方程组
x1 2x2 3x3 x4 3x5 5
3x1
2x1 4x2
x2 2x4 6x5 1 5x3 6x4 3x5
0 0
x1 5x2 6x3 8x4 6x5 0
的一个基础解系.并求方程组的通解.
解 方程组中方程个数小于未知量的个数,所以方程组有 无穷多解.
对方程组的系数矩阵施以初等行变换,化为简化的阶 梯形矩阵:
3 1 6 4 2
A 2
2
3 5
3
1 5 6 8 6

4_6非齐次线性方程组有解的条件及解的结构

4_6非齐次线性方程组有解的条件及解的结构

解证 对增广矩阵B进行初等变换,
方程组的增广矩阵为
Page 17
0 0 1 1 0 1 1 0 0 0 0 1 1 0 B 0 0 0 1 1 0 1 0 0 0 1
0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 ~ 0 1 1 0 0 0 0 0 0 0
例1 求下述方程组的解 x1 x 2 x 3 x 4 x 5 7 , 3 x x 2 x x 3 x 2, 1 2 3 4 5 2 x 2 x 3 2 x 4 6 x 5 23, 8 x1 3 x 2 4 x 3 3 x 4 x 5 12.
下面讨论非齐次线性方程组与其导出组的解的关 系.
Page 2
(1)如果u1是Ax=b的一个解,v1是Ax=0的一个解,则 u1+v1也是Ax=b的解. 证: ∵ Au1=b, Av1=0 故A(u1+v1) =Au1+Av1 =b+0 =b (2)如果u1,u2是Ax=b的两个解,则u1-u2是Ax=0的解.
显然,R( A) 2, R( B ) 3,
故方程组无解.
Page 16
x1 x2 x x 3 2 例3 证明方程组 x3 x4 x x 5 4 x5 x1 求出它的一切解.
a1 a2 a3 a4 a5 有解的充要条件
是a1 a2 a3 a4 a5 0.在有解的情况下,
由R A R B ,知方程组有解又R A 2, n r 3, .
所以方程组有无穷多解. 且原方程组等价于方程组
x1 x2 x3 x4 x5 7 2 x2 x3 2 x4 6 x5 23

2.6线性方程组解的一般理论

2.6线性方程组解的一般理论

x4
0
,
1
,
0
x5 0 0 1
2 2 6
1
1
5
1
1
,2
0
,3
0
0
1
0
0
0
1
一般解 c11 c22 c33
(c1, c2, c3为任意常数.)
8
三、非齐次线性方程组解的结构
x11 x22 xnn (I) 0 (II)
第二章 线性方程组 §2.6 线性方程组解的一般理论
一、线性方程组有解的判定定理 二、齐次线性方程组解的结构 三、非齐次线性方程组解的结构
1
一、线性方程组有解的判定定理
定理1 线性方程组 x11 x22 xnn (I) 有解
r( A) r( A) 推论1 线性方程组(I)无解 r(A) r( A) 推论2 线性方程组(I)有唯一解 r(A) r(A) n 推论3 线性方程组(I)有无穷多解 r(A) r(A) n
方程组的三个解向量 1,2 ,3满足
1
0
1
1 2 2, 2 3 1, 3 1 0
3
1
1
求 非 齐 次 线 性 方 程 组 一 的 般 解.
19
解 A是m 3矩阵, r(A) 1,
导出组的基础解系中有 含3 1 2个线性无关的解向量.
令1 2 a, 2 3 b, 3 1 c,则
其中k1 , k 2为任意实数.
21
A
2 1
3 0
1 2
1 2
3 6
0 0
0 0
1 0
1 0
1 0
5 0
0
0
4
5
3

