博弈论基础知识汇总

合集下载

(完整)博弈论经典模型全解析(入门级)

(完整)博弈论经典模型全解析(入门级)

博弈论经典模型全解析(入门级)1。

囚徒困境这是博弈论中最最经典的案例了-—囚徒困境,非常耐人寻味。

“囚徒困境"说的是两个囚犯的故事。

这两个囚徒一起做坏事,结果被警察发现抓了起来,分别关在两个独立的不能互通信息的牢房里进行审讯。

在这种情形下,两个囚犯都可以做出自己的选择:或者供出他的同伙(即与警察合作,从而背叛他的同伙),或者保持沉默(也就是与他的同伙合作,而不是与警察合作).这两个囚犯都知道,如果他俩都能保持沉默的话,就都会被释放,因为只要他们拒不承认,警方无法给他们定罪.但警方也明白这一点,所以他们就给了这两个囚犯一点儿刺激:如果他们中的一个人背叛,即告发他的同伙,那么他就可以被无罪释放,同时还可以得到一笔奖金.而他的同伙就会被按照最重的罪来判决,并且为了加重惩罚,还要对他施以罚款,作为对告发者的奖赏。

当然,如果这两个囚犯互相背叛的话,两个人都会被按照最重的罪来判决,谁也不会得到奖赏。

那么,这两个囚犯该怎么办呢?是选择互相合作还是互相背叛?从表面上看,他们应该互相合作,保持沉默,因为这样他们俩都能得到最好的结果:自由。

但他们不得不仔细考虑对方可能采取什么选择。

A犯不是个傻子,他马上意识到,他根本无法相信他的同伙不会向警方提供对他不利的证据,然后带着一笔丰厚的奖赏出狱而去,让他独自坐牢。

这种想法的诱惑力实在太大了.但他也意识到,他的同伙也不是傻子,也会这样来设想他。

所以A犯的结论是,唯一理性的选择就是背叛同伙,把一切都告诉警方,因为如果他的同伙笨得只会保持沉默,那么他就会是那个带奖出狱的幸运者了。

而如果他的同伙也根据这个逻辑向警方交代了,那么,A犯反正也得服刑,起码他不必在这之上再被罚款。

所以其结果就是,这两个囚犯按照不顾一切的逻辑得到了最糟糕的报应:坐牢。

企业在信息化过程中需要与咨询企业、软件供应商打交道的。

在与这些企业打交道的过程中,我们不可避免地也会遇到类似的两难境地,这个时候需要相互之间有足够的了解与信任,没有起码的信任做基础,切不可贸然合作.在对对方有了足够的信任之后,诚意也是必不可少的,如果没有诚意或者太过贪婪,就可能闹到双方都没有好处的糟糕情况,造成企业之间的双输。

博弈论概述

博弈论概述
“坦白”是A的占优策略。同样,“坦白”也是B的占优策略。
一般地,称 si*为局中人i的(严格)占优策略, 若对应所有的
si , s i*是i的严格最优策略 , 即:
ui (si*, si ) ui (si' , si ) si , si' si*
对应地,所有的 si' si* 被称为“劣策略”。注意:这
甲的策略
1
2
3
乙的策略
1
7
8
9
2
6
2
3
3
5
4
0
1.乙先行动。若乙选1,则甲选3;乙选2,则甲选1;乙选3, 则甲选1。乙在行动时会估计到甲的行动,它估计三种选择 中的最高代价为策略1(损失900万),其次为策略2(损失 600万),最低为策略3(损失为500万)。因此,乙必选代 价最低的策略3。——最大最小原理。结论:乙选择3,甲选 1作为回应,乙损失500万,甲获益500万。
在博弈论里,一个博弈可以有两种表述方式:一种是策 略式(strategic form representation)表述,另一种是 扩展式( extensive form representation )表述。前者 适合于讨论静态博弈,后者适合于讨论动态博弈。在策略式 表述中,所有参与人同时选择各自的策略,所有参与人选择 的策略一起决定每个参与人的支付。
2007 - Leonid Hurwicz, Eric S. Maskin, Roger B. Myerson 2005 - Robert J. Aumann, Thomas C. Schelling 2001 - George A. Akerlof, A. Michael Spence, Joseph E.

