1简述几何光学的基本原理
基本光学原理

基本光学原理第一节 几何光学的基本原理几何光学的含义及其范畴,是以光的直线传播性质为基础,研究光在透明介质中传播的光学。
几何光学的理论基础,就是建立在通过观察和实验得到的几个基本定律。
由于光的直线传播性对于光的实际行为只有近似的意义,所以,以它作为基础的几何光学,就只能应用于有限的范围和给出近似的结果。
但这些对于了解与摄影有关的光学系统而言,已是足够的了。
一、光线在几何光学中可用一条表示光传播的方向的几何线来代表光,并称这条线为光线。
二、光的传播定律1.光的直线传播定律:光在均匀透明的介质中,光沿直线传播。
2.光的反射和折射定律:当光线由一均匀介质进入另一介质时,光线在两个介质的分界面上被分为反射光线和折射光线。
这两条光线的进行方向,可分别由反射定律和折射定律来表述。
反射定律:反射线在入射线和法线所决定的平面上;反射线和入射线分别位于法线的两侧;反射角和入射角相等。
在反射现象里光路是可逆的。
折射定律:折射线在入射线和法线所决定的平面内;折射线和入射线分别位于法线的两侧入射角i的正弦与折射角r的正弦的比,对于给定的两种媒质来说,是一个常数,叫做第二媒质对于第一种媒质的折射率,在这里我们用n21来表示。
前面所讲的n21是第二种媒质对于第一种媒质的折射率,叫做这两种媒质的相对折射率,即某种媒质对于真空的折射率叫做这种媒质的绝对折射率,简称媒质的折射率,用n表示。
因为光在空气中传播的速度与光在真空中传播的速度相差很小,所以通常用媒质对空气的折射率代替媒质的折射率。
n=1。
光在任何媒质中传播的速度都小于在真空中的速度,所以,任何媒质的折射率都大于1。
由此可以推论,光在一种媒质中传播的速度越小,这种媒质的折射率越大。
两种媒质相比较如第一种媒质的折射率大于第二种媒质的折射率,则光在第一种媒质中的传播速度小于光在第二种媒质中的传播速度,相对而言第一种媒质称为光密媒质,第二种媒质称为光疏媒质。
当光线从光疏媒质射进光密媒质时∴Sini>Sinr i>r这时,r<i说明光线近法线折射。
1-1几何光学的基本原理

物空间 光 学 系 统
像空间
光 学 系 统 实物成虚实象
实物成实象
光 学 系 统 虚物成实象
二、球面透镜
(一)厚透镜和薄透镜 1、厚透镜:一切真实的透镜都有一定的中心 厚度,因此都是厚透镜。 2、薄透镜:透镜厚度为零的透镜。 3、薄透镜组:两个或两个以上的薄透镜组合 而成的光学系统。
平行光线通过凸透镜会聚于一点(焦点); 从焦点发出的光线通过凸透镜而平行。
(2)二次反射棱镜 相当于双面镜。其出射光线与入射光线的 夹角取决于两反射面的夹角,像与物一致, 不存在镜像。
(3)三次反射棱镜 常用为施密特棱镜 出射光线与入射光线夹角为45度,奇次反 射成镜像。 最大特点:因为光线在棱镜中的光路很长, 可以折叠光路,使仪器结构更紧凑。
2、屋脊棱镜
正透镜:具有正的光焦度,对光束有会聚作用,又叫会聚 透镜或凸透镜。 应用:望远镜、准直仪、光学收发器、放大器、辐射计等 负透镜:具有负的光焦度,对光束有发散作用,又叫发散 透镜或凹透镜。 应用:激光光束扩展器\光学特征读取器\观察器和发射 系统等。
凸透镜有:平凸、双凸、月凸。 凹透镜有:平凹、双凹、月凹。
光的本质
光的波粒二象性 光是一种电磁辐射,由于光的折射、 反射、衍射等现象,说明光具有波动性; 同时光还具有热辐射、光电效应等作用, 又说明光具有粒子性,因此可以把光的这 种性质叫作光的波粒二象性。 光学分:波动光学和几何光学。
波动光学的起源
以波动理论研究光的传播及光与物质相互作用的 光学分支。17世纪,R.胡克和C.惠更斯创立了光 的波动说。惠更斯曾利用波前概念正确解释了光 的反射定律、折射定律和晶体中的双折射现象。 这一时期,人们还发现了一些与光的波动性有关 的光学现象,例如F.M.格里马尔迪首先发现光遇 障碍物时将偏离直线传播,他把此现象起名为 “衍射”。胡克和R.玻意耳分别观察到现称之为 牛顿环的干涉现象。这些发现成为波动光学发展 史的起点。
第1章 几何光学的基本原理1

