(完整版)高二数学椭圆知识点整理

(完整版)高二数学椭圆知识点整理
(完整版)高二数学椭圆知识点整理

最新椭圆基本知识点总结

椭圆知识点 知识点一:椭圆的定义 平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的简单几何性质 椭圆:12222=+b y a x )0(>>b a 与 122 22=+b x a y )0(>>b a 的简单几何性质

1.椭圆标准方程中的三个量c b a ,,的几何意义 222c b a += 2.通径:过焦点且垂直于长轴的弦,其长a b 2 2 3.最大角:p 是椭圆上一点,当p 是椭圆的短轴端点时,21PF F ∠ 为最大角。 4.焦点三角形的面积2 tan 2 21θ b S F PF =?,其中21PF F ∠=θ 5. 用待定系数法求椭圆标准方程的步骤. (1)作判断:依据条件判断椭圆的焦点在x 轴上还是在y 轴上. (2)设方程: ①依据上述判断设方程为2222b y a x +=1)0(>>b a 或22 22a y b x +=1)0(>>b a ②在不能确定焦点位置的情况下也可设mx 2+ny 2=1(m >0,n >0且m ≠n ). (3)找关系,根据已知条件,建立关于a ,b ,c 或m ,n 的方程组. (4)解方程组,代入所设方程即为所求. 6.点与椭圆的位置关系: 2222b y a x +<1,点在椭圆内,2222b y a x +=1,点在椭圆上,2 2 22b y a x +>1, 点在椭圆外。 7.直线与椭圆的位置关系 设直线方程y =kx +m ,若直线与椭圆方程联立,消去y 得关于x 的一元二次方程:ax 2+bx +c =0(a ≠0). (1)Δ>0,直线与椭圆有两个公共点;(2)Δ=0,直线与椭圆有一个公共点; (3)Δ<0,直线与椭圆无公共点. 8.弦长公式: 若直线b kx y l +=:与圆锥曲线相交与A 、B 两点,),(),,2211y x B y x A (则弦长

高二数学椭圆的知识点整理Word版

第1讲 课题:椭圆 课 型:复习巩固 上课时间:2013年10月3日 教学目标: (1)了解圆锥曲线的来历; (2)理解椭圆的定义; (3)理解椭圆的两种标准方程; (4)掌握椭圆离心率的计算方法; (5)掌握有关椭圆的参数取值范围的问题; 教学重点:椭圆方程、离心率; 教学难点:与椭圆有关的参数取值问题; 知识清单 一、椭圆的定义: (1) 椭圆的第一定义:平面内与两定点21F F 、的距离和等于常数 ()a 2(大于21F F )的点的轨迹叫做椭圆. 说明:两个定点叫做椭圆的焦点; 两焦点间的距离叫做椭圆的焦距()c 2. (2) 椭圆的第二定义:平面上到定点的距离与到定直线的距离之 比为常数e ,当10<>=+F F a a PF PF ; (){} .02,22121>>=+=F F a a PF PF P M 三、椭圆的标准方程: 焦点在x 轴: ()0122 22>>=+b a b y a x ; 焦点在y 轴: ()0122 22>>=+b a b x a y . 说明:a 是长半轴长,b 是短半轴长,焦点始终在长轴所在的数轴上,且满足 .222c b a += 四、二元二次方程表示椭圆的充要条件 方程()B A C B A C By Ax ≠=+均不为零,且、、22表示椭圆的条件:

上式化为122=+C By C Ax ,12 2=+B C y A C x .所以,只有C B A 、、同号,且B A ≠时,方程表示椭圆;当 B C A C >时,椭圆的焦点在x 轴上;当B C A C <时,椭圆的焦点在y 轴上. 五、椭圆的几何性质(以()0122 22>>=+b a b y a x 为例) 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式 1,122 22≤≤b y a x ,即b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题. 2.对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3.顶点(椭圆和它的对称轴的交点) 有四个: ()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长;21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5.离心率 (1)椭圆焦距与长轴的比a c e = ,()10,0<<∴>>e c a (2)22F OB Rt ?,2 22 22 22OF OB F B +=,即222c b a +=.这是椭圆的特 征三角形,并且22cos B OF ∠的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而22c a b -=越大,椭圆越接近圆;当0=e 时,b a c ==,0,两焦点重合,图形是圆. 6.通径(过椭圆的焦点且垂直于长轴的弦),通径长为a b 2 2.