博弈论-入门

博弈论-入门

人接受了这五十万,其中的一个人说:“自己没有钱
,父母苦了一辈子了,临老了生病没钱医治,为了父
母,放弃了爱情吧。” ­

男人接着开出了第三个价格“500万!” ­

现场更静了,男人的第一个动作都是看身边的女
人,也许是在权衡什么。一半的男人沉默了,另一半
的男人怯生生的说:“我要爱情。”身边的女友也有
点呆住了,一个女孩子站起来说:“如果一个男人肯
去年七八月间,陈某儿子与赖某离婚;同年9月17日,陈某也 与王某办理了事实婚姻的离婚手续。仅仅四天后,陈某就与原 儿媳赖某登记结婚。结婚当天,他就向高新区公安分局户籍管 理部门申请办理儿媳、孙女的户籍迁移,欲将她们的户口迁到 上王村。工作人员将陈某的申请材料退了回来,口头告知他说 ,要迁户口,需先取得所在村委会的同意,并开具证明。
博弈 game—— “下棋”、“玩牌”,赌博和其他许 多智力游戏在内的对抗性游戏、对抗性体育竞 赛。博弈就是策略性的互动决策,通俗的说就 基于交叉效应的有意识的行为互动 交叉效应 参与人意识到交叉效应
博弈论,英文为Game theory,是研究相互依 赖、相互影响的决策主体的理性决策行为以及 这些决策的均衡结果的理论。
以利交者,利尽则散!以色交者,色衰则疏! 以貌交者,久之则腻!唯有以心交者,方能永恒!
理性
每个参与人均以获取最大支付为目标 理性内涵:对自己利益完全了解并能完美计算出何种
行动可最大化其利益 理性不意味着:
参与人自私 着眼于短期利益 与其他参与人有相同价值体系
男人无所谓忠诚,忠诚是因为背叛的砝码太低; 女人无所谓忠贞,忠贞是因为受到的引诱不够.
2
田忌策略:
结 果:
谋士孙膑 策略: 结 果:

博弈论基本原理

博弈论基本原理

博弈论基本原理
博弈论是一种数学工具,用于研究决策者之间的互动和竞争。

它通常应用于经济学、政治学、社会学等领域,以及人工智能、机器学习等技术中。

博弈论的基本原理包括:
1.参与者:博弈中的参与者可以是个人、群体、组织、国家等。

2.策略:每个参与者都有一系列可选的行动方案,称为策略。

参与者必须选择一种策略来决定行动。

3.结果:博弈的结果是由所有参与者的策略决定的,它们会共同影响游戏的结果,包括每个参与者的获胜与否、获胜者的奖励等。

4.收益:每个参与者的收益是根据游戏的结果来确定的,包括得到的奖励和遭受的惩罚。

5.纳什均衡:纳什均衡是指在博弈中,所有参与者选择的策略达到一种平衡状态,使得没有任何一个参与者能够通过单独改变自己的策略来改变游戏的结果。

6.博弈类型:博弈的类型包括合作博弈、非合作博弈、零和博弈、非零和博弈等。

不同类型的博弈需要采用不同的分析方法。

了解博弈论的基本原理可以帮助我们更好地理解人类行为的决
策过程,并在实际应用中为我们提供更准确的预测和策略选择。

- 1 -。

博弈论必背100句

博弈论必背100句

博弈论必背100句1. 博弈论是研究决策制定和策略选择的数学理论。

2. 在博弈论中,参与者的利益和行为是分析和决策的重点。

3. 博弈论可以应用于各种领域,如经济学、政治学和生物学等。

4. 博弈论的基本概念包括参与者、策略和收益。

5. 在博弈论中,参与者可以是个人、团队或国家等。

6. 策略是参与者为了实现自己的目标而采取的行动方式。

7. 收益是参与者根据策略选择所获得的结果。

8. 博弈论中常见的博弈类型包括零和博弈和非零和博弈。

9. 零和博弈中,参与者的利益完全相反,一方的收益必然导致另一方的损失。

10. 非零和博弈中,参与者的利益可能相互依赖,一方的收益不一定导致另一方的损失。

11. 在博弈论中,纳什均衡是指参与者在给定其他参与者策略的情况下,无法通过单方面改变自己的策略来提高自己的收益。

12. 纳什均衡是博弈论中最重要的解概念之一。

13. 博弈论中的合作和竞争是两种常见的行为方式。

14. 合作是指参与者为了实现共同目标而采取协调行动的方式。

15. 竞争是指参与者为了争夺有限资源而采取相互对抗的方式。

16. 在博弈论中,策略的选择是参与者根据自身利益和对其他参与者行为的预测来做出的决策。

17. 博弈论中的信息不对称是指参与者在做出决策时拥有不同的信息。

18. 信息不对称可以导致博弈结果的不确定性。

19. 在博弈论中,重复博弈是指参与者进行多次博弈的情况。

20. 在重复博弈中,参与者的策略可能受到之前博弈结果的影响。

21. 在博弈论中,博弈的解可能是多个纳什均衡的组合。

22. 博弈论中的博弈树是一种图形表示博弈过程的工具。

23. 博弈树可以帮助参与者理解博弈的策略和结果。

24. 在博弈论中,博弈的结果可以通过数学模型和计算机模拟来预测。

25. 博弈论中的博弈解法包括支配解、纳什均衡和最优解等。

26. 支配解是指在博弈中存在一种策略可以在任何情况下都能带来更好的收益。

27. 最优解是指在博弈中存在一种策略可以在所有情况下都能带来最大收益。

博弈论概述

博弈论概述

博弈论概述博弈论是研究决策制定者之间相互作用的一门学科。

在博弈论中,决策者被称为"玩家",他们的决策会影响其他玩家的利益。

博弈论的目标是研究玩家在不同情境下的最佳决策策略,以及这些策略对整体结果的影响。

以下是博弈论的一些基本概念和要点:1.玩家(Players):博弈中的参与者被称为玩家。

这可以是个体、公司、国家等。

2.策略(Strategies):玩家在博弈中采取的行动或决策被称为策略。

每个玩家可以有多种可能的策略。

3.支付(Payoffs):博弈的结果被称为支付,它反映了每个玩家在博弈结束时的效用或利润。

4.博弈矩阵(Game Matrix):通过博弈矩阵,可以清晰地表示玩家的策略选择和相应的支付。

博弈矩阵通常用于描述二人零和博弈。

5.纳什均衡(Nash Equilibrium):纳什均衡是指在博弈中,每个玩家都选择了最优的策略,给定其他玩家的选择,没有一个玩家有动机单方面改变自己的策略。

6.博弈形式(Normal Form)和博弈扩展形式(Extensive Form):博弈形式描述了一次性的、同步进行的博弈,而博弈扩展形式描述了具有序列和时间概念的博弈。

7.博弈的分类:博弈可以分为合作博弈和非合作博弈、零和博弈和非零和博弈、完全信息博弈和不完全信息博弈等。

8.博弈的应用领域:博弈论在经济学、政治学、社会学、生物学、计算机科学等多个领域都有广泛应用。

博弈论提供了一种分析人们在决策过程中相互作用的方式,它的应用范围涵盖了众多领域。

在博弈中,每个玩家都追求自己的最大利益,因此博弈论可以帮助人们更好地理解和预测复杂的决策场景。

博弈论基础 本讲要点博弈论的基本思想,博弈的构成要素,简单博弈的

博弈论基础 本讲要点博弈论的基本思想,博弈的构成要素,简单博弈的

博弈论基础本讲要点:博弈论的基本思想,博弈的构成要素,简单博弈的求解方法,纳什均衡的概念,博弈的分类,动态博弈与重复博弈,信息不对称,道德风险,逆向选择,信号传递。

