第7章恒定磁场习题解答
第7章稳恒磁场及答案教学总结

第7 章稳恒磁场及答
案
第七章稳恒电流
1、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S , S 边线所在平面的法
线方向单位矢量n 与B 的夹角为
,则通过半球面 S 的磁通量(取弯面向外为正)
(C) o I /4 . (D) 2 o I/3 .
4、如图,在一固定的载流大平板附近有一载流小线框能自由转 动或平
动.线框平面与大平板垂直.大平板的电流与线框中电流 方向如图所示,
则通电线框的运动情况对着从大平板看是:
(A)靠近大平板.
(B)顺时针转动. (C)逆时针转动. (D)离开大平板向外运动.
(A) r 2B . . (B) 2 r 2B . 2 2
(C) - r Bsin . (D) - r Bcos . 2、磁场由沿空心长圆筒形导体的均匀分布的 \ B 电流产生,圆筒半径为 R , x 坐标轴垂直圆筒 轴线,原点在中心轴线上.图(A)〜(E)哪一条 曲线表示B -x 的关系? AB (A) (D) 『(C) )R x O R x n 3、如图,两根直导线ab 和cd 沿半径方向被 接到一个截面处处相等的铁环上,稳恒电流
I 从a 端流入 而从d 端流出,则磁感强度 B 沿图中闭合路径L 的积分 B dl 等于 L
1 (A) 。
1 .
(B)-。
丨. 3 L。
物理学简明教程第七章课后习题答案—高等教育出版社

物理学简明教程第七章课后习题答案高等教育出版社第七章 恒定磁场和电磁感应7-1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小r R B B 、满足( )(A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4=分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比21==R r n n r R 因而正确答案为(C )7-2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A )B r 2π2 (B ) B r 2π(C )αB r cos π22 (D ) αB r cos π2题 7-2 图分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为(D ).7-3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B)闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C)磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D)磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为(B).7-4一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则()(A)线圈中无感应电流(B)线圈中感应电流为顺时针方向(C)线圈中感应电流为逆时针方向(D)线圈中感应电流方向无法确定题 7-4 图分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B).7-5将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则()(A)铜环中有感应电流,木环中无感应电流(B)铜环中有感应电流,木环中有感应电流(C)铜环中感应电动势大,木环中感应电动势小(D)铜环中感应电动势小,木环中感应电动势大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等, 但在木环中不会形成电流.因而正确答案为(A ).7-6 对位移电流,下述说法正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).7-7 已知地球北极地磁场磁感强度B 的大小为6.0×10-5T .如图所示,如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大? 流向如何?解 设赤道电流为I ,则由教材第11-4节例2 知,圆电流轴线上北极点的磁感强度 ()R IR R IR B 24202/32220μμ=+=因此赤道上的等效圆电流为A 1073.12490⨯==μRB I 由于在地球地磁场的N 极在地理南极,根据右手螺旋法则可判断赤道圆电流应该是由东向西流,与地球自转方向相反.题 7-7 图7-8 如图所示,有两根导线沿半径方向接触铁环的a 、b 两点,并与很远处的电源相接.求环心O 的磁感强度.题 7-8 图分析 根据叠加原理,点O 的磁感强度可视作由ef 、be 、fa 三段直线以及acb 、a d b 两段圆弧电流共同激发.由于电源距环较远,0=ef B .而be 、fa 两段直线的延长线通过点O ,由于0Idl r ⨯=,由毕奥-萨伐尔定律知0be fa ==B B .流过圆弧的电流I 1 、I 2的方向如图所示,两圆弧在点O 激发的磁场分别为21101π4r l I μB =,22202π4r l I μB = 其中l 1 、l 2 分别是圆弧acb 、a d b 的弧长,由于导线电阻R 与弧长l 成正比,而圆弧acb 、a d b 又构成并联电路,故有2211l I l I =将21B B 、叠加可得点O 的磁感强度B .解 由上述分析可知,点O 的合磁感强度0π4π42220211021=-=-=r l I μr l I μB B B 7-9 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多少?