(完整版)椭圆知识点复习总结

椭圆知识点总结复习 1. 椭圆的定义: (1)椭圆:焦点在x 轴上时122 22=+b y a x (222a b c =+)?{ cos sin x a y b ??==(参 数方程,其中?为参数),焦点在y 轴上时22 22b x a y +=1(0a b >>)。方程 22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 例一:已知线段AB 的两个端点A ,B 分别在x 轴,y 轴上,AB=5,M 是AB 上的一个点,且AM=2,点M 随AB 的运动而运动,求点M 的运动轨迹方程 2. 椭圆的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤; ②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线: 两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。⑥通径2 2b a 例二:设椭圆22 221(0)x y a b a b +=>>上一点P 作x 轴的垂线,恰好过椭圆的一个焦 点1F ,此时椭圆与x 轴交于点A ,与y 轴交于点B ,且A,B 两点所确定的直线AB 与OP 平行,求离心率e

2.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外?2200 221x y a b +>; (2)点00(,)P x y 在椭圆上?220 220b y a x +=1; (3)点00(,)P x y 在椭圆内?2200 221x y a b +< 3.直线与圆锥曲线的位置关系:(往往设而不求) (1)相交:0?>?直线与椭圆相交;(2)相切:0?=?直线与椭圆相切; (3)相离:0?>与过点(2,0),(0,1)A B 的直线有且只有一个公共 点T ,且椭圆的离心率2 e = (1)求椭圆的方程 (2)设12,F F 分别为椭圆的左,右焦点,M 为线段2AF 的中点,求证:1ATM AFT ∠=∠ (3)求证:2 121 2 AT AF F =. ?4、焦半径(圆锥曲线上的点P 到焦点F 的距离)的计算方法:利用圆锥曲线的第二定义,转化到相应准线的距离,即焦半径0r ed a ex ==±,其中d 表示P 到与F 所对应的准线的距离。 例五:已知椭圆22 221x y a b +=上一点P 到椭圆左焦点的距离为3,则点P 到右 准线的距离为____(答:10/3); 例六:椭圆1342 2=+y x 内有一点)1,1(-P ,F 为右焦点,在椭圆上有一点M , 使MF MP 2+ 之值最小,则点M 的坐标为_______(答:)1,3 6 2( -) ; 5、焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形) 问题:0||S c y =,当0||y b =即P 为短轴端点时,m ax S 的最大值为bc ;

高二数学选修2 椭圆基础训练

高二数学选修2 椭圆基础训练 一、选择题 1.( )已知椭圆 116 252 2=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 A .2 B .3 C .5 D .7 D 点P 到椭圆的两个焦点的距离之和为210,1037a =-= 2.( )若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 A . 116922=+y x B .1162522=+y x C .1162522=+y x 或125 162 2=+y x D .以上都不对 C 2 2 2 2218,9,26,3,9,1a b a b c c c a b a b +=+====-=-= 得5,4a b ==,2212516x y ∴ +=或125 162 2=+y x 3.( )如果22 2=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是 A .()+∞,0 B .()2,0 C .()+∞,1 D .()1,0 D 焦点在y 轴上,则2221,20122y x k k k +=>?<< 4.( )21,F F 是椭圆17 92 2=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则 Δ12AF F 的面积为 A .7 B .47 C .2 7 D .257 C 1212216,6F F AF AF AF AF =+==- 22202 2112112112cos 4548AF AF F F AF F F AF AF =+-?=-+ 2211117 (6)48,,2 AF AF AF AF -=-+ =1772222S =??= 5.( )椭圆 124 492 2=+y x 上一点P 与椭圆的两个焦点1F 、2F 的连线互相垂直, 则△21F PF 的面积为A .20 B .22 C .28 D .24 D 2222 12121214,()196,(2)100PF PF PF PF PF PF c +=+=+==,相减得 12121 296,242 PF PF S PF PF ?==?= 二、填空题 6.椭圆 22189x y k +=+的离心率为1 2 ,则k 的值为______________。