线性方程组有解的判别定理

线性方程组有解的判别定理
§3-5 线性方程组有解的判别定理
用向量和矩阵的理论分析讨论线性方程 组是否有解的问题
设非齐次线性方程组
a11x1 a12x2 a1n xn b1
a2
1x1
a2
2x2
a2n xn

b2
(2)
as1x1 as2x2 asnxn bs

b2
as1 x1 as2 x2 asn xn bs
中, 如果方程式的个数大于未知元的个数
方程组是否无解?
2.对齐次线性方程组你能得到什么结论?
思考题答案
• 1.方程式的个数不能决定系数矩阵和增 广矩阵的秩,不能由此得到有关解的结 论.
• 2.齐次线性方程组恒有解,当系数矩阵的 秩小于未知元的个数时,线性方程组有无 穷多组解(非零解).
0
dr1

0 0 0 0
当dr1 0 时 R(A) R(A)线性方程组有解; 当dr1 0 时 R(A) R(A)线性方程组没有解。 当R(A) R(A)=r 时,线性方程组1( )独立 方程式的个数为 r,不妨设线性方程组1)( 同解与线性方程组
a11x1 a12x2 a1n xn b1
量方程
x1 1 x 2 2 x n n ,
则线性方程组有解的充
分必要条件是
向量 可以表示成向量组 线性组合。


1

2




n
记系数矩阵 为
a11 a12 a1n
A

a 21

a

s1
a 22 a 2n
a s 2 a sn

4.1 线性方程组有解的条件

4.1 线性方程组有解的条件

(1) 0, 3, R( A) R(B) 3, 方程组有唯一解; 故: (2) 0, R( A) 1, R(B) 2, 方程组无解;
(3) 3, R( A) R(B) 2, 方程组有无限多个解。
1 1 2 3 1 0 1 1
此时
B
r
0
3
3
6
r
0
1
1
2
,
0 0 0 0 0 0 0 0
x1 1 1 1 2
x2 x3
c1
1
0
c2
0
2
0
1 2
, c1
, c2
R.
x4 0 1 0
例4
对于线性方程组
(1 x1
)
(1
x1
)
x2 x2
x3 x3
0, 3,
书本P112,T6
x1 x2 (1 )x3 ,
问取何值时,有解?有无穷多个解? 并求无穷多解的通解。
c1n d1
c2n
d2
M M
crn
dr
0 0
d
r 1
0
M M
0 0
初等变换不改变矩阵的秩,故有:R( A) R( A) r,
增广矩阵B 通过初等行 变换化为阶
梯型矩阵B
R(B)
R(B)
r, r
1,
当dr1 0, 当dr1 0.
故:
方程组(1)有解的充分必要条件为 dr1 0 ,此时R(A)=R(B)。
令 x3 c1, x4 c2,把它写成通常的参数形式
x1
21
4 3
c2
,
x3 c1,
x4
c2 ,
5

线性方程组有解的判定条件

线性方程组有解的判定条件

解 对增广矩阵B进行初等变换,
1 B =3
−2 −1
3 5
−1 −3
1 2
r2 r3
− −
2r1r1
1 0
−2 5
3 −4
−1 0
1 − 1
2 1 2 − 2 3 r3 − r2 0 05 −04 0 12
显然,R( A) = 2, R(B) = 3, 故方程组无解.
例3 求解非齐次方程组的通解
λx1 + x2 x1 + λx2
+ +
x3 x3
= =
1
λ
x1 + x2 + λx3 = λ2
问λ取何值时,有解?有无穷多个解 ?
解 对增广矩阵 B = ( A,b) 作初等行变换,
λ 1 1 1 1 1 λ λ2
B=1 λ 1 λ ~1 λ 1 λ
1

λ2
λ
1
1
1
1 1
一、线性方程组有解的判定条件
问题:如何利用系数矩阵 A 和增广矩阵 B 的秩, 讨论线性方程组 Ax = b 的解.
定理1 n 元齐次线性方程组 Am×n x = 0 有非零解
的充分必要条件是系数 矩阵的秩 R(A) < n.
证 必要性. 设方程组 Ax = 0 有非零解,
设R(A) = n,则在A中应有一个n阶非零子式Dn,从而
x2 x3
− −
x3 x4
= a2 = a3
由此得通解:
x4 − x5 = a4
x1 = a1 + a2 + a3 + a4 + x5
x2 = a2 + a3 + a4 + x5 x3 = a3 + a4 + x5