题 7-9 图分析 应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=i B B 0.解 (a) 长直电流对点O 而言,有0d =⨯r l I ,因此它在点O 产生的磁场为零,则点O 处总的磁感强度为1/4 圆弧电流所激发,故有RI μB 800= B 0 的方向垂直纸面向外.(b) 将载流导线看作圆电流和长直电流,由叠加原理可得RI μR I μB π22000-= B 0 的方向垂直纸面向里.(c ) 将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得RI μR I μR I μR I μR I μB 4π24π4π4000000+=++= B 0 的方向垂直纸面向外.7-10 已知10 mm 2 裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求导线内、外磁感强度的分布.题 7-10 图分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B 大小相等、方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有∑⎰=⋅=⋅I μB 0πr 2d l B在导线内r <R , 2222ππRIr r R I I ==∑,因而 202πRIr μB = 在导线外r >R ,I I =∑,因而rI μB 2π0= 磁感强度分布曲线如图所示.7-11 有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1) r <R 1 ;(2) R 1 <r <R 2 ;(3) R 2 <r <R 3 ;(4) r >R 3 .画出B -r 图线.题 7-11 图分析 同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆为积分路径, πr 2d ⋅=⋅⎰B l B ,利用安培环路定理∑⎰=⋅I μ0d l B ,可解得各区域的磁感强度.解 由上述分析得r <R 122101ππ12πr R μr B =⋅ 21012πR Ir μB = R 1 <r <R 2I μr B 022π=⋅rI μB 2π02= R 2 <r <R 3()()⎥⎦⎤⎢⎣⎡---=⋅I R R R r I μr B 22232203ππ2π 2223223032πR R r R r I μB --= r >R 3()02π04=-=⋅I I μr B04=B磁感强度B (r )的分布曲线如图(b).7-12 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为t Φπ100sin 100.85⨯=,式中Φ的单位为Wb ,t 的单位为s ,求在s 100.12-⨯=t 时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦNξd d d d -=-=,其中ΦN ψ=称为磁链.解 线圈中总的感应电动势 ())V (π100cos 51.2d d t tΦN =-=ξ 当s 100.12-⨯=t 时,V 51.2=ξ.7-13 载流长直导线中的电流以tI d d 的变化率增长.若有一边长为d 的正方形线圈与导线处于同一平面内,如图所示.求线圈中的感应电动势.分析 本题仍可用法拉第电磁感应定律tΦd d -=ξ,来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=S S B Φd 来计算.为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即B =B (x ),故取一个平行于长直导线的宽为d x 、长为d 的面元d S ,如图中阴影部分所示,则d S =d d x ,所以,总磁通量可通过线积分求得(若取面元d S =d x d y ,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tI M d d -=ξ求解. 解1 穿过面元d S 的磁通量为x d x I S B Φd π2d d 0μ=⋅=因此穿过线圈的磁通量为2ln π2d π2d 200⎰⎰===d d Id x x Id ΦΦμμ再由法拉第电磁感应定律,有 tI d t Φd d 21ln π2d d 0)(μξ=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为2ln π20dI Φμ=线圈与两长直导线间的互感为 2ln π20d I ΦM μ== 当电流以tI d d 变化时,线圈中的互感电动势为 tI d t I M d d 21ln π2d d 0)(μξ=-=题 7-13 图7-14 如图所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?题 7-14 图分析 本题及后面几题中的电动势均为动生电动势,除仍可由t ΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰l E v 求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线OP 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2RvB .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0又因 E =E OP +E PO即 E OP =-E PO =2RvB由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.7-15 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.