高中数学:椭圆知识点归纳总结及经典例题

椭 圆 1.椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c). 2.椭圆的标准方程: 12222=+b y a x (a >b >0) 122 22=+b x a y (a >b >0) 焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx 2 +ny 2 =1(m>0,n>0)不必考虑焦点位置,求出方程 3.求轨迹方程的方法: 定义法、待定系数法、相关点法、直接法 . ,.2,,1的轨迹中点求线段段轴作垂线向从这个圆上任意一点半径为标原点已知一个圆的圆心为坐如图例M P P P P x P ''解:(相关点法)设点M(x, y),点P(x 0 , y 0 ), 则x =x 0, y = 2 0y 得x 0=x , y 0=2y. ∵x 02 +y 02 =4, 得x 2 +(2y)2 =4, 即.14 2 =+y x 所以点M 的轨迹是一个椭圆. 4.范围. x 2≤a 2,y 2≤b 2 ,∴|x|≤a ,|y|≤b . 椭圆位于直线x =±a 和y =±b 围成的矩形里. 5.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心. 6.顶点 只须令x =0,得y =±b ,点B 1(0,-b)、B 2(0, b)是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a,0)、A 2(a,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a, 0)、A 2(a, 0)、B 1(0, -b)、B 2(0, b).椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a. 短轴的长等于2b.a 叫做椭圆的 长半轴长.b 叫做椭圆的短半轴长. |B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a . 在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2, 即c 2=a 2-b 2 . a A 1y O F 1F 2 x B 2 B 1 A 2c b y O F 1F 2x M c c x F 2 F 1 O y M c c y x P O P ' M

高中数学椭圆基础练习题

高二数学周周清(2) 一、选择题(每小题5分,共12小题) 1.平面内有两定点A 、B 及动点P ,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P 的轨迹是以A .B 为焦点的椭圆”,那么 ( ) A .甲是乙成立的充分不必要条件 B .甲是乙成立的必要不充分条件 C .甲是乙成立的充要条件 D .甲是乙成立的非充分非必要条件 2.椭圆22 11625 x y +=的焦点坐标为 ( ) (A )(0, ±3) (B )(±3, 0) (C )(0, ±5) (D )(±4, 0) 3.已知焦点坐标为(0, -4), (0, 4),且a =6的椭圆方程是 ( ) (A )2213620x y += (B )2212036x y += (C )2213616x y += (D )22 11636 x y += 4.若椭圆22 110036 x y +=上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是( ) (A )4 (B )194 (C )94 (D )14 5.椭圆的短轴长是4,长轴长是短轴长的32 倍,则椭圆的焦距是 ( ) A 、4 C 、6 D 、6.离心率为3 2,长轴长为6的椭圆的标准方程是 ( ) (A )22195x y += (B )22195x y +=或22159x y += (C )2213620x y +=(D )2213620x y +=或2212036 x y += 7.椭圆14 22 =+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( ) A.2 3 B.3 C.27 D. 4 8.椭圆19 2522 =+y x 上一点M 到焦点1F 的距离为2,N 是1MF 的中点,则=ON ( ) A.2 B.4 C.6 D.23 9.椭圆2222 22222222211()x y x y a b k a b a k b k +=+=>>--和的关系是 ( ) A .有相同的长轴 B .有相同的离心率 C .有相同的短轴 D .有相同的焦点 10. 椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k 等于 ( ) A.-1 B.1 C.5 D. -5 11、关于曲线的对称性的论述正确的是( )

