分形接触理论的结合面法向接触参数预估

分形接触理论的结合面法向接触参数预估
分形接触理论的结合面法向接触参数预估

分形理论

毕业论文 题目:分形理论 学院:物理与电子工程学院 专业:物理学 毕业年限:2012年6月 学生姓名:张婷 学号:200872010244 指导教师:段文山

分形理论 学生姓名:张婷指导教师:段文山 (西北师范大学物理与电子工程学院甘肃兰州 730070) 摘要:分形理论是现代非线性科学中的一个重要的分支,是科学研究中一种重要的数学工具和手段。本文介绍了分形理论的基本概念,给出了分形理论的重要参数分形维数的几种常见定义和计算方法。重点介绍了分形理论在城镇管理、工程技术、物理、等学科领域的应用及其最新的进展情况。提出分形理论将面临和有待解决的问题。 关键词:分形理论;分形维数;应用状况 Theory of Fractal Abstract:Fractal theory is a branch of nonlinear science and an important means for science research.This paper introduces the basic concept and several calculating methods of fractal dimension as a main parameter of fractal theory.Primarily,it is summarized that fractal theory have been used in various fields such as management,engineering and geography,physics,etc.In the end,problems in face of fractal theory is advanced. Key words:Fractal theory;Fractal dimension;Application

4时间序列参数估计

时间序列模型参数估计1理论基础 1.1矩估计 1.1.1AR模型 矩估计法参数估计的思路:

即从样本中依次求中r k 然后求其对应的参数Φk 值 方差: 1.1.2 MA 模型 对于MA 模型采用矩估计是比较不精确的,所以这里不予讨论 1.1.3 ARMA (1,1) 矩估计法参数估计的思路: 方差:

1.2最小二乘估计 1.2.1AR模型 最小二乘参数估计的思路: 对于AR(P)而言也可以得到类似矩估计得到的方程,即最小二乘与矩估计得到的估计量相同。

1.2.2MA模型 最小二乘参数估计的思路: 1.2.3ARMA模型 最小二乘参数估计的思路:

1.3极大似然估计与无条件最小二乘估计

2R中如何实现时间序列参数估计 2.1对于AR模型 ar(x, aic = TRUE, order.max = NULL, method=c("yule-walker", "burg", "ols", "mle", "yw"), na.action, series, ...) > ar(ar1.s,order.max=1,AIC=F,method='yw')#即矩估计 Call: ar(x = ar1.s, order.max = 1, method = "yw", AIC = F) Coefficients: 1 0.8314 Order selected 1 sigma^2 estimated as 1.382 > ar(ar1.s,order.max=1,AIC=F,method='ols')#最小二乘估计Call: ar(x = ar1.s, order.max = 1, method = "ols", AIC = F) Coefficients: 1 0.857 Intercept: 0.02499 (0.1308) Order selected 1 sigma^2 estimated as 1.008 > ar(ar1.s,order.max=1,AIC=F,method='mle')#极大似然估计Call: ar(x = ar1.s, order.max = 1, method = "mle", AIC = F) Coefficients: 1 0.8924 Order selected 1 sigma^2 estimated as 1.041 采用自编函数总结三个不同的估计值 > Myar(ar2.s,order.max=3)

分形理论

分形理论及其在水处理工程中的应用 凝聚和絮凝是混凝过程的两个重要阶段, 絮凝过程的完善程度直接影响后续处理(沉淀和过滤)的处理效果。但絮凝体结构具有复杂、易碎和不规则的特性,以往对絮凝的研究中由于缺乏适用的研究方法,通常只考虑混凝剂的投入和出水的混凝效果, 而把混凝体系当作一个―黑箱‖, 不做深入研究。即使考虑微观过程, 也只是将所有的胶粒抽象为球形, 用已有的胶体化学理论及化学动力学理论去加以解释[1],得出的结论与实验中实际观察到的胶体和絮凝体的特性有较大的差别。尽管有的研究者在理论推导和形成最终的数学表达式时引入了颗粒系数加以修正, 但理论与实验结果仍难以一致。而分形理论的提出,填补了絮凝体研究方法的空白。作为一种新兴的絮凝研究手段, ,分形理论启发了研究人员对絮凝体结构、混凝机理和动力学模型作进一步的认识。 1 分形理论的概述 1.1 分形理论的产生 1975年[2],美籍法国数学家曼德布罗特(B. B. Mandelbrot)提出了一种可以用于描绘和计算粗糙、破碎或不规则客体性质的新方法,并创造了分形(fractal) 一词来描述。 分形是指一类无规则、混乱而复杂, 但其局部与整体有相似性的体系, 自相似性和标度不变性是其重要特征。体系的形成过程具有随机性,体系的维数可以不是整数而是分数[3]。它的外表特征一般是极易破碎、无规则和复杂的,而其内部特征则是具有自相似性和自仿射性。自相似性是分形理论的核心,指局部的形态和整体的形态相似,即把考察对象的部分沿各个方向以相同比例放大后,其形态与整体相同或相似。自仿射性是指分形的局部与整体虽然不同, 但经过拉伸、压缩等操作后, 两者不仅相似, 而且可以重叠。 分形理论给部分与整体、无序与有序、有限与无限、简单与复杂、确定性与随机性等概念注入了新的内容,使人们能够以新的观念和手段探索这些复杂现象背后的本质联系。 1.2 絮凝体的分形特性 絮凝体的成长是一个随机过程, 具有非线性的特征。若不考虑絮凝体的破碎, 常规的絮凝过程是由初始颗粒通过线形随机运动叠加形成小的集团, 小集团又碰撞聚集成较大集团, 再 进一步聚集,一步一步成长为大的絮凝体。这一过程决定了絮凝体在一定范围内具有自相似性和标度不变性, 这正是分形的两个重要特征[4], 即絮凝体的形成具有分形的特点。 2 絮凝体的模拟模型 2.1 絮凝体的分形结构模型 为了更好地了解絮凝体的形成过程并尽可能地加以预测, 经过大量的研究提出了众多的絮