题 7-15 图分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是OA 棒与OB 棒上电动势的代数和,如图(b)所示.而E OA 和E OB 则可以直接利用第12-2 节例1 给出的结果.解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则()()r L lB ωl lB ωE L-rr ABAB 221d d --=-=⋅⨯=⎰⎰-l B v因此棒两端的电势差为()r L lB ωE U AB AB 221--==当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中221r ωB E OA =,()221r L B ωE OB -= 则()r L BL ωE E E OB OA AB 221--=-=7-16 如图所示,在“无限长”直载流导线的近旁放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.题 7-16 图分析 本题亦可用两种方法求解.其中应注意下列两点:(1)当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgefghefE E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.(2)用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =tξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgefl B l B d d v v()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μvv ()1202πl d d l I +=1vl μ由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为()ξξμξμ120020lnπ2d π21l Il x x Il l +=+=Φ⎰ 相应电动势为()()1120π2d d l ξξl l I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为()1120π2l d d l l I μE +=v由E >0 可知,线框中电动势方向为顺时针方向.7-17 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率tBd d 为常量.试证:棒上感应电动势的大小为2222d d ⎪⎭⎫ ⎝⎛-=l R l t B ξ题 7-17 图分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由⎰⋅=lk l E d ξ计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0d =⋅l E k ,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由电磁感应定律,在r <R 区域,⎰⎰⋅-=⋅=S B t l E k d d dd ξ tB r E r k d d ππ22-=⋅ 解得该区域内感生电场强度的大小tBr E k d d 2=设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为()()222202/2d d d 2/d d 2d cos d l R l t B x r l R tB r xE lk k PQ -=-==⋅=⎰⎰θξx E证2 由法拉第电磁感应定律,有22Δ22d d d d d d ⎪⎭⎫⎝⎛-==-==l R l t B t B S t ΦE E PQ讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势? 该如何求解?。
第7章 恒定电流的磁场

投票人数:0
16. 有人从安培环路定理得出以下结论,其中正确的结 论是( )。 (1) 如果回路L上 B处处为0,就没有净电流穿过回路 (2) 如果没有电流穿过回路 ,回路L上 B 处处为0 (3) 如果回路 L上的 B 处处不为0,则穿过回路L的净电 流必不为0 (4) 如果穿过回路L的净电流不为0,回路 上 B 必然不会 处处为0 00:30 A. (1)(2) B. (2)(3) C. (1)(4) D. (3)(4)
第七章 恒定电流的磁场 概念检测题
1. 如图7-1所示,电流从a 点分两路通过对称的圆环 形分路,汇合于b点。若ca,bd 都沿环的径向,则在 环形分路的环心处的磁感应强度( )。 00:30 A. 方向垂直环形分路所 在平面且指向纸内 B. 方向垂直环形分路所 在平面且指向纸外 图7-1 C. 方向在环形分路所在 平面 D. 为零
投票人数:0
00:30
投票人数:0
4. 在均匀磁场中,取一半径为 R的圆,圆面的法线 e n
与磁感应强度 B 成 60 o 角,如图7-2所示,则通过以该
圆周为边线的任意曲面S的磁通量 等于( A. 0 ; )。
00:30
2
πR B B. ; 2 3πR 2 B C. ; 2
D.
en
60 o
S
B
投票人数:0
13.在一平面内,有两条垂直交叉但相互绝缘的导线, 流过每条导线的电流I 相同,其方向如图7-8所示。则有 某些点的磁感应强度可能为零的区域是( D )。 A. 仅在象限Ⅰ
B. 仅在象限Ⅱ
C. 仅在象限Ⅰ,Ⅲ
00:30
D. 仅在象限Ⅱ,Ⅳ
图7-8
投票人数:0
第7章 (稳恒磁场)习题课

二.载流导线和运动电荷所受磁场力
1. 洛伦兹力: 特征:方向垂直于v和B所构成的平 面;不作功,不改变电荷的速率和动能.
