DIP6形态学处理
梳理各类通用形态学操作的基本思路

梳理各类通用形态学操作的基本思路1形态学操作简介形态学是一门关于对象形状和结构的研究领域,它可以应用到计算机视觉、图像处理、计算机辅助设计等领域。
形态学操作是一种用于对图像进行处理的操作方式。
它通过对图像进行膨胀、腐蚀、开运算、闭运算等操作,以去除噪声、连接区域、改变形状等方式,来对图像进行预处理和处理。
2膨胀操作膨胀操作是一种针对图像二值化处理的形态学操作,它的作用是扩张目标物体边缘,使其更加完整。
膨胀操作将原始的二值图像与结构元素进行卷积,通过增加物体的面积和连接物体的空隙,实现对图像进行膨胀。
在图像处理中,膨胀操作可以通过增加目标物体的尺寸和连通性来增强环境对目标的识别能力和鲁棒性。
3腐蚀操作腐蚀操作是一种将目标物体边缘缩小的形态学操作,它通过结构元素与原图进行卷积,将图像中的存在孔洞、噪声、小尺寸物体等进行缩小或删除。
腐蚀操作是一种能够对图像进行去噪和分离物体的有效方式。
在图像处理中,腐蚀操作可以用于提取二值图像中的目标物体。
4开运算开运算是一种连续进行腐蚀和膨胀操作的过程,它的作用是去除图像中的小尺寸物体,并保留大尺寸物体的形状信息。
开运算先对原图进行腐蚀操作,再对结果进行膨胀操作,通过其中任意一步骤进行过滤,就可以使原图像中小尺寸物体得到去除。
在图像处理中,开运算通常用于去除噪声和连接区域。
5闭运算闭运算是一种连续进行膨胀和腐蚀操作的过程,它的作用是填补目标物体中小孔洞、连接区域,并保留目标物体的形状信息。
闭运算先对原图进行膨胀操作,再对结果进行腐蚀操作,通过其中任意一步骤进行过滤,就可以使原图像中的缺陷得到修补。
在图像处理中,闭运算通常用于提取大尺寸目标物体和填补图像中的小孔洞。
6应用举例形态学操作在图像处理、计算机视觉中有着广泛的应用。
例如,在人脸识别领域中,可以通过形态学操作将面部特征提取出来,从而对人脸进行识别和比对。
在机器人导航中,可以通过形态学操作来进行地图建模、路径规划等操作。
dip测算规则-概述说明以及解释

dip测算规则-概述说明以及解释1.引言1.1 概述概述DIP测算(Digital Imaging Processing)是一种利用数字图像处理技术和算法来对图像进行处理和分析的方法。
随着数字化技术的不断发展和普及,DIP测算在各个领域都有着广泛的应用。
本文将介绍DIP测算的基本概念、应用领域以及相关的规则和方法,旨在帮助读者更深入地了解和掌握这一重要的技术。
在接下来的章节中,我们将详细介绍DIP测算的定义、原理、应用领域以及具体的规则和方法。
希望通过本文的阐述,读者能够对DIP测算有一个更全面的了解,同时也能够将这一技术应用到实际工作中,为各行各业带来更多的便利和效益。
文章结构部分的内容如下:1.2 文章结构本文将围绕着dip测算这一主题展开讨论,主要分为以下几个部分:- 引言部分将对dip测算进行概述,说明文章的目的和重要性- 正文部分将深入探讨什么是dip测算,以及其在不同领域的应用情况- dip测算规则和方法部分将介绍具体的dip测算规则和应用方法- 结论部分将总结dip测算的重要性,并展望其未来发展趋势- 最后,结语部分将对整篇文章做一个总结,并对读者提出一些建议和展望通过以上结构,读者将可以全面了解dip测算的概念、应用领域、规则和方法,以及未来的发展方向,希望读者可以从中获取到有用的信息和启发。