线性代数-非齐次线性方程组

线性代数-非齐次线性方程组

充分性:若r(A)=r(A|b) ,即d r+1 =0,则(*)有解。
把这 r 行的第一个非零元所对应的未知量作为 非自由未知量, 其余n r个作为自由未知量,
即可得方程组的一个解. 并令 n r 个自由未知量任意取值,
定理1更常用的描述是:
此乃第三章的 精华所在
定理1’
对n 元非齐次线性方程组 Amn x b ,
Ch3 矩阵的秩与线性方程组
第 二节
(非)齐次线性方程组
一、线性方程组有解的 判定
二、线性方程组的解法
对于m个方程n个未知数的线性方程组
a11 x1 a12 x 2 a1n x n b1 a 21 x1 a 22 x 2 a 2 n x n b2 ........................................... a x a x a x b m2 2 mn n m m1 1
解 对增广矩阵 A 进行初等变换,
r12 ( 3) 1 2 3 1 1 1 2 3 1 1 r ( 2) A 3 1 5 3 2 13 0 5 4 0 1 2 1 2 2 3 r23 ( 1) 0 5 4 0 1 0 0 2
2 当 1时,
1 1 2 A ~ 0 1 1 1 2 0 0 1 2 1 1 1 1 2 ~ 0 1 1 0 0 ( 2 ) 1 2
问取何值时, 有唯一解? 无解?有无穷多个解 ?
解一 对增广矩阵 A ( A, b) 作初等行变换,
A 1 1

1

4.2线性方程组有无解的判定

4.2线性方程组有无解的判定
1


1
Q r ( A) = r ( A ) = 3, ∴ 原方程组有惟一解:x1 = −
λ
, x2 =
2
λ
, x3 =
λ −1 . λ
当λ
1 1 − 2 − 3 1 0 − 1 − 1 = −3 时, A → 0 − 3 3 6 → 0 1 − 1 − 2(行简化阶梯形矩阵) 0 0 0 0) 0 0 0 0
是否有解线性方程组的线性组合不是且表出方式不惟一的线性组合为何值时且表出方式惟一的线性组合为何值时的线性组合不能表为为何值时的线性组合不能表为方程组有惟一解故惟一线性表出为可由行简化阶梯形矩阵阶梯形矩阵方程组有无穷多解其一般解为且表出方式不惟一
§4.2 线性方程组有无解的判定 线性方程组的一般形式:
同解方程组为
5 5 x1 − x3 + x4 = 0 3 3 x + 7 x − 1 x = 1, 2 3 3 3 4
故一般解为
5 5 x1 = x3 − x4 3 3 ( x3 , x 4为自由未知量 ). x = 1− 7 x + 1 x , 3 4 2 3 3
1 −1 1 3 1 −1 2 −1 M 3 1 −1 2 −1 MM 3 →0 0 −5 2 −6 解(1) A = 4 −4 3 −2 M 6 → 0 0 −5 2 MM −6 = 4 1 −1 −3 1 M 1 0 0 −5 0 MM −2 0 0 0 2 (阶梯形矩阵)
⇔ r ( A) = r ( A ) = n,
有无穷多解 ⇔ r ( A) = r ( A ) < n.
解线性方程组的步骤: (1)利用矩阵的初等行变换将方程组的增广矩阵化 为阶梯形矩阵,判断是否有解. (2)有解时,继续利用矩阵的初等行变换将阶梯形 矩阵化为行简化阶梯形矩阵. (3)根据行简化阶梯形矩阵,写出方程组的解.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