方向沿x方向 (若F为正值,则合力的方向与x轴正向一致)。
例5 半径分别为R1和R2的两个半圆弧与直径的两小段
构成的通电线圈abcda (如图所示),放在磁感强度
为B的均匀磁场中,平行线圈所在平面.则 线圈的磁矩大小为
1 2 I ( R2 R12 ) 2 ___________ ,
R2 a b
2r
0
2
R o r
dr
B
0
2
dr
0
R
0R
2
dr
例4. 均匀带电细直线AB, 电荷线密度为λ, 绕垂直于 直线通过O 点的轴以角速度ω 匀速转动( 线形状不 变, O 点在A B 延长线上) , 求: r dr (1 ) O点的磁感应强度B; O B a A (2 ) 磁矩m ; b (1)解 :在带电细线离O点r处取线元dr,其带 电量 dq dr,旋转时相当于一圆电流
2 r 2 R2 I 1 H 2 2 2r R R 3 2
1.解: 圆电流在O点产生的磁场 0 I 2 B1 方向× 2R 长直导线电流在O点产生的磁场 0 I 2 方向× B2 2R 导体管在O点产生的磁场由安培环路定理求得,
B3
0 I1
2 (d R)
方向×
圆心O点处的磁感应强度
第七章 恒定电流的磁场 习题 (2)

Bdl 2rB 0 NI
0 NIh R2 R2 0 NI hdr ln 2. B ds R1 2r 2r R1
I
R2 R1
h
6、一半径为 4.0 cm的圆环放在磁场 中,磁场的方向对环而言是对称发散 的,如图所示.圆环所在处的磁感强 度的大小为0.10 T,磁场的方向与环 面法向成60°角.求当圆环中通有电 流I =15.8 A时,圆环所受磁力的大小 和方向.
2
2 R
1
1
0
因为线圈上每一电流元受力方向 相同,所以合力 d F2 I d lB2 sin 90 IB cos 60 d l = 0.34 N, 方向垂直环面向上.
电流元受B2的作用力
d F1 I d lB1 sin 90 IB sin 60 d l
方向指向线圈平面中心. 由于轴对称,dF2对整个线圈的合 力为零,即 . F 0 所以圆环所受合力 F F1 0.34 N, 方向垂直环面向上.
恒稳磁场整理
• 和卓辉 • 20112128 • • • • • 毕奥定理求B 求磁通量 用安培环路定理求B 线圈或导线受力 介质中的环路定理
1、边长为l的正方形线圈中通有电流,此线 圈在A点(见图)产生的磁感应强度B为 2 ( A) 0 I 4l
2 ( B) 0 I 2l 2 ( C) 0 I 2l
⊙
60° B
解:将电流元Idl处的 分解为平行线 圈平面的B1和垂直线圈平面的B2两 分量,则 B1 B sin 60 B2 B cos 60 分别讨论线圈在B1磁场和B2磁场中 所受的合力F1与F2.电流元受B1的 作用力 F d F IB sin 60 d l IB sin 60 2R 方向平行圆环线.
第7章稳恒磁场分析

第6章恒定磁场习题6.1 毕奥—萨伐尔定律一.选择题( )1、宽为a ,厚度可以忽略不计的无限长扁平载流金属片,如图6.1.1所示,中心轴线上方一点P 的磁感应强度的方向是(A) 沿y 轴正向. (B )沿z 轴负向.(B) (C) 沿y 轴负向. (D) 沿x 轴正向.( )2、两无限长载流导线,如图6.1.2放置,则坐标原点的磁感应强度的大小和方向分别为:(A)2μ0 I / (2 π a ) ,在yz 面内,与y 成45︒角. (B)2μ0 I / (2 π a ) ,在yz 面内,与y 成135︒角. (C)2μ0 I / (2 π a ) ,在xy 面内,与x 成45︒角.(D)2μ0 I / (2 π a ) ,在zx 面内,与z 成45︒角. ( )3、一无限长载流导线,弯成如图6.1.3所示的形状,其中ABCD 段在x O y平面内,BCD 弧是半径为R 的半圆弧,DE 段平行于O z 轴,则圆心处的磁感应强度为(A) j μ0 I / (4 π R ) + k [μ0 I / (4 π R )-μ0 I / (4R )] .