参数估计的基本理论

第3章 参数估计的基本理论 信号检测:通过准则来判断信号有无; 参数估计:由观测量来估计出信号的参数; 解决1)用什么方法求取参数,2)如何评价估计质量或者效果 严格来讲,这一章研究的是参数的统计估计方法,它是数理统计的一个分支。 推荐两本参考书高等教育出版社《数理统计导论》,《Nonlinear Parameter Estimation 》。 我们首先从一个估计问题入手,来了解参数估计的基本概念。 3.1 估计的基本概念 3.1.1 估计问题 对于观察值x 是信号s 和噪声n 叠加的情况: ()x s n θ=+ 其中θ是信号s 的参数,或θ就是信号本身。若能找到一个函数()f x ,利用 ()12,,N f x x x 可以得到参数θ的估计值 θ ,相对估计值 θ,θ称为参数的真值。则称()12,,N f x x x 为参数θ的一个估计量。记作 ()12,,N f x x x θ= 。 在上面的方程中,去掉n 实际上是一个多元方程求解问题。这时,如果把n 看作是一种干扰或摄动,那么就可以用解确定性方程的方法来得出()f x 。但是我们要研究的是参数的统计估计方法,所以上面的描述并不适合我们的讨论。下面给出估计的统计问题描述。(点估计) 设随机变量x 具有某一已知函数形式的概率密度函数,但是该函数依赖于未知参数θ,Ω∈θ ,Ω称为参数空间。因此可以把x 的概率密度函数表示为一个函数族);(θx p 。N x x x ,,,21 表示随机样本,其分布取自函数族);(θx p 的某一成员,问 题是求统计量 ()12,,N f x x x θ= ,作为参数θ的一个估计量。 以上就是用统计的语言给出的参数估计问题的描述。

分形理论发展历史及其应用

一、分形理论 分形理论的起源与发展 1967年美籍数学家曼德布罗特在美国权威的《科学》杂志上发表了题为《英国的海岸线有多长?》的著名论文。海岸线作为曲线,其特征是极不规则、极不光滑的,呈现极其蜿蜒复杂的变化。我们不能从形状和结构上区分这部分海岸与那部分海岸有什么本质的不同,这种几乎同样程度的不规则性和复杂性,说明海岸线在形貌上是自相似的,也就是局部形态和整体态的相似。事实上,具有自相似性的形态广泛存在于自然界中,如:连绵的山川、飘浮的云朵、岩石的断裂口、布朗粒子运动的轨迹、树冠、花菜、大脑皮层……曼德布罗特把这些部分与整体以某种方式相似的形体称为分形(fractal)。1975年,他创立了分形几何学。在此基础上,形成了研究分形性质及其应用的科学,称为分形理论。 分形理论的发展大致可分为三个阶段: 第一阶段为1875 年至1925年,在此阶段人们已认识到几类典型的分形集,并且力图对这类集合与经典几何的差别进行描述、分类和刻画。 第二阶段大致为1926年到1975年,人们在分形集的性质研究和维数理论的研究都获得了丰富的成果。 第三阶段为1975年至今,是分形几何在各个领域的应用取得全面发展,并形成独立学科的阶段。曼德尔布罗特于1977年以《分形:形、机遇和维数》为名发表了他的划时代 的专著。 1.3.1 分形的定义 目前对分形并没有严格的数学定义,只能给出描述性的定义。粗略地说,分形是没有特征长度,但具有一定意义下的自相似图形和结构的总称。 英国数学家肯尼斯·法尔科内(Kenneth J.Falconer)在其所著《分形几何的数学基础及应用》一书中认为,对分形的定义即不寻求分形的确切简明的定义,而是寻求分形的特性,按这种观点,称集合F是分形,是指它具有下面典型的性质:a. F具有精细结构b. F是不规则的c. F通常具有自相似形式d. 一般情况下,F在某种方式下定义的分形维数大于它的拓扑维数。 另外,分形是自然形态的几何抽象,如同自然界找不到数学上所说的直线和圆周一样,自然界也不存在“真正的分形”。从背景意义上看,说分形是大自然的几何学是恰当的。 分形理论的研究方向及应用 虽然分形是近30年才发展起来的一门新兴学科,但它已经激起了多个领域科学家的极大兴趣,其应用探索遍及数学、物理、化学、材料科学、生物与医学地质与地理学、地震和天文学、计算机科学乃至经济、社会等学科,甚至艺术领域也有它的应用。

第3章 参数估计理论

第3章 参数估计理论 参数估计的基本方法:点估计,区间估计 点估计:以样本的某一函数值作为总体中未知参数的估计值。 区间估计:把总体中的参数确定在某一区间内。 第1节 点估计 点估计就是以样本的某一函数值作为总体中未知参数的估计值。 设θ是总体X 的待估参数,用样本12,,,n X X X 构造一个合适的统计量12(,,,)n T X X X 来估计参数θ,通常记为?θ,即 12?=(,,,)n T X X X θ ,称为参数θ的估计量。对样本的一组观测值12(,,,)n x x x ,统计量T 的值12?=(,,,)n T x x x θ 称为参数θ的估计值。 点估计的问题就是要找一个作为待估参数θ的估计量 12(,,,)n T X X X 的问题。 点估计的方法:数字特征法(矩估计法)、极大似然估计法、Bayes 估计法、最小二乘法等等。