1.3 目的本文的目的在于介绍和解释dip测算规则,帮助读者了解如何正确地进行dip测算,并掌握其应用方法。
通过深入分析和讨论,读者将能够更好地理解dip测算的重要性和意义,以及在不同领域的应用情况。
最终目的是帮助读者提升自己的专业知识和技能,为实践中的dip测算工作提供指导和参考。
通过本文的阐述,读者将能够更好地理解和运用dip测算规则,从而为工作和研究中的决策提供支持和帮助。
2.正文2.1 什么是dip测算在软件开发和数据分析领域,DIP(Data-Intensive Performance)测算是一种用于评估和优化数据密集型应用程序性能的技术。
第六章数学形态学原理

(3)击中( Hit )与击不中( Miss ) : 设两幅图像A和B, 如果A B , 那么称B击中A 记为B A (4)平移与反射 : 设A是一幅数字图像而b是一个点, 那么定义A被b 平移后的结果为 : A[b] {a b / a A} A关于图像原点的反射结果为 : A {a / a A}
5、数学形态学的核心问题: 核心运算是击中与否变换(HMT),在定义了HMT及其 基本运算膨胀(Dilation)和腐蚀(Erosion)后,从积分 几何和体视学移植一些概念和理论,根据图像分析的各种 要求,构造出统一的、相同的或变化很小的结构元素进行 各种形态变换。 结构元选择原则: 1)几何上必须比原图像简单,且有界。当选择性质相同 或相似的结构元时,以选择极限情况为益。 2)选择结构元为凸子集。
膨胀(dilation)可以看做是腐蚀的对偶运算,其定 义是: 把结构元素B平移a后得到Ba,若Ba击中X,我们 记下这个a点。所有满足上述条件的a点组成的集 合称做X被B膨胀的结果。用公式表示为:
D( X ) {a / Ba X } X B
图中X是被处理的对象,B是结构元素,不难知道, 对于任意一个在阴影部分的点a,Ba击中X,所以 X被B膨胀的结果就是那个阴影部分。阴影部分包 括X的所有范围,就象X膨胀了一圈似的,这就 是为什么叫膨胀的原因。 同样,如果B不是对称的,X被B膨胀的结果和X 被 Bv膨胀的结果不同。 让我们来看看实际上是怎样进行膨胀运算的。
数字图像形态学处理

{
{
{
{( 0,1) , (1,1) , ( 2,1) , ( 2,2 ) , ( 3,0) , ( 0,2 ) , (1,2 ) , ( 2,2 ) , ( 2,3) , ( 3,1)}
A ⊕ B的意义A用B扩张, 即所有A的点集使Ba 击中A且交集非零。
则A ⊕ B =
第八章 数学形态学及其应用
第八章数学形态学及其应用第八章数学形态学及其应用文字图象膨胀后的文字图象腐蚀后的文字图象第八章数学形态学及其应用第八章数学形态学及其应用结构元素非对称时腐蚀结果不同中心对称结构元素腐蚀示意不同结构单元对腐蚀和扩张的影响第八章数学形态学及其应用不同结构单元对腐蚀和扩张的影响e133方形结构单元原图e1扩张后图象e1腐蚀后图象第八章数学形态学及其应用e255方形结构单元原图e2扩张后图象e2腐蚀后图象第八章数学形态学及其应用目的