重点:博弈论的基本思想,纳什均衡的概念,信息不对称。

难点:博弈的构成要素,纳什均衡的概念。

讲授时间:6学时一、博弈的基本要素1、博弈论与古典经济学的区别古典经济学的基本思路:给定约束条件,考虑行为主体的最优结果。

博弈论的基本思路:以行为主体之间的相互影响为前提,考虑行为主体的最优结果。

两者的根本区别:是否考虑对方的行为。

古典经济学中消费者行为理论:假定收入、商品价格以及效用函数给定,求最优消费组合。

消费者A不会考虑消费者B的影响。

古典经济学中的厂商理论:假定生产函数、成本函数、商品价格给定,求厂商的最优生产决策。

厂商A不会考虑厂商B的影响。

古典经济学中的宏观经济理论:假定一国的资源禀赋给定,考虑价格指数、利率等因素的变化对国民收入、就业等的影响。

国家A不会考虑国家B的影响。

博弈论:每个人要考虑别人的行为怎样影响自己的选择。

扑克牌游戏:一个人不可能只顾自己出牌,而不考虑别人怎么出牌。

下棋:无论中国象棋、国际象棋、围棋,一个人在走某一步之前,都要考虑对手是怎么走的,以及对手在我走了一步之后会怎么走,以及我又会在对手走了一步之后怎么走,以至无穷。

高手与俗手的区别也就在此。

高手往往能够考虑10步甚至20步以后的变化。

总之:你的输赢不仅取决于你的决策,而且取决于你对手的决策。

2、博弈论简史博弈论的思路在古诺(Cournot,Antoine Augustin,1801-1977)的双头垄断模型中最早提出,冯•诺伊曼(John von Neumann,1903-1957)和摩根斯坦恩(Oskar Margenstern, 1902-1977)在1944年出版了《博弈论与经济行为》(Theory of Games and EconomicBehavior)一书,最早提出了博弈论的概念。

博弈论基础

博弈论基础

博弈论博弈论(Game Theory),亦名“对策论”、“赛局理论”,属应用数学的一个分支,博弈论已经成为经济学的标准分析工具之一。

目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。

博弈论主要研究公式化了的激励结构间的相互作用。

是研究具有斗争或竞争性质现象的数学理论和方法。

也是运筹学的一个重要学科。

博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。

生物学家使用博弈理论来理解和预测进化论的某些结果。

参见:行为生态学(behavioral ecology)。

约翰·冯·诺依曼博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的目的。

博弈论思想古已有之,中国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论著作。

博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展。

博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。

近代对于博弈论的研究,开始于策墨洛(Zermelo),波雷尔(Borel)及冯·诺伊曼(von Neumann)。

1928年,冯·诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。

1944年,冯·诺依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。

1950~1951年,约翰·福布斯·纳什(John Forbes Nash Jr)利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的策墨洛(Zermelo)基础。

纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。

此外,塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

博弈论(Game Theory),亦名“对策论”、“赛局理论”,属应用数学的一个分支, 目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。