二、费马原理的原始表述: 光从空间的一点到另一点的实际路径是沿着
光程为极值的路径传播的。或者说,光沿着光 程为极大、极小或者常量的路径传播。
B
( AB) A n dl 0
在光线的实际路径上,光程的变分为0。
16
如果ACB代表光线的实际路径,如图,光线ACB 的光程(或者说所需的时间)与邻近的任何可能路 径 AC'B 相比为极值(极大、极小或常数)。
25
• 物空间和像空间不仅一 一对应,而且根据光的可 逆性,如果将物点移到原来像点的位置上,使光 线沿反反向射入光学系统,则它的像将成在原来 的物点上。这样的一对相应的点称为共轭点。
• 由费马原理可以得出一个重要结论:物点A和像 点 之间各光线的光程都相等,这便是物像之间的 等光程性。这里所说的像点是指完善像点。
当光线经过几个折射率为 n1, n2, n3, n4 的不同介质, 在各介质中经过的路程为l1, l2, l3, l4 ,从A,B,C,
D到达E时所需的时间为
tAE
i
li vi
i
nili ( ABCDE )
c
c
(ABCDE)称为光线ABCDE的光程,简写为(AE)。
( AE) ( ABCDE ) nili tAE c
28
•这一角度大于入射光线在斜面上的入射角45°所 以入射光线在斜面上不能全反射,如图所示,在斜 面AC上入射点 D处将有折射光线进入水中,其折 射角为
I2
sin
1
1.50sin 45 1.33
sin
1
0.797488
52.89096
29
第一章 作业
几何光学的原理与应用

几何光学的原理与应用光学是研究光的传播、反射、折射、干涉、衍射等规律的一门学科,而几何光学则是光学中的一个重要分支,主要研究光线在各种介质中传播时的规律。
几何光学的原理基于光线传播的直线性质,通过简化光的传播过程,使得复杂的光学问题变得简单而直观。
几何光学的应用广泛,涉及到光学仪器、成像系统、光学通信等诸多领域。
本文将介绍几何光学的基本原理,并探讨其在现实生活中的应用。
一、几何光学的基本原理1. 光的直线传播几何光学的基本假设之一是光线在各种介质中传播时是沿直线传播的。
这意味着光线在传播过程中不会发生弯曲,可以用直线来描述其传播方向。
根据这一假设,可以通过简单的几何方法来描述光线的传播路径,从而分析光的反射、折射等现象。
2. 反射定律反射定律是几何光学中的重要原理之一,它描述了光线在与介质界面发生反射时的规律。
根据反射定律,入射光线、反射光线和法线三者在同一平面内,且入射角等于反射角。
这一定律不仅可以解释镜面反射现象,也可以应用于光的反射成像等问题的分析。
3. 折射定律折射定律是几何光学中另一个重要原理,描述了光线在通过介质界面时的折射规律。
根据折射定律,入射光线、折射光线和法线三者在同一平面内,且入射角、折射角之比等于两种介质的折射率之比。
折射定律不仅可以解释透明介质中光的传播规律,也可以用于光的折射成像等问题的分析。
4. 焦距与成像在几何光学中,焦距是描述光学系统聚焦能力的重要参数。
对于凸透镜和凹透镜而言,焦距分别为正和负,焦距的大小决定了透镜的成像能力。
通过几何光学的方法,可以分析透镜成像的规律,包括实像、虚像的形成条件,成像位置和大小的计算等。
二、几何光学在现实生活中的应用1. 光学仪器几何光学的原理被广泛应用于各种光学仪器中,如望远镜、显微镜、相机等。
这些光学仪器通过透镜、反射镜等光学元件的组合,实现对光的聚焦、成像、放大等功能。
几何光学的方法可以帮助设计和优化这些光学仪器,提高其成像质量和性能。
几何光学的基本原理