第八章 数学形态学及其应用 什么是数字图像形态学处理 2)思想 ) 表现为一种邻域运算形式; 表现为一种邻域运算形式; 一种特殊定义的邻域称之为“结构单元” 一种特殊定义的邻域称之为“结构单元”(Structure Element),在每个象素位置上它与二值图象对应的区域进 ),在每个象素位置上它与二值图象对应的区域进 ), 行特定的逻辑运算,逻辑运算的结果为输出图象的相应象素。 行特定的逻辑运算,逻辑运算的结果为输出图象的相应象素。 形态学运算的效果取决于结构单元的大小、 形态学运算的效果取决于结构单元的大小、内容以及逻辑运 算的性质。 算的性质。 3)数字图象形态学处理的目的 ) 研究数字图象中物体目标的结构及拓扑关系。 研究数字图象中物体目标的结构及拓扑关系。
c
不同结构单元对腐蚀和扩张的影响
第八章 数学形态学及其应用
y y
形态学运算

形态学运算
形态学运算是数字图像处理中使用最为广泛的一类图像变换方法,它可以实现图像的缩放,旋转,放射,投影变换等。
与传统的算法相比,形态学运算可以根据图像的结构特点来进行处理,具有更高的精度和更快的处理速度。
形态学运算有两个主要的步骤,即腐蚀和膨胀。
其中,腐蚀是进行图像处理的主要方法,其过程是:使用一个结构元素(称为腐蚀核)将图像的像素值从最大值减少到一定的值,以达到对图像进行细化处理的目的。
膨胀则是进行图像处理的另一个主要方法,其过程是:使用一个结构元素(又称膨胀核)使图像的像素值从最小值增加到某一定的值,以达到对图像进行增强处理的目的。
形态学运算可以将图像处理的特定领域分解成许多个部分,以便精细的操作。
使用形态学运算可以提取出不同的图像特征,如边缘、孔洞、角点、线条等,并可以用于图像识别、轮廓检测、模式识别等诸多的应用领域。
形态学运算并不仅仅用于图像处理,它也可以应用于其他多种领域,如模特检测、数据挖掘、机器学习等。
例如,在模特检测领域,形态学运算可以用于提取图像中特定的模特信息,而在数据挖掘领域,形态学运算可以用于提取出有效的数据特征,进而用于表征和分类。
总之,形态学运算是一类重要的数字图像处理方法,它不仅应用于图像处理,而且还可以用于模特检测、数据挖掘、机器学习等诸多领域。
它具有高精度和快速处理速度的优势,是图像处理技术中一项
重要的发展方向。
第7章二值图像处理方法与数学形态学

6/24/2019
27
连接成分的标记-标记的例子2
连接数—考虑一个像素,
某个1-像素x0的连接数,可以利用其8-邻域像 素的值f(x1)~f(x8)按下式定义:
4-连接用Nc(4), 8-连接用Nc(8)表示.
N (4) c
(
x0
)
( f (xk ) f (xk ) f (xk1) f (xk2 ))
第7章二值图像处理及形态学
本章重点:
二值图像处理 形态学运算
主要内容:
二值图像处理 灰度图像的二值化处理 像素的连接 像素间的距离
形态学运算 数学形态学的基本运算有4个: 膨胀(或扩张) 腐蚀(或侵蚀) 开启 闭合
6/24/2019
1
7.1 二值图像
定义:
整幅图像画面内仅黑白二值的图像。 像素值仅有0和1----(或0和255).
欧几里德距离,从一个像素开始的距离
6/24/2019
37
像素间的距离
4-邻域距离,从一个像素开始的距离
6/24/2019
38
像素间的距离
8-邻域距离,从一个像素开始的距离
6/24/2019
39
像素间的距离
从上面的例子可知,从一个像素开始的等 距离线,在de中大致呈圆形,在d4 中呈旋 转了45度的正方形,在d8中呈正方形。
下面是表示3*3像素中央像素的连接数(8-连接)。4-连接数?