(B) j μ0 I / (4 π R ) -k [μ0 I / (4 π R ) + μ0 I / (4R )] . (C) j μ0 I / (4 π R ) + k [μ0 I / (4 π R )+μ0 I / (4R )] . (D) j μ0 I / (4 π R ) -k [μ0 I / (4 π R )-μ0 I / (4R )] .( )4、一电流元i d l 位于直角坐标系原点,电流沿Z 轴方向,空间点P ( x , y , z )的磁感应强度沿x 轴的分量是:(A) 0.(B) –(μ0 / 4π)i y d l / ( x 2 + y 2 +z 2 )3/2 . (C) –(μ0 / 4π)i x d l / ( x 2 + y 2 +z 2 )3/2 .(D) –(μ0 / 4π)i y d l / ( x 2 + y 2 +z 2 ) .( )5、电流I 由长直导线1 沿垂直bc 边方向经a 点流入一电阻均匀分布的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2 返回电源 (如图6.1.4),若载流直导线1、2和三角形框在框中心O 点产生的磁感应强度分别用B 1 、B 2和B 3 表示,则O 点的磁感应强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0 .(B) B = 0,因为虽然B 1 ≠0,B 2 ≠0,但 B 1 +B 2 = 0 ,B 3 = 0. (C) B ≠ 0,因为虽然B 3 =0,但B 1 +B 2 ≠ 0. (D) B ≠ 0,因为虽然B 1 +B 2 = 0,但B 3 ≠0 . ( )6、如图6.1.5,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为(A) B 1 = B 2. (B) B 1 = 2B 2. (C) B 1 =21B 2. (D) B 1 = B 2 /4. ( )7、边长为 l 的正方形线圈中通有电流I ,此线圈在A 点(见图6.1.6)产生的磁感强度B 为 (A)l Iπ420μ. (B) l Iπ220μ (C) lIπ02μ. (D) 以上均不对. ( )8、如图6.1.7所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,· ·xyz -aaII O图6.1.2y -R · · xz R I IO A BC DE图6.1.3 12 O a bcI I图6.1.4图6.1.5AII 图6.1.6则在环形分路的环心处的磁感强度(A) 方向垂直环形分路所在平面且指向纸内. (B) 方向垂直环形分路所在平面且指向纸外. (C) 方向在环形分路所在平面,且指向b . (D) 方向在环形分路所在平面内,且指向a . (E) 为零.( )9、在一平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流i 的大小相等,其方向如图6.1.8所示.问哪些区域中有某些点的磁感强度B 可能为零? (A) 仅在象限Ⅰ. (B) 仅在象限Ⅱ. (C) 仅在象限Ⅰ,Ⅲ. (D) 仅在象限Ⅰ,Ⅳ.(E) 仅在象限Ⅱ,Ⅳ.二.填空题 1、氢原子中的电子,以速度v 在半径r 的圆周上作匀速圆周运动,它等效于一圆电流,其电流I 用v 、r 、e (电子电量)表示的关系式为I = ,此圆电流在中心产生的磁场为B= ,它的磁矩为p m = .2、真空中稳恒电流I 流过两个半径分别为R 1 、R 2的同心半圆形导线,两半圆导线间由沿直径的直导线连接,电流沿直导线流入 (1) 如果两个半圆面共面,如图6. 1.9 (1),圆心O 点磁感应强度B 0 的大小为 ,方向为 ; (2) 如果两个半圆面正交,如图6.1.9(2),则圆心O 点磁感应强度B 0 的大小为 ,B 0的方向与y 轴的夹角为 .3、求图6.1.10中各图P 点的磁感强度B 的大小和方向三.