高中数学椭圆基础训练题

椭圆基础训练题 一、选择题 1.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是 ( ) A .椭圆 B .直线 C .线段 D .圆 2.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件)0(921>+=+a a a PF PF ,则点P 的轨迹 是 ( ) A .椭圆 B .线段 C .不存在 D .椭圆或线段 3.椭圆116 252 2=+y x 上的一点P,到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2 B .3 C .5 D .7 4.方程222=+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是 ( ) A .),0(+∞ B .(0,2) C .(1,+∞) D .(0,1) 5.若方程x 2a 2 —y 2a =1表示焦点在y 轴上的椭圆,则实数a 的取值范围是( ) A 、a<0 B 、-1k 具有( ) A .相同的离心率 B .相同的焦点 C .相同的顶点 D .相同的长、短轴 11.椭圆22 1259 x y +=上的点M 到焦点F 1的距离是2,N 是MF 1的中点,则|ON |为 ( ) A. 4 B . 2 C. 8 D . 2 3

椭圆知识点总结

【椭圆】 一、椭圆的定义 1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数 )2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆。这两个定点叫椭圆的焦点,两焦 点的距离叫作椭圆的焦距。 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121 F F PF PF <+,则动点P 的轨迹无图形。 二、椭圆的方程 1、椭圆的标准方程(端点为a 、b ,焦点为c ) (1)当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中2 22b a c -=; (2)当焦点在y 轴上时,椭圆的标准方程:12222=+b x a y )0(>>b a ,其中2 22b a c -=; 2、两种标准方程可用一般形式表示: 221x y m n += 或者 mx 2+ny 2=1 三、椭圆的性质(以122 22=+b y a x )0(>>b a 为例) 1、对称性: 对于椭圆标准方程122 22=+b y a x )0(>>b a :是以x 轴、y 轴为对称轴的轴对称图形;并且 是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。 2、范围: 椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足 a x ≤, b y ≤。

3、顶点: ①椭圆的对称轴与椭圆的交点称为椭圆的顶点。 ②椭圆122 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为 )0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。a 和b 分别叫做椭圆的长半轴长和短半轴长。 4、离心率: ① 椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。 ② 因为)0(>>c a ,所以e 的取值范围是)10(<

高二数学椭圆基础训练题

2、2椭圆基础训练题 一、选择题(每题5分) 1.已知椭圆22 1102 x y m m +=--,长轴在y 轴上.若焦距为4,则m 等于( ) A.4 B.5 C.7 D.8 2.已知△ABC 得周长为20,且定点B (0,-4),C (0,4),则顶点A 得轨迹方程就是( ) A.1203622=+y x (x ≠0) B.136 202 2=+y x (x ≠0) C.120622=+y x (x ≠0) D.16 202 2=+y x (x ≠0) 3.椭圆116 252 2=+y x 得离心率为( ) A.35 B. 34 C.45 D.925 4.已知两点)0,1(1-F 、)0,1(F ,且21F F 就是1PF 与2PF 得等差中项,则动点P 得轨迹方程就是( )。 A.191622=+y x B.1121622=+y x C.13422=+y x D.14322=+y x 5.曲线221259x y +=与曲线22 1(9)259x y k k k +=<--得( ) (A)长轴长相等 (B)短轴长相等 (C)焦距相等 (D)离心率相等 6.椭圆116 252 2=+y x 得焦距就是( ) A.3 B.6 C.8 D.10 7.若点O 与点F 分别为椭圆2 212 x y +=得中心与右焦点,点P 为椭圆上得任意一点,则OP FP ?得最小值为 A.2-12 C.2+8.已知椭圆得方程为22 194 x y +=,则该椭圆得长半轴长为( ) A.3 B.2 C.6 D.4 9.椭圆13 42 2=+y x 得焦点坐标为( ) A.)0,1(± B.)0,2(± C.)0,2(± D.)1,0(± 10.已知F 1(-1,0),F 2(1,0)就是椭圆C 得两个焦点,过F 2且垂直于x 轴得直线交C 于A 、B 两点,且AB =3,则C 得方程为( ) (A) 2 2x +y 2=1 (B) 23x +22y =1 (C) 24x +23y =1 (D) 25x +24 y =1