1 11 1 10 1 10
连接数=1
010 010 000
连接数=1
00 1 01 0 10 0
连接数=2
1 01 0 10 1 00
连接数=3
111 010 101
DIP付费下ICD编码质控的10大要点和4大举措
DIP付费下ICD编码质控的10大要点和4大举措按病种分值付费(DIP )是利用一定区域范围内的全样本病例数据中疾病诊断与治疗方式的共性特征进行挖掘,聚类形成基于大数据的客观分组,以各病种次均住院费用的比价关系形成病种分值,再考虑年龄、并发症和伴随病等因素对付费进行校正,从而实现对医疗机构每一病例标准化支付。
DIP下的ICD编码为何这么重要?DIP根据地区医疗机构最近三年的病案首页数据,依靠全样本的大数据为基础,直接以'主要诊断+手术或操作〃的组合形成病种,其数据来源为病案首页的疾病诊断和手术操作编码。
从以上分组原理来看,与DRG相比,DIP分组更细化,组内差异度小。
其优点是只要存在匹配关系即是一个组合,操作比DRG简便易行。
缺点是这种匹配会产生较多重复,由于DIP是基于数据进行的匹配,而非临床医生依据诊疗规范进行匹配,缺少判断主要诊断选择合理性以及诊断与诊疗方式匹配性的逻辑规则,未来ICD编码高套、错填和漏填等行为将成为监管的难点。
因此,为保证数据的合理性、完整性、规范性,作为疾病编码人员,必须要重视ICD编码这一环节的质量控制,真实还原病种的疾病特征与医疗行为,推动医保支付制度改革。
ICD下编码3大质控要点01必填项形态学编码当疾病编码有C00-C97x D00-D48时,病理诊断处必须有相对应的良恶性形态学编码。
肿瘤的编码包括部位编码(C00-C97 , D00-D48 )和形态学编码(Mxxxx/0-3 , 6 , M编码范围为M8000-M9989 ),部位编码表明肿瘤的部位,形态学编码表明肿瘤的病理组织及良恶性。
肿瘤编码顺序是先确定形态学编码,再确定部位编码,二者共同存在。
并且肿瘤的形态学编码是采用病理组织学+动态编码,动态编码意义为:/0表示良性, /1表示良性或恶性为肯定,/2表示原位癌,/3表示原发性恶性肿瘤,/6表示继发性恶性肿瘤。
肿瘤动态编码与部位编码必须——对应,其关系如下:/0 D10-D36 /1 D37-D48 /2 D00-D09/3 C00-C76;C80-C97/6 C77-C79例如:食管中段腺鳞癌C15.4 , M8560/3 (腺鳞癌);听神经神经鞘瘤D33.3 ,M9560/0 (神经鞘瘤)。
灰度形态学处理
灰度形态学处理灰度形态学处理是一种基于图像灰度信息的形态学操作方法,它在计算机视觉和图像处理领域中被广泛应用。
通过灰度形态学处理,可以对图像进行去噪、边缘检测、形状分析等操作,从而得到更清晰、更准确的图像结果。
灰度形态学处理的基本原理是将图像中的每个像素点都看作一个形态学结构元素,并与其周围的像素点进行比较。
根据结构元素与像素点的比较结果,可以对图像进行腐蚀、膨胀、开运算、闭运算等操作。
腐蚀操作是灰度形态学处理中最基本的操作之一。
它通过将结构元素与图像中的每个像素点进行比较,将结构元素中的最小灰度值赋给与之对应的像素点。
这样,图像中的亮度较高的区域会逐渐被腐蚀掉,从而得到更清晰、更锐利的边缘。
膨胀操作与腐蚀操作相反,它将结构元素中的最大灰度值赋给与之对应的像素点。
膨胀操作可以使图像中的亮度较低的区域逐渐扩大,从而填充图像中的空洞,增加亮度的连通区域。
开运算是先进行腐蚀操作,然后再进行膨胀操作。
开运算可以去除图像中的小尺寸噪点,平滑图像的轮廓。
闭运算是先进行膨胀操作,然后再进行腐蚀操作。
闭运算可以填充图像中的小孔洞,平滑图像的轮廓。
除了腐蚀、膨胀、开运算和闭运算之外,灰度形态学处理还可以进行顶帽变换和底帽变换。
顶帽变换是将原始图像与开运算之后的图像相减,得到图像中的高频细节部分。
顶帽变换可以用于图像的细节增强。
底帽变换是将闭运算之后的图像与原始图像相减,得到图像中的低频部分。
底帽变换可以用于图像的背景提取。
灰度形态学处理在很多实际应用中都发挥着重要的作用。
例如,在医学图像处理中,灰度形态学处理可以用于肿瘤检测和浸润性疾病的诊断。
在工业自动化中,灰度形态学处理可以用于缺陷检测和目标识别。