= =
−2c2 c1 ,

4 3
c2
,
x4 = c2,

x1 x2 x3 x4
=
c1
2 −2 1 0
+
c2
5
3 −4
3 0
1
.
例2 求解非齐次线性方程组
x1 − 3 x1
2 −
x2 x2
+ 3x3 + 5x3
− −
x4 = 3 x4
1, =
2,
2 x1 + x2 + 2 x3 − 2 x4 = 3.
解 对增广矩阵B进行初等变换,
1 B =3
−2 −1
3 5
−1 −3
1 2
r2 r3
− −
2r1r1
1 0
−2 5
3 −4
−1 0
1 − 1
2 1 2 − 2 3 r3 − r2 0 05 −04 0 12
显然,R( A) = 2, R(B) = 3, 故方程组无解.
例3 求解非齐次方程组的通解
x2 x3
− −
x3 x4
= a2 = a3
由此得通解:
x4 − x5 = a4
x1 = a1 + a2 + a3 + a4 + x5
x2 = a2 + a3 + a4 + x5 x3 = a3 + a4 + x5
x4 = a4 + x5
(x5为任意实数 ).
例5 设有线性方程组
1
2 1 −1
2 −2 −4
1 − 2 − 3
r2 r3
− −
2r1 r1
1 0 0
2 −3 −3
2 −6 −6
1 − 4 − 4
r3 − r2
1 0
2 1
2 2
1 4
1
r1
− 2r2
0
0 1
−Байду номын сангаас 2
−5 3 4
r2
÷
(−3)
0
0
0
3 0
3
0 0 0 0
即得与原方程组同解的方程组
λ
λ2
~ 0 λ − 1 1 − λ λ − λ2
0
1−λ
1 − λ2
1

λ2
1 1
λ
~ 0 λ −1 1−λ
λ2
λ − λ2
0
0
2 − λ − λ2
1
+
λ

λ2

λ3
1 1
λ
= 0 λ −1 1−λ
λ2
λ(1 − λ )
0
0
(1 − λ )(2 + λ )
(1

λ
)(1
+
λ
3 −1
6 −p
1 15
3 3
1 − 5 − 10 12 t
1 1
2
3 1
~
0 0 0
2 −4 −6
4 − p−6
− 12
−2 6 9
2
t
0 −
1
1 1 2
3 1
~
0 0 0
1 0 0
2 − p+2
0
−1 2 3
1
t
4 +
5
(1)当p ≠ 2时, R( A) = R(B) = 4,方程组有唯一解;
三、小结
齐次线性方程组 Ax = 0
R(A) = n ⇔ Ax = 0只有零解; R(A) < n ⇔ Ax = 0有非零解.
非齐次线性方程组 Ax = b
R(A) = R(B) = n ⇔ Ax = b有唯一解; R(A) = R(B)< n ⇔ Ax = b有无穷多解.
思考题
讨论线性方程组
x1 + x2 + 2 x3 + 3 x4 = 1,
Dn所对应的 n个方程只有零解 (根据克拉默定理 ),
这与原方程组有非零解相矛盾,
∴ R( A) = n 不能成立. 即 R(A)< n. 充分性. 设 R(A) = r < n,
则 A 的行阶梯形矩阵只含 r 个非零行, 从而知其有 n − r 个自由未知量 . 任取一个自由未知量为1,其余自由未知量为0, 即可得方程组的一个非零解.
)2
(1) 当λ = 1时,
1 1 1 1 B ~ 0 0 0 0
0 0 0 0
R(A) = R(B) < 3,方程组有无穷多解 .
其通解为
x1 x2
=1− = x2
x2

x3
x3 = x3
(x2 , x3为任意实数 ).
(2) 当λ ≠ 1时,
1 1 λ
λ2
B ~ 0 1 −1 −λ
定理2 n 元非齐次线性方程组 Am×n x = b 有解 的充分必要条件是系数 矩阵 A 的秩等于增广矩
阵 B = (A,b)的秩.
证 必要性.设方程组 Ax = b 有解,
设R(A)< R(B),
则B的行阶梯形矩阵中最后一个非零行对应矛盾
方程0=1,
这与方程组有解相矛盾. 因此 R(A) = R(B).
x1 + 3 x2 + 6 x3 + x4 = 3,
3 x1