(新)高中数学椭圆的经典知识总结

高中数学椭圆的经典知识总结 椭圆知识点总结 1. 椭圆的定义:1,2 (1)椭圆:焦点在x 轴上时122 22=+b y a x (222a b c =+)?{ cos sin x a y b ??==(参数方程,其中?为 参数),焦点在y 轴上时22 22b x a y +=1(0a b >>)。方程22Ax By C +=表示椭圆的充要条件是什么? (ABC ≠0,且A ,B ,C 同号,A ≠B )。 2. 椭圆的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个 焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。⑥通径2 2b a 2.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外?2200 221x y a b +>; (2)点00(,)P x y 在椭圆上?220 220b y a x +=1; (3)点00(,)P x y 在椭圆内?2200 221x y a b +< 3.直线与圆锥曲线的位置关系: (1)相交:0?>?直线与椭圆相交;(2)相切:0?=?直线与椭圆相切; (3)相离:0?

最新椭圆标准方程及其性质知识点大全

【专题七】椭圆标准方程及其性质知识点大 (一)椭圆的定义及椭圆的标准方程: ?椭圆定义:平面内一个动点P 到两个定点F 1、 F 2的距离之和等于常数 (二)椭圆的简单几何性: ?标准方程是指中心在原点,坐标轴为对称轴的标准位置的椭圆方程。 2 2 x 2 y 2 =1 (a b O) a b (PF 1 + PF 2 =2a ■ F1F 2),这个动点P 的轨迹叫椭圆?这两个定点叫椭圆的 焦 点,两焦点的距离叫作椭圆的 焦距. 注意:①若(PF 1 + |PF 2 |=F I F 2),则动点P 的轨迹为线段F 1F 2 ; ②若(PF 1 + PF ^<|F 1F 2 ),则动点P 的轨迹无图形 2 2 y 2 X 2 =1 (a ■ b ■ O) a b 图形 性质 焦占 八焦距 范围 F i (-c,O),F 2(C ,0) F I (O,-C ),F 2(0,C ) F 1F 2 =2C F 1 F 2 = 2c x^b, | y| 对称性 关于x 轴、y 轴和原点对称 标准方程 (_a,0) , (0,-b) (0,-a), (_b,0) 顶点

?椭圆标准方程为 =1 (a b - 0),椭圆焦点三角形: 设P 为椭圆上任意一点, F i ,F 2为焦点且/ F 1PF 2 ?,则△ F i PF 2为焦点三角形,其面积为 轴长 长轴长 AA 2, AAj =2a ,短轴长 BB 2, EB 2 =2b 离心率 ① e = C (0cec1),② e =』1—(b )2 ③ c 2 = a 2_b 2 a V a (离心率越大,椭圆越扁) 【说明】: 1?方程中的两个参数a 与b ,确定椭圆的形状和大小,是椭圆的定型条件,焦点 F i ,F 2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数 a ,b ,c 都大于零,其中 a 最大且 a 2 = b 2+ c 2. 2 2 2.方程Ax By 二C 表示椭圆的充要条件是:ABC 工0,且A ,B ,C 同号,A 2 2 S PF I F 2 = b 2 tan 。 2 (四)通径:如图:通径长 2 2 ?椭圆标准方程:笃? — =1 a 2 b 2 (五)点与椭圆的位置关系: C 1) 点 P(x o ,y o )在椭圆外= a b a b x =1;

椭圆知识点总结

椭圆的知识点总结(一) 一、椭圆的定义 1、椭圆的第一定义:平面内与两定点F 1、F 2的距离和等于常数(2a ,且2a>|F 1F 2|)点的轨迹叫做椭圆。 说明:两个定点F 1(c ,0)、F 2(-c ,0)叫做椭圆的焦点; 两焦点间的距离叫做椭圆的焦距(2c ); 建立合适的坐标系,椭圆截与两焦点连线重合的直线所得的弦为长轴,长为2a ,椭圆截垂直平分两焦点连线的直线所得弦为短轴,长为2b 。 2、椭圆的第二定义:平面上到定点的距离与到定直线的距离之比为常数e ,当0