计算题1、 如图,将一导线由内向外密绕成内半径为R 1 ,外半径为R 2 的圆形平面线圈,共有N 匝,设电流为I ,求此园形平面载流线圈在中心O 处产生的磁感应强度的大小.II · O O · I I x yz R 1R 2R 2 R 1 (1)(2)图6.1.91 2a bOI I · ·cI db a图6.1.7图6.1.8I aI2P IP a a图6.1.102.、宽为b的无限长平面导体薄板,通过电流为I,电流沿板宽度方向均匀分布,求:(1)在薄板平面内,离板的一边距离为b的M点处的磁感应强度;(2)通过板的中线并与板面垂直的直线上的一点N处的磁感应强度,N点到板面的距离为x。
第7章-2恒定磁场j
B
+v
F=0
结论: 带电粒子做匀速直线运动。
2、运动方向与磁场方向垂直
F qvB
运动方程: qvB m v2 R
周期: T 2π R 2π m v qB
频率: 1 qB
T 2π m
v +
F
B
R
结论: 带电粒子做匀速率圆周运动,其周期和频 率与速度无关。
3、运动方向沿任意方向
方向:z轴的负方向
2
2
线圈转过90°时,磁通量的增量为
ΔΦm
πR2 2
B
力矩做的总功:
W
IΔΦm
πR2 2
IB
§7.8 磁介质
7-8-1 物质的磁性
当一块介质放在外磁场中将与磁场发 生相互作用,介质中出现附加磁场,产生 一种所谓的“磁化”现象。我们把这种在 磁场作用下磁性发生变化的介质称为“磁 介质”。
L
y
dF
dF I2dl B
B 0I1
I2
I1
l dl
2π x
a
x
dF
I 2dlB
I 2dl
0 I1
2π x
x dx
x a l cos
dl dx
cos
dF 0I1I2 dx 2π cos x
dF 0I1I2 dx 2π cos x
各电流元受的力的方向相同
F dF 0I1I2 aLcos dx 0I1I2 ln a L cos
BIl1
sin
π 2
Fcd
d(c)
l1
a(b)
Fab
θ
en
B
结论:平面载流线圈在均匀磁场中所受的安培力的 矢量和为零。
7稳恒磁场习题思考题
习题7
7-1.如图所示的弓形线框中通有电流I ,求圆心O 处的磁感应强度B 。
解:圆弧在O 点的磁感应强度:00146I I B R R
μθμπ==,方向:; 直导线在O 点的磁感应强度:0000203[sin 60sin(60)]4cos602I
I B R R μμππ=--=,方向:⊗;
∴总场强:03
1)23I B R μ=
-,方向⊗。
7-3.无限长细导线弯成如图所示的形状,其中c 部分是在xoy
平面内半径为R 的半圆,试求通以电流I 时O 点的磁感应强度。
解:∵a 段对O 点的磁感应强度可用0S B d l I μ⋅=∑⎰求得, 有:04a I B R μπ=,∴04a I B j R
μπ=- b 段的延长线过O 点,0b B =,
c 段产生的磁感应强度为:0044c I I B R R μμππ=⋅=,∴04c I B k R
μ= 则:O 点的总场强:0044O I I B j k R R
μμπ=-+,方向如图。
7-8.如图所示,在长直导线旁有一矩形线圈,导线中通有电流
120A =I ,线圈中通有电流210A =I ,已知d =1cm,b =9cm,l =20cm ,求矩形线圈上所受到的合力是多少?
解:矩形线圈上下两边所受的磁力相互抵消。
矩形线圈左边所受的磁力为 N 10824102121-⨯===d
I l I lB I F πμ 方向向左 矩形线圈右边所受的磁力为 N 108)
(251
02222-⨯=+==b d I l I lB I F πμ方向向右 矩形线圈上所受到的合力为 N 102.7421-⨯=-=F F F 方向向左。
上海交大版大学物理答案7稳恒磁场习题思考题解读
习题77-1.如图所示的弓形线框中通有电流,求圆心处的磁感应强度。