第2节 矩估计法 矩估计法由英国统计学家K.Person 在20世纪初提出,基本思想就是用样本矩去估计相应的总体矩。理论依据是大数定律。 例1 设总体X 服从参数为θ的指数分布,即 1 1,0 (,)0,0x e x f x x θ θθ -?>?=??≤? 12,,,n X X X 为取自总体 X 的样本,求参数θ的矩估计量。 例2 设总体2 ~(,)X N μσ,12,,,n X X X 为取自总体X 的样本,求 参数2,μσ的矩估计量。 例3 设总体2 ~(0,)X N σ,12,,,n X X X 为取自总体X 的样本,求 参数2σ的矩估计量。 例4 设总体~(,)X U a b ,12,,,n X X X 为取自总体X 的样本,求参数,a b 的矩估计量。 ??=a X b X =+ 例5 设总体~()X P λ,12,,,n X X X 为取自总体X 的样本,求参数 λ的矩估计量。

粗糙表面接触分形模型的提出与发展

第16卷 第4期摩擦学学报V o l.16, N o.4 1996年10月TR I BOLO GY O ct.,1996评述与进展(375~384) 粗糙表面接触分形模型的提出与发展3 贺 林 朱 均 (西安交通大学润滑理论及轴承研究所 西安 710049) 摘要 自表面接触塑性变形模型问世以来,经过近40年的发展,已经形成以分形几何理论为基 础的M2B粗糙表面接触分形模型.M2B模型以分形参数代替统计学参数表征粗糙表面,推导出 了实际接触面积与载荷的关系,以及实际弹性接触面积和实际塑性接触面积的计算公式,指出 了影响接触面变形性质的因素与规律1由于分形参数的尺度独立性,可望利用M2B模型对接触 面积的预测不受测量仪器分辨率和取样长度等因素的影响,故其比基于统计分析的G2W接触 模型更为合理1尽管如此,M2B模型还有待完善,多方面的问题尚待进行深入研究. 关键词 粗糙表面 接触模型 分形几何 分维 形貌参数 真实接触面积 表面形貌对摩擦、磨损及润滑都有重要影响,因而对表面形貌的研究受到人们的广泛关注,表面接触理论是发展摩擦学理论的一个重要出发点.作者拟对粗糙表面接触分形模型的提出、主要内容及其发展进行综合介绍与评述. 1 粗糙表面接触分形模型的提出 人们在试图解释经典Am on ton摩擦定律之初,就认识到在微观尺度上摩擦面是粗糙的,实际接触是发生在摩擦面的微凸体上,实际接触面积与名义面积之比非常小.为了计算实际接触面积、预测接触面积随载荷的变化,早期是将球体之间接触的赫兹理论应用于单个接触点上进行研究,直至Ho l m提出接触点上的局部应力可以高到足以超过较软材料的弹性极限而使微凸体塑性屈服这一观点后,Bow den等〔1〕才建立了接触的塑性变形模型,可以对经典摩擦定律作出解释.但在此后不久,A rchard〔2〕就提出了完全不同的弹性变形模型,他进行了多重接触的假设,得到了即使在完全弹性变形条件下,真实接触面积与载荷之间也非常接近于线性关系的结论.A rchard模型的重要贡献是首次实现了对经典Am on ton摩擦定律较好的解释,而不一定依赖于塑性变形的假设.试验结果表明,这2种模型都还不很符合实际.1966年,Greenw ood与W illiam son共同提出了基于统计分析的接触模型,即G2W模型〔3〕.这种模型首次将表面形貌的高度分布看成随机变量,没有以绝对弹性或绝对塑性变形为前提,而是引入了塑性指数?=EΡ B H(其中,E为赫兹接触的复合弹性模量,H为较软材料的硬度,Ρ为微凸体高度分布的标准差,Β为微凸体顶端的平均曲率半径)的概念.通过?将材料本身的特性与接触面的几何形状联系起来,?是衡量弹性接触和塑性接触面积 3国家自然科学基金资助项目 1996201228收到初稿,1996205205收到修改稿 本文通讯联系人贺林

参数估计练习题

第七章参数估计练习题 一.选择题 1. 估计量的含义是指() A. 用来估计总体参数的统计量的名称 B. 用来估计总体参数的统计量的具体数值 C.总体参数的名称 D.总体参数的具体取值 2.一个95%的置信区间是指() A. 总体参数有95%的概率落在这一区间内 B. 总体参数有5%的概率未落在这一区间内 C. 在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数。 D. 在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数。 %的置信水平是指() A. 总体参数落在一个特定的样本所构造的区间内的概率是95% B.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为95% C.总体参数落在一个特定的样本所构造的区间内的概率是5% D.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为5% 4. 根据一个具体的样本求出的总体均值的95%的置信区间() A.以95%的概率包含总体均值 B.有5%的可能性包含总体均值 C. 一定包含总体均值 D.要么包含总体均值,要么不包含总体均值 5. 当样本量一定时,置信区间的宽度() A.随着置信水平的增大而减小 B. .随着置信水平的增大而增大 C.与置信水平的大小无关D。与置信水平的平方成反比 6. 当置信水平一定时,置信区间的宽度() A.随着样本量的增大而减小 B. .随着样本量的增大而增大 C.与样本量的大小无关D。与样本量的平方根成正比 7. 在参数估计中,要求通过样本的统计量来估计总体参数,评价统计量的标准之一是使它与 总体参数的离差越小越好。这种评价标准称为() A.无偏性 B. 有效性 C. 一致性 D. 充分性 8. 置信水平(1-α)表达了置信区间的() A.准确性 B. 精确性 C. 显着性 D. 可靠性 9. 在总体均值和总体比例的区间估计中,边际误差由()A.置信水平决定 B. 统计量的抽样标准差确定 C. 置信水平和统计量的抽样标准差 D. 统计量的抽样方差确定 10. 当正态总体的方差未知,且为小样本条件下,估计总体均值使用的分布是() A.正态分布 B. t 分布 C.χ2分布 D. F分布