博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。

把博弈论作为研究方法和分析工具应用于经济体制与制度问题的研究,目前主要有两种方法。

一种是“进化博弈论方法”。

它将人类的经济活动和竞争性经济行为同生物的进化相类比,研究人类经济行为中的策略和行为方式的均衡,以及向均衡状态调整、收敛的过程与性质。

另一种新方法是“重复博弈论方法”,它运用更精细的均衡概念,如“子博弈精炼均衡”来分析历史与现实中的制度选择与变迁过程。

基本概念中包括局中人、行动、信息、策略、收益、均衡和结果等。

其中局中人、策略和收益是最基本要素。

局中人、行动和结果被统称为博弈规则。

博弈主要可以分为合作博弈和非合作博弈。

合作博弈和非合作博弈的区别在于相互发生作用的当事人之间有没有一个具有约束力的协议,如果有,就是合作博弈、从行为的时间序列性,博弈论进一步分为静态博弈、动态博弈两类:静态博弈是指在博弈中,参与人同时选择或虽非同时选择但后行动者并不知道先行动者采取了什么具体行动;动态博弈是指在博弈中,参与人的行动有先后顺序,且后行动者能够观察到先行动者所选择的行动。

通俗的理解:"囚徒困境"就是同时决策的,属于静态博弈;而棋牌类游戏等决策或行动有先后次序的,属于动态博弈按照参与人对其他参与人的了解程度分为完全信息博弈和不完全信息博弈。

完全博弈是指在博弈过程中,每一位参与人对其他参与人的特征、策略空间及收益函数有准确的信息。

纳什均衡(Nash Equilibrium):在一策略组合中,所有的参与者面临这样一种情况,当其他人不改变策略时,他此时的策略是最好的。

在纳什均衡点上,每一个理性的参与者都不会有单独改变策略的冲动。

博弈论看法博弈论的基本假设:参与人追求利润最大化。

“在博弈论的世界里没有仁慈或怜悯,只有自利。

”①即博弈论排除道德、良心、情感、责任等社会及心理因素,唯一以相对最大化赢利为行动选择的标准。

这里的“利润”或“赢利”并非指经济学中的意义。

在政治学中包括选票数、支持者人数、社会评价、人民喜好等诸多要素,这些要素不仅能够给参与人带来一定的满足程度,更能给参与人带来“权力”,选举权、决策权、公民权、表决权等政治权力。

这些“利润”或“赢利”能够用数字度量,或者至少能够比较大小。

博弈论的描述包括参与人、行动、信息、策略、支付、结果和均衡等构成要素,但其最基本的要素(罗伯特·奥曼)包括参与人、策略和效用函数。

博弈论告诉我们人具有理性的计算能力和倾向,都会倾向于选择对自己最有利的一种行为。

法律之所以能使大部分人不违法,是因为人在行动前往往有所计算,这也是对我们设计制度时的一种启示。

同时博弈论也是有局限性的,并不假设人都是自私自利的。

人的行为不能完全依靠计算来预测,理性计算具有有限性,不能解决所有合作问题,不能单纯依靠建立合作有利的博弈局面来使人选择合作。

博弈论也不能直接陶冶人的同情心,同情心等道德情感需要依靠宗教,伦理,美学等来培养。

同时,时刻运用博弈为自己利益最大化谋算也似乎会让人缺少人情味缺少快乐。

中国古典博弈的精彩较多呈现在军事中,不仅具有典型动态博弈化的城濮之战,还有广为流传的孙子兵法。

比如,国人都熟悉的田忌赛马的故事,按照博弈论的推演思路,这应该完全符合静态博弈的特征。

双方在第一回合中均有自己的策略,并且甲方的策略就是乙方的策略,反之同样,此情景下达到第一层博弈均衡,在齐王之马体质优秀时获得胜利这样一个事实。

当其中之一的博弈者开始变革策略,打破了原有的均衡值,就会产生新的博弈均衡,只是作为另一方的齐王没有变更策略而使新的博弈均衡毫无悬念地产生。

一位陌生美女主动过来和你搭讪,并要求和你一起玩个游戏。

美女提议:“让我们各自亮出硬币的一面,或正或反。

如果我们都是正面,那么我给你3元,如果我们都是反面,我给你1元,剩下的情况你给我2元就可以了。

”听起来不错的提议。

如果我是男性,无论如何我是要玩的,不过经济学考虑就是另外一回事了,这个游戏真的够公平吗?总的来说“博弈论”其本质是将日常生活中的竞争矛盾以游戏的形式表现出来,并使用数学和逻辑学的方法来分析事物的运作规律。