二、椭圆的方程 1、椭圆的标准方程 ● 焦点在x 轴,22 22x 1y a b +=(a>b>0) ● 焦点在y 轴,22 22x 1y b a +=(a>b>0) 椭圆上任意一点到F 1,F 2距离的和为2a ,F 1,F 2之间的距离为2c 。而公式中的b2=a2-c2,b 是为了书写方便设定的参数,同时在椭圆的图像中,b 代表短轴的一半。 ● 当焦点位置不明确时,方程可设为2 2 m 1x ny +=(m>0,n>0,且m≠n ),即标准方程 的统一形式。 ● 根据椭圆的第一定义推导标准方程: 考虑焦点在x 轴的情况(焦点在y 轴的情况类似),根据椭圆的第一定义,建立坐标系,以F 1,F 2的连线为x 轴,F 1,F 2的中垂线为y 轴。 1222222222222 222222242222,)F -,0F ,022()44()444()() 22p x y c c a a x c y a x c y a xc a x c y a xc a x a xc a c a y a a xc x c a ==-++=--+=-??-+=-??-++=-+设点坐标为(,坐标为(),坐标为()222224222222222222422222422224222222222222222222 22)() 1x a c a y a x c b a c a x a a b a y a x a b a x a a b a y a x a x b a b a y x b x b a y a b x y a b ++=+=-+-+=+-+-+=+--+=-+=+=令,代入,有 ( ● 根据椭圆的第二定义推导标准方程:

高中数学椭圆基础练习题

椭圆的定义与标准方程 一.选择题(共19小题) 1.若F1(3,0),F2(﹣3,0),点P到F1,F2距离之和为10,则P点的轨迹方程是() A.B. C.D. 或 2.一动圆与圆x2+y2+6x+5=0及圆x2+y2﹣6x﹣91=0都内切,则动圆圆心的轨迹是() A.椭圆B.双曲线C.抛物线D.圆 3.椭圆上一点P到一个焦点的距离为5,则P 到另一个焦点的距离为() A.4B.5C.6D.10 4.已知坐标平面上的两点A(﹣1,0)和B(1,0),动点P到A、B两点距离之和为常数2,则动点P的轨迹是() A.椭圆B.双曲线C.抛物线D.线段 5.椭圆上一动点P到两焦点距离之和为() A.10 B.8C.6D.不确定 6.已知两点F1(﹣1,0)、F2(1,0),且|F1F2|是|PF1|与|PF2|的等差中项,则动点P的轨迹方程是()A.B.C.D. 7.已知F1、F2是椭圆=1的两焦点,经点F2的直线交椭圆于点A、B,若|AB|=5,则|AF1|+|BF1|等于()A.16 B.11 C.8D.3 8.设集合A={1,2,3,4,5},a,b∈A,则方程表示焦点位于y轴上的椭圆() A.5个B.10个C.20个D.25个 9.方程=10,化简的结果是() A.B.C.D.

10.平面内有一长度为2的线段AB和一动点P,若满足|PA|+|PB|=8,则|PA|的取值范围是()A.[1,4]B.[2,6]C.[3,5]D.[3,6] 11.设定点F1(0,﹣3),F2(0,3),满足条件|PF1|+|PF2|=6,则动点P的轨迹是() A.椭圆B.线段 C.椭圆或线段或不存在D.不存在 12.已知△ABC的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A的轨迹方程是() A. (x≠0)B. (x≠0) C. (x≠0)D. (x≠0) 13.已知P是椭圆上的一点,则P到一条准线的距离与P到相应焦点的距离之比为()A.B.C.D. 14.平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A.B为焦点的椭圆”,那么() A.甲是乙成立的充分不必要条件B.甲是乙成立的必要不充分条件 C.甲是乙成立的充要条件D.甲是乙成立的非充分非必要条件 15.如果方程表示焦点在y轴上的椭圆,则m的取值范围是() A.3<m<4 B.C.D. 16.“mn>0”是“mx2+ny2=mn为椭圆”的()条件. A.必要不充分B.充分不必要 C.充要D.既不充分又不必要 17.已知动点P(x、y)满足10=|3x+4y+2|,则动点P的轨迹是() A.椭圆B.双曲线C.抛物线D.无法确定 18.已知A(﹣1,0),B(1,0),若点C(x,y)满足=()A.6B.4C.2D.与x,y取值有关