分形理论

分形理论 在多年大量实践与探索的基础上,我于96年年底完成了论文<<大系统随机波动理论>>, 随后又在近一年的运作实践中不断进行了修正与完善,自信已经形成一个比较合乎现实逻辑的理论体系。该论文结合当今数学与物理学界最热门的研究领域之一--- 以变化多姿杂乱无章的自然现象为研究对象的分形理论,从最基本的概念与逻辑出发阐明了波动是基本的自然法则, 价格走势的波浪形态实属必然;阐明了黄金分割率的数学基础及价值基础, 价格波动的分形、基本形态及价量关系, 并总结了应用分析的方法与要点等等;文中也多次引用我个人对分形问题的研究成果;另外也指明了市场中流行的R.N. 埃劳特的波浪理论的基本点的不足之处。在国内基金业即将进入规范的市场化的大发展时期之际,就资金运作交易理论进行广泛的交流与探讨,肯定与进行有关基金的成立、组织、规范管理等方面的交流与探讨同样有意义。我尽力用比较通俗的语言描述并结合图表实例分析向读者介绍有关价格波动理论研究的基本内容与使用要点,供读者朋友参考。 一、分形理论与自然界的随机系统 大千世界存在很多奇形怪状的物体及扑溯迷离的自然景观, 人们很难用一般的物质运动规律来解释它们, 象变换多姿的空中行云, 崎岖的山岳地貌, 纵横交错的江河流域, 蜿蜒曲折的海岸线, 夜空中繁星的分布, 各种矿藏的分布, 生物体的发育生长及形状, 分子和原子的无规运动轨迹, 以至于社会及经济生活中的人口、噪声、物价、股票指数变化等等。欧氏几何与普通的物理规律不能描述它们的形状及运动规律, 这些客观现象的基本特征是在众 多复杂因素影响下的大系统(指包括无穷多个元素)的无规运动。通俗一点讲, 这是一个复杂的统计理论问题, 用一般的思维逻辑去解决肯定是很困难的或者说是行不通的。70年代曼德尔布罗特(Mandelbrot,B.B.)通过对这些大系统的随机运动现象的大量研究,提出了让学术界为之震惊的“分形理论”, 以企图揭示和了解深藏在杂乱无规现象内部的规律性及其物理本质,从而开辟了一个全新的物理与数学研究领域,引起了众多物理学家和数学家的极大兴趣。 所谓分形, 简单的讲就是指系统具有“自相似性”和“分数维度”。所谓自相似性即是指物体的(内禀)形似,不论采用什么样大小的测量“尺度”,物体的形状不变。如树木不管大小形状长得都差不多, 即使有些树木从来也没见过, 也会认得它是树木;不管树枝的大小如何,其形状都具有一定的相似性。所谓分形的分数维, 是相对于欧氏几何中的直线、平面、立方而言的, 它们分别对应整数一、二、三维,当然分数维度“空间”不同于人们已经习惯的整数维度空间,其固有的逻辑关系不同于整数维空间中的逻辑关系。说起来一般人可能不相信,科学家发现海岸线的长度是不可能(准确)测量的,对一个足够大的海岸线无论采用多么小的标尺去测量其长度发现该海岸长度不趋于一个确定值!用数学语言来描述即是海岸线长度与测量标尺不是一维空间的正比关系,而是指数关系,其分形维是1.52;有理由相信海岸线的形状与这个分数维有内在关系。 一个全新的概念与逻辑的诞生,人们总是有一个适应过程,但是无数事实已经证明,合理的(或者说不能推翻的)逻辑在客观现实中总能找到其存在或应用的地方的。本世纪初, 爱因斯坦将物质运动从三维空间引到四维空间去描述, 从而产生了一场科学与认识上的革命, 爱因斯坦的相对论不仅让人类“发现”了原子能,而且更重要的是其极大地推动了人们对太空与原子(和微观粒子)的认识层次与能力的提高,但愿分形理论的诞生也具有同样意义,也许在生命(生物)科学与环境科学领域将发现分形理论的重大价值。 下面结合三分法科赫曲线(KOCH)来进一步说明自相似性的意义。如附图一所示, 将一条1个单位长度的线段, 分三等份, 去掉中间的一份并用同等长度的等边三角形的两条边取代之, 随后用同样的方法不断循环地操作五次, 即得这些图形。由科赫曲线明显可以看出,