球面镜和透镜成像原理
凹透镜
凹透镜成像能产生缩小的效果,在显微镜等光学仪 器中得到广泛应用。
凸透镜
凸透镜成像能产生放大的效果,被广泛应用在望远 镜、放大镜、显微镜、相机等光学设备中。
球面镜
凹凸面镜能够成像,特别是汽车的后视镜这一现实 生活中常见的例子。
几何光学的基本原理
几何光学研究光线在介质中的传播规律和与物体的相互作用关系。它是现代 光学理论的基础,对光学应用具有播
在同一介质中,光线沿着直线传播。
2 折射传播
在两种介质的交界面上,光线的传播方向会 发生改变。
3 反射传播
光线遇到光滑的表面时,会发生反射现象。
4 干涉和衍射传播
真实的光速
真空情况下,光速约为每秒 299792458米。
折射定律
光从一种介质进入另一种介质 时,传播方向会发生改变,但 光的传播速度在同一介质中不 会改变。
光速与介质折射率的 关系
介质的折射率越大,光的速度 就越慢。
非均质光和干涉仪
1
非均质光
非均质光是由许多方向和波长的光线构成的光,相对于均质光,非均质光的特征更加丰富。
2
夫琅和费衍射
利用非均质光的特点,夫琅和费衍射能够达到很高的线性度,被广泛应用于光路干涉仪、测 微仪等微小位移的测量。
3
交错网格干涉仪
交错网格干涉仪是一种常用的检测平行度、角度误差的设备。
光在不同介质中的传播速度
4 光谱分析技术
利用光的波长和颜色特性来做分析和检测, 是很多科学领域的重要手段。
光学仪器的种类和应用
显微镜
显微镜是物理、化学、生物、医学等领域中必 不可少的工具。
几何光学的原理与应用

几何光学的原理与应用几何光学是光学中的一个重要分支,它研究光的传播和反射、折射等现象,以及光线在透明介质中的传播规律。
几何光学的研究对象是光线,它将光线看作是一条直线,忽略了光的波动性质。
几何光学的原理和应用广泛存在于日常生活和各个领域中,如光学仪器、成像系统、眼镜、显微镜等。
本文将介绍几何光学的基本原理和一些常见的应用。
几何光学的基本原理光的传播根据几何光学的假设,光在均匀介质中沿直线传播。
当光线从一种介质进入另一种介质时,会发生折射现象。
根据斯涅尔定律,入射角和折射角之间满足折射定律:,其中和分别是两种介质的折射率,和分别是入射角和折射角。
光的反射当光线从一种介质射向另一种介质的界面时,会发生反射现象。
根据反射定律,入射角和反射角相等。
这是因为光线在界面上的传播速度发生改变,而根据费马原理,光线总是沿着路径用时最短的方向传播。
光的成像几何光学研究光的成像规律。
当光线通过透镜或反射镜等光学元件时,会发生折射或反射,并形成一个像。
根据几何光学的原理,可以通过追踪光线的路径来确定像的位置和性质。
几何光学的应用光学仪器几何光学在光学仪器中有广泛的应用。
例如,望远镜利用透镜或反射镜将远处物体的光线聚焦到观察者的眼睛中,使得物体看起来更大更清晰。
显微镜利用透镜放大微小物体,使得人眼能够观察到细微结构。
投影仪利用透镜将图像放大并投射到屏幕上,实现图像的放映。
成像系统几何光学在成像系统中起着重要的作用。
相机、手机摄像头等成像设备都是基于几何光学的原理设计的。
它们利用透镜将光线聚焦到感光元件上,形成图像。
通过调整透镜的位置和焦距,可以改变图像的清晰度和放大倍数。
眼镜眼镜是几何光学应用的另一个重要领域。
近视眼和远视眼都是由于眼球的折射能力不正常导致的。
通过使用适当的凸透镜或凹透镜,可以调整光线的折射,使得光线能够正确地聚焦在视网膜上,从而矫正视力问题。
光纤通信光纤通信是一种利用光传输信息的技术。
光纤是一种细长的玻璃或塑料材料,可以将光信号沿着其内部传输。
第三章 几何光学的基本原理

轴象点Q`必有同一象距 s`值,物和象具有几何相似性,即近轴光条
件下近轴物可实现理想成象。 ⑷ 上述②式反映了物与像的大小关系
系直接得到。
y' s' ,可由图中几何关
y
s
⑸ 从公式推导中可看出:主轴外物点要理想成像,必须满足近轴条件:
A、光线必须是近轴的; B、物点必须是近轴的。
设 : n1 n2 n' 则 : 当n' n 时 ,凸透镜是会聚镜 ,凹透镜是发散镜 ;
空气中的 薄透镜
当n' n 时 ,凹透镜是会聚镜 ,凸透镜是发散镜 .
④ 高斯公式
由: 物像公式
n2 s'
n1 s
n n1 r1
n2 n r2
得 : 物方焦距 f lim s
高斯公式变形为
1 s'
1 s
1 f'
⑥ 薄透镜简化模型
F f
o
凸透镜
f ' F'
F' f'
o
fF
凹透镜
三、横向放大率
1、定义:
在近轴光线和近轴物的条件下,像的横向大小与物的横向大小之比。
y'
y
Q
y
s
f ' F' x
P x F f o
s
2、说明:
• 对处于同种介质中的薄透镜 n1 n2 ,
M -i
P
-u
hf
-i’ u’
P’
OQ
C
n n’ r
-s s’
二、球面反射对光束单心性的破坏
n n
01 几何光学的基本原理