高二数学椭圆试题(有答案)

高二数学椭圆试题 一:选择题 1.已知方程表示焦点在x轴上的椭圆,则m的取值范围是( ) A.m>2或m<﹣1 B.m>﹣2 C. ﹣1<m<2 D.m>2或﹣2

8.设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是( ) A. B. C. D. 9.从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x 轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是() A. B.C. D. 10.若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则 的最大值为() A. 2B. 3 C. 6D. 8 11.如图,点F为椭圆=1(a>b>0)的一个焦点,若椭圆上存在一点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF的中点,则该椭圆的离心率为() A.B.C.D. 12.椭圆顶点A(a,0),B(0,b),若右焦点F到直线AB的距离等于,则椭圆的离心率e=( ) A. B. C. D.

椭圆基础训练题(学生版)

椭圆基础训练题(学生版) 1.已知椭圆长半轴与短半轴之比是5:3,焦距是8,焦点在x 轴上,则此椭圆的标准方程是( ) (A )5x 2+3y 2=1(B )25x 2+9y 2=1 (C )3x 2+5y 2=1 (D )9x 2+25y 2 =1 2.以椭圆短轴为直径的圆经过此椭圆的焦点,则椭圆的离心率是( ) (A )21(B )22 (C )23(D )33 3.已知椭圆x2+2y2=m ,则下列与m 无关的是( ) (A )焦点坐标 (B )准线方程 (C )焦距 (D )离心率 4. 曲线25x 2+9y 2 =1与曲线k 25x 2-+k 9y 2-=1 (k<9),具有的等量关系是( )。 (A )有相等的长、短轴 (B )有相等的焦距 (C )有相等的离心率 (D )一相同的准线 5. P(x, y)是椭圆16x 2+9y 2 =1上的动点,过P 作椭圆长轴的垂线PD ,D 是垂足,M 是PD 的中点,则M 的轨迹方程是( )。 (A )4x 2+9y 2=1 (B )64x 2+9y 2=1 (C )16x 2+9y 42=1 (D )16x 2+36y 2 =1 6.过椭圆x2a2+y2b2 =1(0

高二数学椭圆基础训练题

2.2椭圆基础训练题 一、选择题(每题5分) 1.已知椭圆 22 1102 x y m m +=--,长轴在y 轴上.若焦距为4,则m 等于( ) A .4 B .5 C .7 D .8 2.已知△ABC 的周长为20,且定点B (0,-4),C (0,4),则顶点A 的轨迹方程是( ) A .1203622=+y x (x ≠0) B .136202 2=+y x (x ≠0) C .120622=+y x (x ≠0) D .16 202 2=+y x (x ≠0) 3.椭圆116 252 2=+y x 的离心率为( ) A . 35 B . 34 C .45 D .925 4.已知两点)0,1(1-F 、)0,1(F ,且21F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是( )。 A .191622=+ y x B .1121622=+y x C .13422=+y x D .14 32 2=+y x 5.曲线221259x y +=与曲线221(9)259x y k k k +=<--的( ) (A )长轴长相等 (B )短轴长相等 (C )焦距相等 (D )离心率相等 6.椭圆 116 252 2=+y x 的焦距是( ) A .3 B .6 C .8 D .10 7.若点O 和点F 分别为椭圆2 212 x y +=的中心和右焦点,点P 为椭圆上的任意一点,则OP FP ?的最小值为 A .2 B . 1 2 C .2+ D .1