参数估计方法

参数估计的方法 矩法 一、矩的概念 矩(moment )分为原点矩和中心矩两种。对于样本n y y y ,,, 21,各观测值的k 次方的平均值,称为样本的k 阶原点矩,记为k y ,有∑==n i k i k y n y 1 1,例如,算术 平均数就是一阶原点矩;用观测值减去平均数得到的离均差的k 次方的平均数称为样本的k 阶中心矩,记为k y y ) (-或k μ ?,有∑-= -=n i k i k y y n y y 1 ) (1)(,例如,样本 方差 ∑-=n i i y y n 1 2 ) (1就是二阶中心矩。 对于总体N y y y ,,, 21,各观测值的k 次方的平均值,称为总体的k 阶原点矩,记为)(k y E ,有∑= =N i k i k y N y E 1 1)(;用观测值减去平均数得到的离均差的k 次方 的平均数称为总体的k 阶中心矩,记为 ] )[(k y E μ-或 k μ,有 ∑-= -=N i k i k y N y E 1 ) (1])[(μμ。 二、矩法及矩估计量 所谓矩法就是利用样本各阶原点矩来估计总体相应各阶原点矩的方法,即 ∑= =n i k i k y n y 1 1→)(k y E (8·6) 并且也可以用样本各阶原点矩的函数来估计总体各阶原点矩同一函数,即若 ))(,),(),((k y E y E y E f Q 2= 则 ),,,(k y y y f Q 2?= 由此得到的估计量称为矩估计量。 [例8.1] 现获得正态分布),(2σμN 的随机样本n y y y ,,, 21,要求正态分布),(2σμN 参数μ和2σ的矩估计量。 首先,求正态分布总体的1阶原点矩和2阶中心矩: ?=?? ? ???--? =?=∞ +∞-∞ +∞-μσμσπdy y y dy y yf y E 2 2 exp 2)(21)()( (此处?? ? ???--2 2exp σμ2)(y 表示自然对数底数e 的?? ? ???--2 2σμ2)(y 的指数式,即] [2)(22 σμ--y e )

分形理论及其发展历程.

分形理论及其发展历程 李后强汪富泉 被誉为大自然的几何学的分形(Fractal)理论,是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。它与动力系统的混沌理论交叉结合,相辅相成。它承认世界的局部可能在一定条件下。过程中,在某一方面(形态,结构,信息,功能,时间,能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而拓展了视野。 分形几何的概念是美籍法国数学家曼德尔布罗特(B.B.Mandelbrot)1975年首先提出的,但最早的工作可追朔到1875年,德国数学家维尔斯特拉斯(K.Weierestrass)构造了处处连续但处处不可微的函数,集合论创始人康托(G.Cantor,德国数学家)构造了有许多奇异性质的三分康托集。1890年,意大利数学家皮亚诺(G.Peano)构造了填充空间的曲线。1904年,瑞典数学家科赫(H.von Koch)设计出类似雪花和岛屿边缘的一类曲线。1915年,波兰数学家谢尔宾斯基(W.Sierpinski)设计了象地毯和海绵一样的几何图形。这些都是为解决分析与拓朴学中的问题而提出的反例,但它们正是分形几何思想的源泉。1910年,德国数学家豪斯道夫 (F.Hausdorff)开始了奇异集合性质与量的研究,提出分数维概念。1928年布利干 (G.Bouligand)将闵可夫斯基容度应用于非整数维,由此能将螺线作很好的分类。1932年庞特里亚金(L.S.Pontryagin)等引入盒维数。1934年,贝塞考维奇(A.S.Besicovitch)更深刻地提示了豪斯道夫测度的性质和奇异集的分数维,他在豪斯道夫测度及其几何的研究领域中作出了主要贡献,从而产生了豪斯道夫-贝塞考维奇维数概念。以后,这一领域的研究工作没有引起更多人的注意,先驱们的工作只是作为分析与拓扑学教科书中的反例而流传开来。 二 1960年,曼德尔布罗特在研究棉价变化的长期性态时,发现了价格在大小尺度间的对称性。同年在研究信号的传输误差时,发现误差传输与无误差传输在时间上按康托集排列。在对尼罗河水位和英国海岸线的数学分析中,发现类似规律。他总结自然界中很多现象从标度变换角度表现出的对称性。他将这类集合称作自相似集,其严格定义可由相似映射给出。他认为,欧氏测度不能刻划这类集的本质,转向维数的研究,发现维数是尺度变换下的不变量,主张用维数来刻划这类集合。1975年,曼德尔布罗特用法文出版了分形几何第一部著作《分开:形状、机遇和维数》。1977年该书再次用英文出版。它集中了1975年以前曼德尔布罗特关于分形几何的主要思想,它将分形定义为豪斯道夫维数严格大于其拓朴维数的集合,总结了根据自相似性计算实验维数的方法,由于相似维数只对严格自相似这一小类集有意义,豪斯道夫维数虽然广泛,但在很多情形下难以用计算方法求得,因此分形几何的应用受到局限。1982年,曼德尔布罗特的新著《自然界的分形几何》出版,将分形定义为局部以某种方式与整体相似的集,重新讨论盒维数,它比豪斯道夫维数容易计算,但是稠密可列集盒维数与集所在空间维数相等。为避免这一缺陷,1982年特里科特(C.Tricot)引入填充维数,1983年格拉斯伯格(P.Grassberger)和普罗克西娅(I.Procaccia)提出根据观测记录的时间数据列直接计算动力系统吸引子维数的算法。1985年,曼德尔布罗特提出并研究自然界中广泛存在的自仿射集,它包括自相似集并可通过仿射映射严格定义。1982年德金(F.M.Dekking)研究递归集,这类分形集由迭代过程和嵌入方法生成,范围更广泛,但维数研究非常困难。德金获得维数上界。1989年,钟红柳等人解决了德金猜想,确定了一大类递归集的维数。随着分形理论的发展和维数计算方法的逐步提出与改进,1982年以后,分形理论逐渐在很多领域得到应用并越来越广泛。建立简便盛行的维数计算方法,以满足应用发展的需要,还是一项艰巨的任务。