在计算机视觉中,灰度形态学处理可以用于图像分割和特征提取。
灰度形态学处理是一种基于图像灰度信息的形态学操作方法,通过腐蚀、膨胀、开运算、闭运算等操作,可以对图像进行去噪、边缘检测、形状分析等处理,从而得到更清晰、更准确的图像结果。
实验3 形态学图像处理 (2)
实验3 图像增强及形态学图像处理实验目的:1.掌握均值滤波和中值滤波的原理及实现;2.掌握锐化模板prewitt,sobel和laplacian的使用方法;3.了解形态学的基本理论和方法;4.掌握对图像进行膨胀/腐蚀的方法;5.掌握开闭运算;实验内容:1、(1)给图像headCT分别添加椒盐噪声和高斯噪声,分别采用线性的均值滤波函数imfilter和非线性的中值滤波函数medfilt2滤波进行处理,两种滤波的掩模都分别尝试定义为3*3和7*7。
由得到的实验结果,分析哪种滤波对这种噪声处理的效果比较好?掩模大小对噪声处理效果有什么影响?f=imread('headCT.tif');g=imnoise(f,'salt & pepper');t=imnoise(f,'gaussian');w1=ones(3);w2=ones(7);g1=imfilter(g,w1);g2=imfilter(g,w2);g3=medfilt2(g,[3 3]);g4=medfilt2(g,[7 7]);subplot(1,5,1);imshow(g);subplot(1,5,2);imshow(g1);subplot(1,5,3);imshow(g2); subplot(1,5,4);imshow(g3);subplot(1,5,5);imshow(g4);椒盐噪声处理图:t1=imfilter(t,w1);t2=imfilter(t,w2);t3=medfilt2(g,[3 3]);t4=medfilt2(g,[7 7]);subplot(1,5,1);imshow(t);subplot(1,5,2);imshow(t1);subplot(1,5,3);imshow(t2);s ubplot(1,5,4);imshow(t3);subplot(1,5,5);imshow(t4);高斯噪声处理图:从对比可以看出非线性的中值滤波函数medfilt2滤波进行处理的效果更好;掩模大小影响着图片的平滑效果,掩模越大,平滑效果越好,但是容易造成边缘信息缺失。
图像处理(第6章)
物理系 《MATLAB应用图像处理》
形态重构操作具有一些独有的特性
形态重构处理是基于两幅图像的,一个是标记图像,另一个是掩模图像,而不仅仅是一幅图像和一个结构元素; 重构将一直重复直至图像稳定(即图像不再变化); 形态重构是基于连通性概念的,而不是基于结构元素的。 P111,图6.15一维图像形态重构过程及结果示意图
*
物理系 《MATLAB应用图像处理》
膨胀和腐蚀操作使用的填充方法
膨胀:超出图像边界的像素值定义为该数据类型允许的最小值。对于二进制图像,这些像素值被设置为0;对于灰度图像,uint8类型的最小值也是0。
腐蚀:超出图像边界的像素值定义为该数据类型允许的最大值。对于二进制图像,这些像素值被设置为1;对于灰度图像,uint8类型的最大值是255。
*
6.2.3 图像膨胀
01
MATLAB使用imdilate函数进行图像膨胀。
02
调用格式:BW2=imdilate(BW,SE)
03
其中,BW是待处理的输入图像;SE是结构元素。
04
P107 例6.1
*
物理系 《MATLAB应用图像处理》
6.2.4 图像腐蚀
MATLAB使用imerode函数进行图像腐蚀。 调用格式: BW2=imerode(BW,SE) P108 例6.2
*
物理系 《MATLAB应用图像处理》
可使用imimposemin函数强调图像中指定的极小值。Imimposemin函数使用形态重构来消除图像中除指定极小值以外的其他所有的极小值。 调用格式:I2=imimposemin(I,BW,CONN) 其中,I为输入图像,BW是一个与I大小相同的二进制图像,其不为零的元素指定极小值,实际上就是由函数imextendedmin创建的标记图像,CONN表示连通类型。