8.已知椭圆的方程为22 194 x y +=,则该椭圆的长半轴长为( ) A .3 B .2 C .6 D .4 9.椭圆13 42 2=+y x 的焦点坐标为( ) A .)0,1(± B .)0,2(± C .)0,2(± D .)1,0(± 10.已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A 、B 两点,且AB =3,则C 的方程为( ) (A) 22x +y 2=1 (B) 23x +22y =1 (C) 24x +23y =1 (D) 25x +2 4y =1 11.“46k <<”是“方程 22 164 x y k k +=--表示椭圆”的 A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 12.已知中心在原点的椭圆C 的右焦点为F(1,0),离心率等于 1 2 ,则C 的方程是( ). A.2 3x +24y =1 B.24x 2=1 C.24x +22y =1 D.2 4x +23y =1 13.椭圆2 213 x y +=的焦距为( ) A B . C .4 D . 14.已知椭圆长轴长、短轴长和焦距成等差数列,则该椭圆的离心率是( ) A. 45 B. 35 C. 25 D. 15 15.椭圆)0(12222>>=+b a b y a x 和)0(22 22>=+k k b y a x 具有 ( ) A.相同的长轴长 B. 相同的焦点 C. 相同的离心率 D. 相同的顶点 16.过椭圆2 212 x y +=的左焦点1F 作直线l 交椭圆于,A B 两点,2F 是椭圆右焦点,则

椭圆的经典知识总结

椭圆知识总结 班级 姓名 椭圆的定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;? 若)(2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的标准方程 1.当焦点在x 轴上时,椭圆的标准方程:12222 =+b y a x ) 0(>>b a ,其中222b a c -= 2.当焦点在y 轴上时,椭圆的标准方程:12 2 2 2=+b x a y ) 0(>>b a ,其中2 22 b a c -=; 注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时, 才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有)0(>>b a 和2 2 2 b a c -=; 3.椭圆的焦点总在长轴上.当焦点在x 轴上时椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c - 知识点三:椭圆的简单几何性质 椭圆: 122 22=+b y a x )0(>>b a 的简单几何性质1(?)对称性:对于椭圆标准方程122 2 2 =+ b y a x )0(>>b a : 说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、 原方程都不变,所以椭圆12 2 2 2=+b y a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。 (2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。?(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。 ②椭圆12 2 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为 )0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。a 和 b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率:? ①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示, 记作a c a c e ==22。? ②因为)0(>>c a ,所以e 的取值范围是)10(<>b a 的区别和联系 标准方程 12222=+b y a x )0(>>b a 122 22=+b x a y )0(>>b a 图形 性质 焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F 焦距 c F F 221= c F F 221= 范围 a x ≤, b y ≤ b x ≤,a y ≤ 对称性 关于x 轴、y 轴和原点对称 顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ± 轴长 长轴长=a 2,短轴长=b 2 离心率 )10(<<= e a c e 准线方 程 c a x 2 ± = c a y 2± = 注意:椭圆12 2 22=+b y a x ,122=+b x a y )0(>>b a 的相同点:形状、大小都相同;参数间的关系都有)0(>>b a 和)10(<<=e a c e ,222c b a +=; 不同点:两种椭圆的位置不同;它们的焦点坐标也不相同。 规律方法: 1.如何确定椭圆的标准方程? ?任何椭圆都有一个对称中心,两条对称轴。当且仅当椭圆的对称中心在坐标原点,对称轴是坐标轴,椭圆的方程才是标准方程形式。此时,椭圆焦点在坐标轴上。 确定一个椭圆的标准方程需要三个条件:两个定形条件b a ,;一个定位条件焦点坐标,由焦点坐标的形式确定标准方程的类型。 2.椭圆标准方程中的三个量c b a ,,的几何意义?椭圆标准方程中,c b a ,,三个量的大小与坐标系无关,是由椭圆本身的形状大小所确定的。分别表示椭圆的长半轴长、短半轴长和半焦距长,均为正数,且三个量的大小关系为: )0(>>b a ,)0(>>c a ,且)(222c b a +=。可借助右图理解记忆:显然:c b a ,,恰构成一个直角三角形的三条边,其中a 是斜边,b 、c 为两条直角边。 3.如何由椭圆标准方程判断焦点位置? 椭圆的焦点总在长轴上,因此已知标准方程,判断焦点位置的方法是:看2x ,2 y 的分母的大小,哪个分母大,焦点就在哪个坐标轴上。 4.方程均不为零)C B A C By Ax ,,(2 2=+是表示椭圆的条件 方程C By Ax =+22可化为12 2 =+ C By C Ax ,即 12 2=+B C By A C x ,所以只有A、B 、C 同号,且A ≠B 时,方程表示椭

相关文档
最新文档