第4章 参数估计

第四章参数估计 一、单项选择题 1.矩估计法要求总体X的()要存在。 A.一阶原点矩E(X) B.二阶中心矩E[X-E(X)]2 C.K阶原点矩E(X K) D.K阶中心矩E[X-E(X)]K 2.一阶原点矩就是指随机变量X的() A.众数 B.数学期望 C.方差 D.标准差 3.二阶中心矩就是指随机变量X的() A.标准差 B.方差 C.数学期望 D.中位数 4.K阶中心矩是以()为中心而定义的。 A.K阶原点矩 B.二阶原点矩 C.二阶中心矩 D.一阶原点矩 5.根据大数定律,当样本容量n充分大时,样本矩依概率收敛于() A.K阶原点矩 B.总体矩 C.二阶中心矩 D.一阶原点矩 6.估计量的无偏性是指() A.某个样本估计值与总体参数之间没有偏差 B.某个样本估计量与总体参数之间没有偏差 C.样本估计量所有可能取值的数学期望等于总体参数的真实值 B.以上答案都不正确 7.进行总体均值区间估计时,抽样极限误差必须满足的条件是() A.正态总体、总体方差已知 B.正态总体、总体方差未知且大样本 C.正态总体、总体方差未知且小样本 D.总体分布未知或非正态总体、总体方差未知且大样本 8.随着自由度的增大,t分布逐渐趋于() A.卡方分布 B.F分布 C.正态分布 D.标准正态分布 9.总体比率的区间估计的抽样极限误差(允许误差)计算公式为( ) A. B. C. D. 10.构造统计量服从() A. B. C. D. 11.两个样本方差比服从() A. B. C. D. 二、多项选择题 1.下列中,属于参数估计的点估计法的是() A.矩估计法 B.最大似然估计法 C.区间估计法 D.顺序统计量法 E.最小二乘估计法

分形理论资料

分形理论资料 丁丹 一.分形理论基本知识 1、来源 分形的概念是美籍数学家曼德布罗特(B.B.Mandelbort)首先提出的。1967年他在美国权威的《科学》杂志上发表了题为《英国的海岸线有多长?》的著名论文。海岸线作为曲线,其特征是极不规则、极不光滑的,呈现极其蜿蜒复杂的变化。我们不能从形状和结构上区分这部分海岸与那部分海岸有什么本质的不同,这种几乎同样程度的不规则性和复杂性,说明海岸线在形貌上是自相似的,也就是局部形态和整体形态的相似。在没有建筑物或其他东西作为参照物时,在空中拍摄的100公里长的海岸线与放大了的10公里长海岸线的两张照片,看上去会十分相似。事实上,具有自相似性的形态广泛存在于自然界中,如:连绵的山川、飘浮的云朵、岩石的断裂口、布朗粒子运动的轨迹、树冠、花菜、大脑皮层……曼德布罗特把这些部分与整体以某种方式相似的形体称为分形(fractal)。1975年,他创立了分形几何学(fractalgeometry)。在此基础上,形成了研究分形性质及其应用的科学,称为分形理论(fractaltheory)。 2、基本原则 自相似原则和迭代生成原则是分形理论的重要原则。它表征分形在通常的几何变换下具有不变性,即标度无关性。由自相似性是从不同尺度的对称出发,也就意味着递归。分形形体中的自相似性可以是完全相同,也可以是统计意义上的相似。标准的自相似分形是数学上的抽象,迭代生成无限精细的结构,如科契(Koch)雪花曲线、谢尔宾斯基(Sierpinski)地毯曲线等。这种有规分形只是少数,绝大部分分形是统计意义上的无规分形。 分维,作为分形的定量表征和基本参数,是分形理论的又一重要原则。分维,又称分形维或分数维,通常用分数或带小数点的数表示。长期以来人们习惯于将点定义为零维,直线为一维,平面为二维,空间为三维,爱因斯坦在相对论中引入时间维,就形成四维时空。对某一问题给予多方面的考虑,可建立高维空间,但都是整数维。在数学上,把欧氏空间的几何对象连续地拉伸、压缩、扭曲,维数也不变,这就是拓扑维数。然而,这种传统的维数观受到了挑战。曼德布罗特曾描述过一个绳球的维数:从很远的距离观察这个绳球,可看作一点(零维);从较近的距离观察,它充满了一个球形空间(三维);再近一些,就看到了绳子(一维);再向微观深入,绳子又变成了三维的柱,三维的柱又可分解成一维的纤维。那么,介于这些观察点之间的中间状态又如何呢?显然,并没有绳球从三维对象变成一维对象的确切界限。数学家豪斯道夫(Hausdoff)在1919年提出了连续空间的概念,也就是空间维数是可以连续变化的,它可以是整数也可以是分数,称为豪斯道夫维数。记作Df,一般的表达式为:K=LDf,也作K=(1/L)-Df,取对数并整理得Df=lnK/lnL,其中L为某客体沿其每个独立方向皆扩大的倍数,K为得到的新客体是原客体的倍数。显然,Df在一般情况下是一个分数。因此,曼德布罗特也把分形定义为豪斯道夫维数大于或等于拓扑维数的集合。 3、启示 分形理论既是非线性科学的前沿和重要分支,又是一门新兴的横断学科。作为一种方法论和认识论,其启示是多方面的:一是分形整体与局部形态的相似,启发人们通过认识部分来认识整体,从有限中认识无限;二是分形揭示了介于整体与部分、有序与无序、复杂与简单之间的新形态、新秩序;三是分形从一特定层面揭示了世界普遍联系和统一的图景。 二.分形理论的艺术应用