x2

p x3
+
15 x4
=
3,
x1 − 5 x2 − 10 x3 + 12 x4 = t
当p, t取何值时,方程组无解 ?有唯一解?
有无穷多解 ?在方程组有无穷多解的 情
况下,求出一般解.
思考题解答

1 1 2 3 1
B
=
1 3
x1 x2
− +
2 x3 2 x3
− +
5
3 4
3
x4 x4
= =
0, 0,
由此即得
x1 x2
=
2
x3
+
5 3
x4
,
=
−2
x3

4 3
x4
,
( x3 , x4 可任意取值).
令 x3 = c1, x4 = c2,把它写成通常的参数 形式
x1
=
2c2
+
5 3 c2,
x2 x3
充分性. 设 R(A) = R(B), 设 R(A) = R(B) = r(r ≤ n),
则 B 的行阶梯形矩阵中含 r 个非零行,
把这 r 行的第一个非零元所对应的未知量作为 非自由未知量,
其余n − r个作为自由未知量,
并令 n − r个自由未知量全取0,
即可得方程组的一个解.
证毕
小结 R(A) = R(B) = n ⇔ Ax = b有唯一解 R(A) = R(B)< n ⇔ Ax = b有无穷多解.
λx1 + x2 x1 + λx2
+ +
x3 x3
= =
1
λ
x1 + x2 + λx3 = λ2
问λ取何值时,有解?有无穷多个解 ?
解 对增广矩阵 B = ( A,b) 作初等行变换,
λ 1 1 1 1 1 λ λ2
B=1 λ 1 λ ~1 λ 1 λ
1

λ2
λ
1
1
1
1 1
定义:含有个参数的方 程组的任一解,称为线 性 方程组的通解.
二、线性方程组的解法
例1 求解齐次线性方程组
x1 + 2 x1
2 +
x2 + x2 −
x3 + 2 x3
x4 = 0 − 2x4 =
0
.
x1 − x2 − 4 x3 − 3 x4 = 0
解 对系数矩阵 A 施行初等行变换:
1 A = 2
(2)当p = 2时,有
1 1 2 3 1 1 1 2 3 1
B
~
0 0 0
1 0 0
2 0 0
−1 2 3
t
1 4 +
5
~
0 0 0
1 0 0
2 0 0
−1 1 0
1
t
2 −
1
当t ≠ 1时, R( A) = 3 < R(B) = 4,方程组无解; 当t = 1时, R( A) = R(B) = 3,方程组有无穷多解 .
定义:含有个参数的方 程组的任一解,称为线 性 方程组的通解.
齐次线性方程组:系数矩阵化成行最简形矩阵, 便可写出其通解;
非齐次线性方程组:增广矩阵化成行阶梯形矩 阵,便可判断其是否有解.若有解,化成行最 简形矩阵,便可写出其通解;
定理 3 n元线性方程组 Ax=b
(1) R(A) <=R(B) ⇔ Ax = b无解 (2) R(A) = R(B) = n ⇔ Ax = b有唯一解 (3) R(A) = R(B)< n ⇔ Ax = b有无穷多解.
x1 x1
− −
x2 x2
− +
x3 x3
+ −
x4 = 0 3x4 = 1
.
x1 − x2 − 2 x3 + 3 x4 = −1 2
解 对增广矩阵B进行初等变换
1 − 1 − 1 1 0 1 − 1 − 1 1 0 B = 1 −1 1 − 3 1 ~ 0 0 2 − 4 1
1 − 1 − 2 3 − 1 2 0 0 − 1 2 − 1 2
相关文档
最新文档