解:圆弧在O点的磁感应强度:,方向:;直导线在O点的磁感应强度:,方向:;∴总场强:,方向。
7-2.如图所示,两个半径均为R的线圈平行共轴放置,其圆心O1、O2相距为a,在两线圈中通以电流强度均为I的同方向电流。
(1)以O1O2连线的中点O为原点,求轴线上坐标为x的任意点的磁感应强度大小;(2)试证明:当时,O点处的磁场最为均匀。
解:见书中载流圆线圈轴线上的磁场,有公式:。
(1)左线圈在x处点产生的磁感应强度:,右线圈在x处点产生的磁感应强度:,和方向一致,均沿轴线水平向右,∴点磁感应强度:;(2)因为随变化,变化率为,若此变化率在处的变化最缓慢,则O点处的磁场最为均匀,下面讨论O点附近磁感应强度随变化情况,即对的各阶导数进行讨论。
对求一阶导数:当时,,可见在O点,磁感应强度有极值。
对求二阶导数:当时,,可见,当时,,O点的磁感应强度有极小值,当时,,O点的磁感应强度有极大值,当时,,说明磁感应强度在O点附近的磁场是相当均匀的,可看成匀强磁场。
【利用此结论,一般在实验室中,用两个同轴、平行放置的匝线圈,相对距离等于线圈半径,通电后会在两线圈之间产生一个近似均匀的磁场,比长直螺线管产生的磁场方便实验,这样的线圈叫亥姆霍兹线圈】7-3.无限长细导线弯成如图所示的形状,其中部分是在平面内半径为的半圆,试求通以电流时点的磁感应强度。
解:∵a段对O点的磁感应强度可用求得,有:,∴b段的延长线过点,,c段产生的磁感应强度为:,∴则:O点的总场强:,方向如图。
7-4.在半径的无限长半圆柱形金属片中,有电流自下而上通过,如图所示。
试求圆柱轴线上一点处的磁感应强度的大小。
解:将半圆柱形无限长载流薄板细分成宽为的长直电流,有:,利用。
在P点处的磁感应强度为:,∴,而因为对称性,那么,。
7-5.如图所示,长直电缆由半径为R1的导体圆柱与同轴的内外半径分别为R2、R3的导体圆筒构成,电流沿轴线方向由一导体流入,从另一导体流出,设电流强度I都均匀地分布在横截面上。
《大学物理》恒定磁场练习题及答案
《大学物理》恒定磁场练习题及答案一、简答题1、如何使一根磁针的磁性反转过来?答:磁化:比如摩擦,用一个磁体的N 极去摩擦小磁针的N 极可以让它变为S 极,另一端成N 极。
2、为什么装指南针的盒子不是用铁,而是用胶木等材料做成的? 答:铁盒子产生磁屏蔽使得指南针无法使用。
3、在垂直和水平的两个金属圆中通以相等的电流,如图所示,问圆心O 点处的磁场强度大小及方向如何?答:根据圆电流中心处磁感应强度公式,水平金属圆在O 点的磁感应强度大小为RI20μ;方向垂直向下,竖直金属圆在O 点的磁感应强度大小为RI20μ;方向垂直指向纸面内。
故O 点叠加后的磁感应强度大小为RI220μ;方向为斜下450指向纸面内。
4、长直螺旋管中从管口进去的磁力线数目是否等于管中部磁力线的数目? 为什么管中部的磁感应强度比管口处大?答:因为磁力线是闭合曲线,故磁力线数目相等。
根据载流长直螺旋管磁感应强度计算公式)cos (cos 21120θθμ-=nI B 可知,管口处21πθ→,0cos 1=θ,管口处磁感应强度为20cos 21θμnI B =;中心处212cos 2cos cos θθθ'='-',故中心处磁感应强度为20cos θμ'=nI B ,因为22θθ>',所以中心处磁感应强度比管口处大。
5、电荷在磁场中运动时,磁力是否对它做功? 为什么? 答:不作功,因为磁力和电荷位移方向成直角。
6、在均匀磁场中,怎样放置一个正方型的载流线圈才能使其各边所受到的磁力大小相等?答:磁力线垂直穿过正四方型线圈的位置。
因为线圈每边受到的安培力为B Ia F ⨯=,由于处在以上平面时,每边受到的磁力为IaB F =。
7、一个电流元Idl 放在磁场中某点,当它沿x 轴放置时不受力,如把它转向y 轴正方向时,则受到的力沿z 铀负方向,问该点磁感应强度的方向如何?答:由安培力公式B Idl dF ⨯=可知,当Idl 沿x 轴放置时不受力,即0=dF ,可知B 与Idl 的方向一致或相反,即B 的方向沿x 轴线方向。