第4章总体参数估计讲解

◎第4章参数估计 ※一、单一总体的参数估计※ ●(一)估计的含义 ●估计:人人都做过。如: ?上课时,你会估计一下老师提问你的概率有多大? ?当你去公司应聘时,会估计你被录用的可能性是多少??推销员年初时要估计今年超额完成任务的概率有多大?◎估计量:用来估计总体参数的样本统计量。如:算术平均数、中位数、标准差、方差等。 ●估计的可能性与科学性:数理统计证明,一个“优良”的样本统计量应具备以下特征: (1)、无偏性。样本估计量的期望值应等于总体参数。无系统偏差。 (2)、有效性。与离散度相联系。在多个无偏估计量中,方差最小的估计量最有效。 (3)、一致性。随着样本容量的增加,可以使估计量越来越靠近总体参数。 (4)、充分性。估计量能够充分利用有关信息,中位数和众数不具备这一点。 ※估计的类型包括:

1、 点估计:只有一个取值。 就 是总体平均数μ的点估计值。 2、区间估计:给出取值范围(值域)。见PPT ▲两种估计类型哪一种更科学? ※ 区间估计的优点在于:它在给出估计区间时, 还可以给予一个“可信程度”。例如:销售经理想 估计一下明年的出口总值,甲估计是53万美元,乙估计 是50—56万美元之间,并可以确切地说“有95%的把握”。 显然后者的可信程度大于前者。那么,50—56万美元之 间的范围是如何计算的?“有95%的把握”是什么意思? 【引例】:某食品进出口公司向东南亚出口一批花生制品,管 理人员从中抽取50包作为样本,计算其平均数为250克。另 外,合同规定总体标准差为6克。 如果问这批花生制品的平均重量,可用样本平均数作为总 体平均数的最佳估计量:250克。但这是远远不够的,在许多 时候,管理人员还想了解“这个估计值的平均误差是多少?” “总体平均数可能落入样本平均数上、下多大范围内?”“ 这 个估计值的可靠程度是多少?” 〖1〗由于n=50,根据中心极限定理可作图: n=50,σ=6 〖2〗抽样平均误差:8485.0506 ===n x σσ

分形理论概述

分形理论概述 分形理论是当今世界十分风靡和活跃的新理论、新学科。分形的概念是美籍数学家曼 德布罗特(B.B.Mandelbort)首先提出的。1967年他在美国权威的《科学》杂志上发表了题 为《英国的海岸线有多长?》的著名论文。海岸线作为曲线,其特征是极不规则、极不光滑的,呈现极其蜿蜒复杂的变化。我们不能从形状和结构上区分这部分海岸与那部分海岸有 什么本质的不同,这种几乎同样程度的不规则性和复杂性,说明海岸线在形貌上是自相似的,也就是局部形态和整体形态的相似。在没有建筑物或其他东西作为参照物时,在空中拍摄的100公里长的海岸线与放大了的10公里长海岸线的两张照片,看上去会十分相似。事实上,具有自相似性的形态广泛存在于自然界中,如:连绵的山川、飘浮的云朵、岩石的断裂口、布朗粒子运动的轨迹、树冠、花菜、大脑皮层……曼德布罗特把这些部分与整体以某种方 式相似的形体称为分形(fractal)。1975年,他创立了分形几何学(fractal geometry)。在此基础上,形成了研究分形性质及其应用的科学,称为分形理论(fractal theory)。 分形理论既是非线性科学的前沿和重要分支,又是一门新兴的横断学科。作为一种方 法论和认识论,其启示是多方面的:一是分形整体与局部形态的相似,启发人们通过认识 部分来认识整体,从有限中认识无限;二是分形揭示了介于整体与部分、有序与无序、复 杂与简单之间的新形态、新秩序;三是分形从一特定层面揭示了世界普遍联系和统一的图景。 分形理论的原则 自相似原则和迭代生成原则是分形理论的重要原则。它表征分形在通常的几何变换下 具有不变性,即标度无关性。由自相似性是从不同尺度的对称出发,也就意味着递归。分形形体中的自相似性可以是完全相同,也可以是统计意义上的相似。标准的自相似分形是数学上 的抽象,迭代生成无限精细的结构,如科契(Koch)雪花曲线、谢尔宾斯基(Sierpinski)地毯曲线等。这种有规分形只是少数,绝大部分分形是统计意义上的无规分形。 分维,作为分形的定量表征和基本参数,是分形理论的又一重要原则。分维,又称分形维或分数维,通常用分数或带小数点的数表示。长期以来人们习惯于将点定义为零维,直线为一维,平面为二维,空间为三维,爱因斯坦在相对论中引入时间维,就形成四维时空。对某一问题给予多方面的考虑,可建立高维空间,但都是整数维。在数学上,把欧氏空间的几何对象连续地拉伸、压缩、扭曲,维数也不变,这就是拓扑维数。然而,这种传统的维数观受到了挑战。曼德布罗特曾描述过一个绳球的维数:从很远的距离观察这个绳球,可看作一点(零维);从较近的距离观察,它充满了一个球形空间(三维);再近一些,就看到了绳子(一维);再向微观深入,绳子又变成