既然有游戏的参与者那么也必然存在游戏规则的制定者。

深入的了解竞争行为的本质,有助于我们分析和掌握竞争中事物之间的关系,更方便我们对规则进行制定和调整,使其最终按照我们所预期的目的进行运作。

谈谈对博弈论的认识金融0901 陈华英博弈论(game theory) 又叫对策论,是作为分析和解决冲突和合作的工具,参与人,策略集和效用构成一个基本的博弈.参与人在博弈过程中是否能够达成一个具有约束力的协议,将博弈分为合作与非合作博弈(non-cooperative game), 后者参与人在选择自己的行动时,优先考虑如何维护自己的利益,前者强调的是集体主义,团体理性(collective rationality)。

博弈论强调时间和信息的重要性,是影响博弈均衡的主要因素。

参与者之间的信息传递决定了其行动空间和最优战略的选择;博弈过程中始终存在一个先后问题,参与人的行动次序对博奕最后的均衡有直接的影响。

博弈根据参与人行动的次序和参与人对其它人的特征、战略空间和支付的知识、信息是否了解两个角度进行划分。

四种博弈:完全信息静态博弈和动态博弈,不完全信息静态和动态博弈。

严格讲博弈论并不是经济学的分支,只是一种方法,许多人于是将它看作数学的一个分支。

它为解决不同实体的冲突和合作提供了一个宝贵的方法。

博弈论,又称对策论根据,是使用严谨的数学模型研究冲突对抗条件下最优决策问题的理论。

它的研究对象是人与人之间行为的相互影响和相互作用,人与人之间利益和冲突、竞争与合作。

博弈论对人类最大的贡献是其哲学思维方式推动人类思维模式的向前发展。

初识博弈论是在电影《美丽心灵》中,影片中有这样一个情节:在美国普林斯顿大学的酒吧里,4个男生正商量着如何去追求一位漂亮女生,当时还正在大学读书的约翰·纳什却在朦胧的“博弈论”思维逻辑引导下喃喃自语:“如果他们4个人全部去追求那漂亮女生,那她一定会摆足架子,谁也不睬。

然后再去追其他女孩子,别人也不会接受,因为没人愿意当…次品‟。

但如果他们先追其他女生,那么漂亮女生就会感到被孤立,这时再追她就会容易得多。

”在纳什眼里,追求女生就是一场“博弈”,而“博弈”是要遵循一定规则的,是需要“博弈”策略的。

当时对这种思维方式感觉很奇特,因为正常的思维应该是大家都去追求那个漂亮的女生才符合常情。

实际上却是约翰·纳什的方法很管用,在影片的最后,沉浸在数学王国的约翰·纳什疯狂的分析各种手边的信息数据,几近癫狂。

在妻子的专心爱护下,他终于获得光荣的荣耀,这有另当别论了,不在此文的范围之类。

“博弈论”的英语原文是Game Theory,直译过来就是游戏论、运动论或竞赛论。

譬如在足球比赛中,双方都想在努力巩固防守的同时,积极进攻以置对方于“死地”。

这种行为就是一种博弈。

“弈”在汉语中是下棋的意思,下棋中的双方行为特征也如同足球比赛中双方的行为。

当然,扩展开来讲,企业之间的竞争、国家之间的角力等等,都是“游戏”,只是游戏的内容不同而已。

其实在我们的身边到处都充满着博弈论。

日常生活中司空见惯的现象,如大股东行使监督上市公司的职责,而小股东则坐享这种监督带来的利益,即所谓“搭便车”;爱清洁的人经常打扫公共楼道,其他人搭便车;山村中出外跑运输、做生意的人掏钱修路,其他村民走修好的路;等等。