2 光的反射定律
光的反射定律: 反射光线、 入射光线总是和法线处在同 一平面(入射面)内, 入射光线 和反射光线分居于入射点界 面法线的两侧, 反射角等于入 射角.
镜面反射和漫反射
几何光学的基本原理
法线
入射光线
反射光线
i i' i i’
平面镜反射成像
几何光学的基本原理
实和虚?
实: 实际光线相交为实. 虚: 光线的反向延长线相交 为虚.
思考: 平面镜反射成像时, 像 和物左右互易, 为什么像和 物并不上下颠倒?
3 光路可逆性原理 如果光路方向反转, 光线将按原路返回.
几何光学的基本原理
思考: 如要看到全身, 镜 子的高度为多少?
4 光的折射定律 折射定律:
几何光学的基本原理
入射光线
法线
n1 sin i n2 sin r
• 折射光线总是位于入射面内, 并且与入射光线分居在法线 的两侧.
内窥镜
几何光学的基本原理
演示
END
大学物理
几何光学
光学
经典光学
几何光学的基本原理
几ቤተ መጻሕፍቲ ባይዱ光学
以光的直线传播为基础, 研究光在透明介质中的传 播问题.
波动光学
以光的波动性为基础, 研 究光的传播及其规律.
量子光学
以光和物质相互作用时所显示 出的粒子性为基础, 研究光的 一系列规律.
几何光学的基本原理
第1讲 几何光学的基本原理
1 光的直进定律 光的直进定律: 光在各向同性的均匀介质中沿直线传播.
入射角 i 折射角 r
介质1 介质2
折射光线
全反射
n1 sin i n2 sin r
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1简述几何光学的基本原理
几何光学是光学中的一个分支,研究光线的传播和属性。
它基于几个基本原理,这些原理是我们理解光的行为和设计光学器件的基础。
第一个基本原理是光的直线传播。
根据这个原理,当光通过均匀介质时,它会沿着直线传播。
这意味着光线在传播过程中可以用直线来表示,且它们不会发生弯曲或散射。
第二个基本原理是光的反射。
根据这个原理,当光线从一种介质传播到另一种介质时,光线会在两种介质的交界面上发生反射。
根据反射定律,入射角等于反射角,并且反射光线与交界面垂直。
第三个基本原理是光的折射。
根据这个原理,当光线从一种介质传播到另一种介质时,光线会在两种介质的交界面上发生折射。
根据斯涅尔定律,入射角和折射角满足下列关系:入射介质的折射率乘以入射角等于折射介质的折射率乘以折射角。
第四个基本原理是光的光程差。
光程差是指光线在不同路径中传播所经过的距离差。
根据光程差原理,当光线遇到两个平行的表面时,光线会有不同的光程差。
光程差可以用来解释光的干涉和衍射现象。
第五个基本原理是光的成像。
根据光的成像原理,当光线通过透镜或反射镜等光
学器件时,它们会聚焦或发散,形成实像或虚像。
光的成像可以用光学几何方法进行定量分析,如使用焦距和放大率来描述透镜的性质。
这些基本原理是几何光学的基础,可以用来解释和预测光线在光学系统中的行为。
几何光学通常适用于波长远大于光学器件尺寸的情况,即波长远大于光线偏离直线传播的程度。
在这种情况下,可以忽略光的波动性,只考虑光的直线传播和折射反射现象。
然而,几何光学也有其局限性。
由于它无法考虑光的波动性,它不能解释一些现象,如衍射和干涉。
此外,当光线传播过程中涉及到小尺度结构或强烈的非线性效应时,几何光学也无法很好地描述现象。
综上所述,几何光学通过基本原理描述了光的传播和性质。
它是研究光学和设计光学系统的重要工具。
然而,需要注意的是,几何光学有其适用范围和局限性,我们需要结合其他光学理论和方法来更全面地理解和应用光学。