分形理论及其应用

分形几何及其在城市研究中的应用 一、分形概述 1975年,著名科学家曼德布罗特(B.B.Mandelbrot)发表了其专著《分形:形态、机遇和维数》,这标志着分形几何学的诞生。分形几何学是相对于传统欧氏几何学的不足而建立的,由此发展起来的分形理论是现代非线性科学研究中的一门新兴数学分支,在众多学科领域中有着广泛的应用。 普通的几何对象,具有整数维数。零维的点、一维的线、二维的面、三维的体、四维的时空等。而分形则是具有非整数的分维的几何对象。其主要的价值是在极端有序和极端混沌之间提供了一种可能性。其显著的特征是:看来十分复杂的事物,事实上大多数均可用公含很少参数的简单公式来表达。 1、科赫曲线 分形几何学的研究对象是不光滑的、不规则的,甚至支离破碎的空间几何形态。分形的典型例子,科赫曲线(Koch Curve)便是以初等数学方法构造的一类处处不可导。构造过程如下图: 取长度为1的直线段,称为初始元(initiator),将该线段的中间1/3用一个隆起等边三

角形的另两边替代,得到一条由四个等长直线段构成的折线,称为生成元(generator)。再将生成元中的四个直线段中的每一个,都用一个缩小为1/3的生成元代替,从面形成了一条有次级隆起的折线。 这样一直进行下去,得到科赫曲线。显然,科赫曲线的“内部”结构与整体相似。 2.自相似性与标度不变性 如果几何对象的一个局部放大后与其整体相似,这种性质称为自相似性,比如树。 地质现象的描述离不开标度,在地质上,对一些地质现象拍照时,一定要放上一个能表示尺度大小的物体,如一枚硬币,一把锤子等。 因为,如果没有这些东西,就很难在确定这些照片是反映什么尺度范围内的现象,可能是10米还是10公里等。当观测标度变化时,几何体的许多性质保持不变,称为标度不变性。 具有自相似性或标度不变性的几何对象,我们说它们是分形的。 3.分形的定义 1.部分以某种形式与整体相似的形状叫做分形。(B.B.Mandelbrot)2.分形集合是这样一种集合,它比传统几何学研究的所有集合更加的不规则,无论是放大还是缩小,这种集合的不规则性仍然是明显的。3.如果集合F具有以下的所有的或大部分的性质,它就是分形 a. F具有精细的结构,即有任意小尺度的不规则的细节

参数估计

第三章 参数估计 统计推断就是推断总体分布,可以用经验分布估计理论分布,且增多样本可以逼近所要求的精度,但是这需要大量样本,现实中难以实现。 实际问题总是认为总体分布形式已知,而是不知其中几个参数,因此估计问题变为如何估计这几个未知参数,分成两大类:点估计和区间估计。 §3.1 点估计 设母体X 的分布函数),(θx F 形式已知,θ为待估未知参数向量,样本值 为n x x x ,,,21 ,点估计就是构造一个适当的统计量),,(?1n x x θ作为待估未知参数θ的近似值,统计量简单说就是样本值的函数,但是要求不可依赖未知参量,能够反映未知参量的信息,不同的未知参量对应了不同的统计量。如何构造呢?这里经典方法是矩估计方法和最大似然估计两种办法。 矩估计:子样的k 阶原点矩∑==n i k i k x n A 1 1,母体的k 阶原点矩k m ,假设 θ=],,,[21l θθθ ,那么我们就列L 个方程k m =k A ,求解θ?。 例子:混合高斯分布 )()()1(),(21x x x f ε??εε+-=,2 222 21)(i x i i e x σπσ ?- = 给你样本值为n x x x ,,,21 ,来估计未知参数ε。 解释:混合高斯分布的均值为零,二阶矩为 =][2x E 22 2 1)1(εσσε+- 我们只有样本,那么就用样本二阶矩代替,][121 2 2x E x n A n i i ==∑=,那么得出未知 参数ε的估计值为

2 1 22212?σσσε--=A 最大似然估计:比如连续分布的母体概率密度函数为),(θx f ,θ为待估未知参数向量,样本值为n x x x ,,,21 ,对于各样本值进行排序,总能找到n x x x ≤≤≤ 21,那么发生在区间的概率 {}{}∏==≤≤-≤≤-=≤≤-≤≤-n i i n n n n dx x f x x dx x p P x x dx x P x x dx x x x dx x P 11111),({}{},θ 我们将上述发生概率最大的参数θ作为真实值的估计,那么就是使得似然函数 ∏=n i i x f 1),(θ最大即可,或者∑∏===??????n i i n i i x f x f 1 1),(ln ),(ln θθ最大,记做 ∑==n i i n x f x x L 1 1),(ln ),,,(θθ 为使得上述最大 ),(max arg )?,,,(1θθ θ x L x x L n = 我们自然采取 0=??θ L 来求解θ?参数向量。 推论:统计量),,(?1n x x θ作为未知参数θ的最大似然估计,)(θg 为θ的连续函数,那么)?(θ g 为)(θg 的最大似然估计。 例子:正态母体),(2σu N ,给定样本值为X=(n x x x ,,,21 ),其均值和方差的最大似然估计量? 解:每个样本点都符合正态母体),(2σu N ,那么我们构造似然函数为 ),;(2σu X L =??? ?????∑=?? ???? =--=∏ n i i u x n n i i e x f 1 22)(2121 )2(1ln ),(ln σπσθ

相关文档
最新文档