这些情况在博弈论的经典案例中是属于“智猪博弈”。

即假设猪圈里有一大一小两只猪,猪圈的一头有一个猪食槽,另一头有一个控制猪食供应的按钮,揿一下按钮会有10个单位的猪食进槽。

若小猪去揿,大猪先吃,大猪可吃到9个单位,小猪揿好后奔过来,则只能吃到1个单位;若大猪去揿,小猪先吃,小猪可吃到6个单位,大猪吃到4个单位;若同时去揿,奔过来再同时吃,大猪可吃到7个单位,小猪吃到3个单位。

在这种情况下,不论大猪采取何种策略,小猪的最佳策略是等待,即在食槽边等待大猪去揿按钮,然后坐享其成。

而由于小猪总是会选择等待,大猪无奈之下只好去揿按钮。

这种策略组合就是名闻遐迩的“纳什均衡”。

它指的是,在给定一方采取某种策略的条件下,另一方所采取的最佳策略(此处为大猪揿按钮)。

在很多的时候我们都可能是在不知不觉中就使用了或者是接触到博弈论,就像是平常我们和同学之间的争执问题,每次都可能弄得脸红脖子粗的,双方都不服气,最终的结果是有一个人妥协,然后彼此达成一致。

这也是一起博弈论案例,可以解释的是斗鸡博弈。

所谓的“斗鸡论”就是两只公鸡面对面争斗,继续斗下去,两败俱伤,一方退却便意味着认输。

在这样的博弈中,要想取胜,就要在气势上压倒对方,至少要显示出破釜沉舟、背水一战的决心来,以迫使对方退却。

但到最后的关键时刻,必有一方要退下来,除非真正抱定鱼死网破的决心。

这类博弈也不胜枚举。

如两人反向过同一独木桥,一般来说,必有一人选择后退。

在该种博弈中,非理性、非理智的形象塑造往往是一种可选择的策略运用。

如那种看上去不把自己的生命当回事的人,或者看上去有点醉醺醺、傻乎乎的人,往往能逼退独木桥上的另一人。

还有夫妻争吵也常常是一个“斗鸡博弈”,吵到最后,一般地,总有一方对于对方的唠叨、责骂装聋作哑,或者干脆妻子回娘家去冷却怒火。

冷战期间,美苏两大军事集团的争斗也是一种“斗鸡博弈”。

其实在我国传统文化中,包含有许多精妙的博弈策略。

许多成语及成语典故,就是对博弈策略的令人叫绝的运用和归纳。

如围魏救赵、背水一战、暗渡陈仓、釜底抽薪、狡兔三窟、先发制人、借鸡生蛋等等。

当然,博弈策略的成功运用须依赖一定的环境、条件,在一定的博弈框架中进行。

简单的说我们的日常对话中也蕴含着神奇的博弈论思维。

比如你去菜场买菜,当你对某种菜的质量、口味等有疑虑时,卖菜的阿姨常会讲:“你放心,我一直在这儿卖呢!”这句朴实的话中其实包含了华丽的“博弈论”思想:我卖与你们买是一个次数无限的重复博弈,我今天骗了你,你们今后就不会再来我这儿买了,所以我不会骗你的,菜的质量、口味肯定没问题。

而你在听了阿姨的上述一句话后,常常也会打消疑虑,买菜回家。

我们身边充满了博弈,或者说,我们身边的许多行为、现象都可用博弈来概括。

“博弈论”不仅属于经济学,也理应属于社会学、政治学、心理学、历史学等,这些学科也有理由分享“博弈论”那旖旎的学术风光和精细的分析技巧。

囚徒困境告诉我们,每一方根据自己的利益做出选择,结果却是集体遭殃。

可见,个人理性与集体理性在行为选择中是有可能冲突的,即基于个体的理性思维可能导致集体的不理性。

相关文档
最新文档